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The behavior of free-electron laser amplification in the small signal linear regime can be understood by

studying the dispersion relation derived from the electron energy distribution. A thorough understanding

of the growth modes in this regime is of great value in understanding numerical results obtained using

simulations. In this paper we show that for a typical bell-shape energy distribution in the electron beam

there is not more than one growing mode. We also derive an analytical expression, which determines the

bandwidth of the free-electron laser. We also discuss the limitation on the number of growing modes for

the case of beam energy distributions with multiple peaks.
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I. INTRODUCTION

Since the invention of free-electron lasers (FELs) by
Madey [1,2] the FEL field has made tremendous progress
both experimentally [3–5] and theoretically. In an FEL
electrons propagate through a wiggler, a device with a
periodically oscillating transverse magnetic field, which
causes the electrons to radiate at a resonant wavelength of

�o ¼ �w

2�2
ð1þ ha2wiÞ; (1)

where �w is the wiggler period, � ¼ Eo=mc2 is the rela-
tivistic factor of electrons, and aw ¼ eAw=mc is the nor-
malized vector potential of the wiggler’s magnetic field. A
resonant interaction between the electron beam and the
TEM field of the radiation can become unstable, resulting
in the exponential growth of the radiation power. This
results in the generation of high power pulses of coherent
radiation. Such high-gain FELs are of great interest for
current and future applications, and are the subject of the
discussions in this paper.

Because exact analytical solutions of three-dimensional
FEL equations are typically intractable, numerical codes
such as GENESIS [6] and GINGER [7] are used for practical
FEL designs. However, there do exist some analytical
treatments [8–12] that can provide insight into the delicate
phase-space dynamics of electrons, statistical character-
istics of FEL radiation, and can be used for testing the
validity of the assumptions made in the FEL codes. The

FEL linear regime describing the initial amplification of
the density perturbation is frequently used for in-depth
analysis of FEL physics, and most treatments assume a
wide electron beam copropagating with the TEM wave.
Exact solutions for the growth rates of the FEL system

for a cold beam and a beam with a Lorentzian energy
distribution are known [10,12]. These both yield a cubic
polynomial with one growing mode and two oscillating/
decaying modes.
A number of fundamental questions about FELs remain

unanswered. It is understood that the self-consistent 1D
FEL equation may have a variable number of eigenmodes1

depending upon the details of the energy distribution, with
asymptotic formulas for the fastest growing mode dis-
cussed in [10–13]. A direct discussion of the diverging
number of modes is given in [14].
For example, it is known that for a beam with a Gaussian

energy distribution an infinite number of modes exist. But
it is unknown how many of these modes are growing, or
what frequency cutoffs might exist for these growing
modes.
In this paper we will prove that at any given frequency a

1D FEL driven by an electron beam with a bell-shaped
energy distribution (i.e. a smooth, positive, diminishing at
infinity bounded function with a single maximum) has
either one or no growing solutions. It means that there is
only one growing eigenmode amplifying some set of fre-
quencies, with an upper frequency cutoff. We will also
derive, for the first time, an analytical expression for the
amplification bandwidth of the growing eigenmode.
Known roots of the cubic equations for the cases of mono-
energetic and Lorentzian beams support both of these
findings.
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1A growing eigenmode is a solution of the self-consistent FEL
equations, which grows exponentially along the length of the
undulator.
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In Sec. II we review the FEL dispersion relation derived
in the formalism developed by Saldin et al. [12]. In Sec. III
we describe the main idea of the method we use to prove
our findings. Section IV provides a general discussion of
the technique used to analyze the results, and analyzes the
case of a bell-shaped energy distribution. In Sec. V, we
discuss general energy distributions with multiple peaks.

II. 1D FEL DISPERSION RELATION

Saldin, Schneidmiller, and Yurkov provided the most
general treatment of the high-gain free-electron laser op-
erating in the small-signal, linear regime [10,12]. Using a
Laplace transformation they reduced the self-consistent
Maxwell-Vlasov equations [15] to a dispersion relation
of the form

s ¼ D̂ðsÞ
1� i�̂2

pD̂ðsÞ ; (2)

where s is the Laplace transformation variable along the

longitudinal direction, �̂2
p is a longitudinal space charge

parameter, and D̂ðsÞ is the dispersion integral given by

D̂ðsÞ ¼
Z

dP̂
dF̂

dP̂

1

sþ iðP̂� �̂Þ ; (3)

where we use the conventions in [12] of P̂ ¼ ðE� EoÞ=
ð�EoÞ as the normalized energy deviation from the central

energy of electrons, �̂ ¼ LG½!ð1þ a2wÞ=ð2c�2Þ � kw� the
normalized detuning from the FEL resonance2 (1), and F̂
the normalized energy distribution of electrons. We use for
normalization the e-fold FEL gain length, LG, and the
Pierce parameter, � ¼ ðkwLGÞ�1, where kw ¼ 2�=�w is
the wiggler wave number.

The authors also found analytical solutions for the case
of the monoenergetic and Lorentzian energy distributions
as roots of a cubic equation and expressed the solution for
the system in the form

VðzÞ ¼ X3
n¼1

Vne
snz;

where z is the coordinate along the FEL wiggler, the Vn

contain the initial conditions, and the sn are the roots of the
dispersion relation Eq. (2).3

In the case of an arbitrary energy distribution, there
can be a finite or infinite number of roots of Eq. (2). In
the general case of N roots, the self-consistent FEL equa-
tion is reducible to a system of N ordinary differential
equations with roots of Eq. (2) being eigenvalues of the
system. Naturally, the initial condition has N independent

components, and the system has N eigenvectors Vn,
n ¼ 1; . . . ; N. We refer to these linearly independent solu-
tions as ‘‘eigenmodes.’’ Thus, in a general case the solution
is a linear superposition of either finite or infinite number
of eigenmodes:

VðzÞ ¼ XN or1

n¼1

Vne
snz; (4)

which evolve along z with exponential factors of esnz,
where fsng are the eigenvalues of the corresponding dis-
persion relation—Eq. (2). Since the solutions with positive
real part ReðsnÞ> 0 are growing exponentially, knowing
their number and their growth rate is the key for any high-
gain FEL.
In this paper, we prove a 1D FEL driven by an e-beam

with bell-shaped energy distribution has either one or no
growing solution to which wewill assign index n ¼ 1. This
means that all other solutions with n � 1 either decay
(i.e. ReðsnÞ< 0) or oscillate without amplification [i.e.
ReðsnÞ ¼ 0]. It also means that in a high-gain FEL with
G ¼ jesnLj � 1, where L is the FEL length, the solution
(4) can be approximated by a single term

VðzÞ ffi V1e
s1z: (5)

Importance of the latter can be demonstrated by a non-
trivial example of the optical power evolution at the central

wavelength (�̂ ¼ 0) in an FEL driven by electron beam

with �̂p ¼ 0:2 �� 2 energy spread of fðP̂Þ ¼ 2
�ð1þP̂2Þ2 .

Such a FEL has four eigenmodes, with only one of them
growing. As seen in Fig. 1, the growing mode completely
dominates the remaining modes after two gain length.
For most short wavelength FELs the longitudinal space

charge does not play an important role and we neglect it in
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FIG. 1. Evolution of FEL optical power along the FEL: solid
line (red)—the total power in all four eigenmodes; dashed line
(blue)—the power in the growing eigenmode; dotted line
(green)—remaining power in three nongrowing modes.
Horizontal axis—length along the FEL in the units of gain
length. Vertical axis in log-scale—optical power in units of the
input power.

2We are using �̂ to describe the normalized detuning from
FEL resonance. It has the same absolute value, but the opposite
sign from convention used in [10,12], i.e. �̂ � �Ĉ. We think
that this sign is natural, since higher FEL frequencies correspond
to positive values of �̂.

3Note that both Vn and Sn are functions of �.

STEPHEN WEBB et al. Phys. Rev. ST Accel. Beams 15, 080701 (2012)

080701-2



this paper,4 we therefore focus on the reduced dispersion
equation wðsÞ ¼ 0, where

wðsÞ ¼ s� D̂ðsÞ: (6)

In this paper, we therefore focus on the reduced disper-
sion relation (6).

III. CORE OF THE METHOD

Let us start from exploring some basic features of the

dispersion function D̂ðsÞ, especially the location of its
poles. When evaluating the Laplace transform of the linear
FEL equation [12],

L ½fðtÞ� ¼
Z 1

0
dte�stfðtÞ;

it is assumed that ReðsÞ> 0 by the consideration of
causality and the convergence of the above integral.

Corresponding contours in the complex P̂ plane for the

evaluation of Eq. (3) for D̂ðsÞ in the ReðsÞ> 0 half-plane is
shown in Fig. 2(a). Figure 2(b) shows the contour for the

correct analytic continuation of D̂ðsÞ to the ReðsÞ � 0 half-
plane, as first shown in [16].

In all cases the pole at P̂ ¼ isþ �̂ remains above the

contour of integration and D̂ðsÞ is nonzero function only if

F̂0 has poles P̂�
n located in the lower complex plane

[ImðP̂�
nÞ< 0]. Then evaluating Eq. (3) using the residue

formula will generate poles in D̂ðsÞ at5

s�n ¼ �iðP̂�
n � �̂Þ: (7)

Since ImðP̂�
nÞ< 0, we concluded that Reðs�nÞ¼ImðP̂�

nÞ<0,

i.e. all poles of D̂ðsÞ are located in the left half-plane,
ReðsÞ< 0.
The above analytical features of the dispersion function

allow the argument principle of complex analysis to deter-
mine the number of roots of the dispersion relation (6)
using the contour C shown in Fig. 3 and the fact that
the change in the argument of a complex function wðsÞ
meromorphic on a closed contour C, is given by its
winding number,

W ¼ Z� P ¼ 1

2�

I
dfarg½wðsÞ�g; (8)

where Z is the number of zeros of wðsÞ within the contour
C and P is the number of poles, counting multiplicity. This

FIG. 2. (a) The integration contour for the evaluation of D̂ðsÞ at ReðsÞ> 0. (b) The integration contour for the analytical continuation
of D̂ðsÞ into ReðsÞ � 0.

s

Re s( )

Im s( )

FIG. 3. The contour to determine the winding number encom-
passes the right half-plane.

4It also makes mathematics more tractable in this short paper.
Otherwise the logic is similar but should be applied to the
following function: wðsÞ ¼ s½1� i�̂2

pD̂ðsÞ� � D̂ðsÞ.
5For illustration, a well-known rule

H½an=ðP̂� P̂�
nÞ� �

fdP̂=½sþ iðP̂� �̂Þ�g ¼ 2�ian=½sþ iðP̂�
n � �̂Þ�, where the inte-

gral is taken around the pole P̂�
n, shows that a simple pole of F̂0

located at P̂�
n does generate a simple pole in D̂ðsÞ located at s ¼

�iðP̂�
n � �̂Þ.
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is a direct analogy of the Nyquist stability criterion [17,18]
developed for the analysis of linear circuits.

Since the poles of wðsÞ ¼ s� D̂ðsÞ are defined by that

of D̂ðsÞ, there are no poles inside the contour C and P � 0.
Hence, the winding number is equal to the number of roots
of the dispersion relation (3) with ReðsnÞ> 0, and there-
fore to that of the growing solutions.

Let us separate the contour C in two parts: the arc s ¼
R � ei�; ��=2þarcsinð"=RÞ<�<�=2þarcsinð"=RÞ and
the vertical line s ¼ "þ i�, �R< �< R with R ! 1
with " being an arbitrary small positive number. As shown
in Appendix A, for a variety of physical energy distribu-

tions the ratio of D̂ðsÞ=s ! 0 at the arc when R!1. It
means that the change of the argument along the arc is
determined by that of s¼R�ei�: Rarcdfarg½wðsÞ�g¼�. It
also means that the arcs in s and w complex planes are
identical. The determination of the number of roots is
therefore entirely determined by the behavior of the verti-
cal component of the contour.

We determine the change of the argument along the
vertical axis by evaluating the dispersion integral (3) at
s ¼ i�, � 2 f�1;1g. Applying a well-known identity

½� � �� 1
x
dx ¼ P

�
½� � �� 1

x

�
dxþ i�½� � ���ðxÞdx;

where P indicates the Cauchy principal value and �ðxÞ is
Dirac’s � function, to Eq. (3) we get

D̂ði�Þ ¼
Z dF̂

dP̂

dP̂

iðP̂þ �� �̂Þ

¼ �iP
Z dF̂

dP̂

dP̂

ðP̂þ �� �̂Þ þ �F̂0ð�̂� �Þ: (9)

As we can see in the following sections, the shape of the
energy distribution function determines topology of the
contour and the later determines the winding number
and, as the result, the number of the growing modes.

IV. BELL-SHAPED ENERGY DISTRIBUTIONS

We define a bell-shaped energy distribution as a smooth,
positive, vanishing at infinity, bounded function with a
single maximum. In this chapter, without loss of generality,
we assume that the maximum of our energy distribution

function is located at P̂ ¼ 0, setting F̂0ð0Þ ¼ 0. For the
purpose of clarity, we note that for such a bell-shaped

distribution F̂0ðx > 0Þ � 0 and F̂0ðx < 0Þ 	 0.
From Eq. (9), one can see that along the vertical axis s ¼

i�, Rewði�Þ ¼ ��F̂0ð�̂� �Þ. Because F̂0ð�� �̂Þ ¼ 0

has only one root at � ¼ �̂, the map of the contour C
onto w complex plane crosses imaginary axis Rew ¼ 0

only once. Since we assumed that F̂ðP̂Þ is bounded and

positive [i.e. F̂ðxÞ 	 0; F̂ðxÞjxj!1 ! 0], �̂ is a finite num-

ber, the sign of the derivative at the extremes of the
imaginary axis are also fully determined: the real part of
wði�Þ is positive when � ! �1 and is negative when
� ! 1. To be exact, the following is true:

Rewði�Þ ¼ �F̂0ð�̂� �Þ 	 0; � < �̂;

Rewði�Þ ¼ �F̂0ð�̂� �Þ � 0; � > �̂:

Therefore, the contour wði�Þ crosses from the right
half-plane to the left half-plane when � increases. Thus,
topologically there are only three options for the contour
wðCÞ, which are shown in Figs. 4(a)–4(c), i.e. the crossing
occurs above, on, or below the real axis ImðwÞ ¼ 0. In the
first case, W ¼ 1 and there is a single growing solution. In
the third case, W ¼ 0 and there is no growing solutions.
The second case corresponds to the boundary between the
two ranges (see below). This concludes the proof that FELs
driven by an electron beam with a bell-shaped energy
distribution have two ranges of frequencies. In the first
range, there is one (and only one) growing solution. In
the other, all solutions are either decaying or oscillating.

FIG. 4. (a) Map of the contour C corresponding to one growing eigenmode, W ¼ 1. (b), (c) Map of the contour C corresponding to
the absence of the growing eigenmodes.
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It is worth noticing that local loops, which are not only
possible but even quite frequent in the topology of practical
wðCÞ contours, cannot go around the origin without a
second crossing of the axis, which is prohibited by the
assumption of a simple maxima in the energy distribution.

This completes our proof that bell-shaped energy distri-
butions can support one or no growing modes in an FEL,
depending on the detuning from the FEL resonance.

Since �̂ is the only free parameter in (9), its value
determines the boundary between these two ranges of
frequencies. As illustrated in Fig. 4(b), the boundary is
reached when the contour wðCÞ crosses the origin w ¼ 0.

First, the real part is equal to zero, i.e. � ¼ �̂. Second, the
imaginary part of (6) is also equal to zero, giving us the

equation for the cutoff frequency �̂þ. Plugging � ¼ �̂ into
Eq. (9) we get

wði�̂þÞ ¼ i�̂þ þ iP
Z dF̂

dP̂

dP̂

ðP̂Þ þ �F̂0ð0Þ ¼ 0

and F̂0ð0Þ ¼ 0 yields us the value of the maximum detun-
ing from the FEL resonance to be

�̂þ ¼ �
Z dF̂

dP̂

dP̂

P̂
: (10)

One should notice that for the bell-shaped distribution

�̂þ 	 0, which means that the amplification vanishes at
high frequencies, while such FELs will amplify all low
frequencies. Hence, Eq. (10) determines analytically the
cutoff frequency of the FEL. This equation can be easily
evaluated for any specific case. For example, the Gaussian

energy distribution of F̂ðP̂Þ ¼ expf�P̂2=2	2g= ffiffiffiffiffiffiffi
2�

p
	2

yields

�̂þ ¼ 1

	2
: (11)

Table I gives expressions for �̂þ for some bell-shaped
distributions.6 Hence, of other bell-shaped distributions
with typical energy spread of	, one can estimate the cutoff

to be at �̂þ / 	�2 with a numerical coefficient on the

order of unity and dependent on the particulars of F̂ðP̂Þ.
Since the Lorentzian distributions have infinite rms

spread value, the identical measure of 	 is hard to be

found, except the FWHM values which are 2	, 2
ffiffiffi
2

p
	,

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p � 1
p

	, 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð ffiffiffi

23
p � 1Þ

q
	, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nð ffiffiffi

2n
p � 1Þ

q
	,

ffiffiffiffiffiffiffiffiffiffi
2 ln2

p
	,

correspondingly. It is also possible to frame the �� n
distributions as a limit converging to a Gaussian, which
then means that in the large n limit, the kappa distributions

will converge to a Gaussian with variance 	. Thus, in the
absence of convergent moments, we may understand the
energy spread for �� n distributions in terms of the well-
defined Gaussian parameter.
To summarize this result, assuming that the 1D FEL is

driven by an electron beam with a smooth, positive,
bounded energy distribution function with a single maxi-

mum, going to zero at P̂ ! 
1, we proved that there is
only a single growing FEL eigenmode, which amplifies the
radiation at frequencies below the cutoff value. The rest of
the eigenmodes are either decaying or oscillating. Above
the cutoff frequency there are no growing solutions and all
of them are either decaying or oscillating. We also derived
a simple analytical formula for the frequency cutoff in the
form of one-dimensional integral, which can be easily
evaluated either analytically (as we did above for a
Gaussian energy distribution) or numerically.

V. GENERAL CASE

Let us consider a general case of energy distribution
described by a smooth, positive, vanishing at infinity,
bounded function. We are no longer making any assump-
tions about number of maxima and minima, nor about their
location. The assumption of a smooth vanishing at infinity
distribution function is that the number of maxima is equal
to that of minima plus one. Let us assume an energy distri-
bution with N local maxima (and N � 1 local minima).

Aswas shown in the previous section, when F̂0ð�̂��Þ¼0
at a local extremum, the contour crosses the imaginary
axis—the same argument is correct for a general energy
distribution. Furthermore, it is easy to see that at maxima,

where F̂0ð�̂� �Þ< 0, the contour crosses the imaginary
axis from left to right [e.g. as in Figs. 4(a)–4(c)], and that

at local minima, where F̂00ð�̂� �Þ> 0 the contour crosses
the imaginary axis from right to left when�� changes from
�1 to 1, i.e. when we are going along the straight part
of the contour C. With N local maxima this can lead to as
many as N windings around the origin and as many as N
growingmodes. Eachmode can have cutoffs either from one
or both sides.

TABLE I. Cutoff frequency of FEL with bell-shaped energy
distributions.

Distribution

function Formula �̂þ

Rectangular FðxÞ ¼ 1
2	 ; jxj � 	 1

	2

Lorentzian FðxÞ ¼ 1ffiffi
2

p
�	ð1þx2=2	2Þ

1
2 � 1

	2

�� 2 FðxÞ ¼ 1
�	ð1þx2=4	2Þ2

3
4 � 1

	2

�� 3 FðxÞ ¼ 4
ffiffi
2

p
3
ffiffi
3

p 1
�	ð1þx2=6	2Þ3

5
6 � 1

	2

�� n FðxÞ ¼ �ðnÞ
�ðn�1=2Þ

1ffiffiffiffiffiffiffi
2�n

p
	ð1þx2=2n	2Þn

2n�1
2n � 1

	2

Gaussian F̂ðxÞ ¼ 1ffiffiffiffiffi
2�

p
	
e�x2=2	2 1

	2

6There is one notable exception—for the monoenergetic
(delta-function) energy distribution 	 ¼ 0 and there is no
high-frequency cutoff. It is rather interesting that the singularity
of such energy distribution creates an unusual low-frequency
cutoff at �̂ ffi �1:9 (as shown in Fig. 2.2, page 26 in Ref. [12]).
This cutoff does not appear for any smooth distribution
functions.
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Amore explicit calculation may be made to characterize
the number of growing modes versus the detuning. The real
part of the dispersion relation is given by

F̂ 0ð�̂� �iÞ ¼ 0; (12)

where the detuning must be defined in reference to some
characteristic energy, and �i characterizes some root.

Let us consider how windings appear and disappear
topologically. Running from � ¼ �1, the first extremum
must be a local maximum given our assumptions. Denote
its location by �o. Now consider

sgn

�
P
Z dF̂

dP̂

dP̂

ðP̂þ �0 � �̂Þ
�
: (13)

The total number of windings can be calculated by
keeping track of how many times the contour crosses
from the one half-plane to the other, and how. Details of
this method can be found in Appendix B.

As an example, consider the following nontrivial nor-
malized energy distribution with first maxima located at

P̂ ¼ 0:

FðP̂Þ ¼ A

�

	1

P̂2 þ 	2
1

þ 1� A

�

	2

ðP̂� �Þ2 þ 	2
2

; (14)

where 0 � A � 1; 	1;2, � are parameters we can vary. The

corresponding dispersion relation is a fifth-order polyno-
mial and has five roots:

D̂ðsÞ ¼ A
i

ðsþ 	1 � i�̂Þ2 þ ð1� AÞ

� i

½sþ 	2 � ið�̂� �Þ�2
¼ s: (15)

According to our theorem, the maximum number of
growing modes could not exceed two. The following ex-
amples show that depending of the choice of the parameter
of the distribution function maximum number of growing

modes can be either two or one. Choosing A ¼ 0:5; 	1 ¼
0:3, 	2 ¼ 0:25, � ¼ 1:5, we have the distribution function
shown in Fig. 5(a), which, as it can be seen from Fig. 5(b),
provides for the maximum of two growing modes in some
range of detuning.
As it can be seen from the plot in Fig. 5(b) there is one

growing mode at low frequencies �̂<�0:436; two grow-

ing modes at �0:436< �̂< 5:352; one growing mode at

5:352< �̂< 9:301 and none above the cutoff �̂> 9:301.
Plots in Fig. 6 show the corresponding contours at four

characteristic detuning corresponding to this four case.
As one can see from Fig. 6, the winding number is equal

to a corresponding number of growing roots. At a detuning

�̂ ¼ �1 there is one growing mode, and in Fig. 5(a), we
see that the contour winds around the origin once. At

�̂ ¼ þ1, we observe two simultaneous growing modes,
and indeed there are two windings with the second local
loop (winding) around the origin [Fig. 6(b)]. The first mode

stops amplifying, leaving only the second mode at �̂ ¼ 3,
as can be seen in Fig. 6(c), and then there are no growing

modes at �̂ ¼ 11, Fig. 6(d).
The most interesting case is shown in Fig. 6(b), where

we can clearly see the second local loop (winding) around
the origin.
We had shown all typical cases of contours in Fig. 6 to

compare them with the set of rules we developed in the
paper and with exact numerical values for the roots of the
dispersion equation, one can clearly notice that the change
in the detuning appears as a vertical shift along the imagi-
nary axis.
In fact, this feature of the contours is correct for an

arbitrary case of 1D FEL dispersion relation (6). From
Eqs. (3) and (6) one can easily prove the following identity:

wðsÞ�1
¼ wðsÞ�2

þ i � ð�1 � �2Þ;
e.g. that a change of the detuning from �1 to �2 moves the
contour along the vertical axis for �1 � �2. Hence, a
single contour is sufficient to determine the topology and

4 2 0 2 4 P

0.1

0.2

0.3

0.4

0.5

0.6

0.7
F

15 10 5 5 10 15

0.8

0.6
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0.4

Re s

(a) (b)

FIG. 5. (a) Bi-Lorentzian energy distribution with A ¼ 0:5; 	1 ¼ 0:3, 	2 ¼ 0:25, � ¼ 1:5. (b) Real parts of five roots of the
dispersion relation (15) as functions of the detuning.
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the maximumwinding number. The crossings of the� ¼ 0
contour with the imaginary axis do determine the values
(with opposite sign) of the detuning where the number of
growing modes changes. Since the main loop is contra-
clockwise by design (i.e. has winding number plus one
when it encircles the origin), the topology of the local loops
depends on their helicity—if it encircles the origin, a
clockwise reduces W by one, while a contraclockwise

increases W by a unit. The direction is determined by the
contour C in Fig. 3.

Imagine �̂ being a vertical displacement of the origin.
As one can see from Fig. 7, the local loop contraclockwise
and pushing the origin into it would increase the winding
number by one. One can easily see that winding number is

equal to one at negative �̂, then at �̂ ¼ �0:436 the origin
would move into the local loop and the winding number

FIG. 6. Parts (a), (b), (c), and (d) are plots of wðCÞ (with a dashed semicircle to be pushed to infinity) for various characteristic values
for �̂ ¼ �1, 1, 6, and 11 correspondingly. The energy distribution is shown in Fig. 5(a).
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would increase to 2. Similarly, at �̂ ¼ 5:352, the origin
moves out of the loop, reducing the winding number by a
unit, and further reducing it to zero when the tuning goes
above 9.301 and crosses the main loop.

Hence, using this simple rule, we consider another ex-
ample of bi-Lorentzian energy distribution with A ¼ 0:8,
	1 ¼ 1, 	2 ¼ 0:25, � ¼ 3 (see Fig. 8), shows the energy
distribution and real part of the roots as function of the
detuning.

Figure 9 shows the contour plot for the energy distribu-
tion shown in Fig. 8(a). One can see that, in contrast with
Fig. 7, the local loop does not cross the imaginary axis, and
therefore does not affect the winding number. What is
striking is that the main contour makes a brief detour
into the right-hand side and causes an additional frequency

region where there are no growing modes. In short, there is

one growing mode at low frequencies below �̂ ¼ 0:78,
where a dead-zone without growing modes extends to

�̂ ¼ 1:805. A second zone with a single growing mode

�̂> 1:805 continues to the high-frequency cutoff at

�̂ ¼ 6:134. Naturally these topological observations are
in exact agreement with direct solutions of the dispersion
relations, shown in Fig. 8(b), from where one can also see

FIG. 7. Contour of wðCÞ (with scaled down semicircle) for

zero detuning �̂ ¼ 0.
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FIG. 8. (a) Bi-Lorentzian energy distribution with A ¼ 0:8; 	1 ¼ 1, 	2 ¼ 0:25, � ¼ 3. (b) Real parts of five roots of the dispersion
relation (15) as functions of the detuning.

∆̂ = 0
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FIG. 9. Contour of wðCÞ (with scaled down semicircle) for

zero detuning �̂ ¼ 0 and energy distribution shown in Fig. 8(a).
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that two growth zones correspond to two different root
branches of the fifth-order polynomial.

We conclude this section with Fig. 10 illustrating a tri-
Lorentzian energy distribution (and corresponding contour
and real part of root of the dispersion equation), which
supports up to three growing modes.

VI. CONCLUSION

In this paper we proved two main results for the space-
charge-free dispersion relation of 1D FELs. First, we
proved that for a bell-shaped (a smooth, positive, bounded
energy distribution function with a single maximum)

energy distribution of the electron beam, we have shown
that causality requires that such a FEL will have only a
single growing mode with a high-frequency cutoff. We
derived analytical expression for the cutoff frequency in
the form of a simple integral. We evaluated this integral for
Gaussian energy distribution. This proof puts to rest the
question about how many growing modes can be supported
by Gaussian or semi-Gaussian energy distributions.
Furthermore, we consider a more general case of mul-

tiple energy peaks. In this case, we conclude that for fixed
frequency, an energy distribution withN local maxima will
have between zero and N growing modes, and we derive

FIG. 10. (a) Tri-Lorentzian energy distribution. (b) Real parts of seven roots of the dispersion relation as functions of the detuning.

(c) Contour of wðCÞ (with scaled down semicircle) for zero detuning �̂ ¼ 0.
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criteria and the method of determining the number of
growing modes and their cutoff frequencies and cutoff
ranges. We also demonstrated that contour of the disper-
sion relation at zero detuning is sufficient to determine all
frequency ranges where growing modes exist as well as the
number of modes in each growing zone.

We would like to emphasize that we used a method
analogous to the Nyquist’s stability criterion [17,18] and
Penrose’s treatment of a stationary plasma driven by an
oscillating external electric field with frequency ! [19],
and for general ‘‘growing waves’’ [20] or other plasma
instabilities [21,22]. We applied this method to the FEL
dispersion relation, which differs quite significantly from
the above systems, and found new, previously unknown
features of a very fundamental nature. This is not very
surprising since we were using well-established fundamen-
tal principles enshrined into the Laplace transform and
Landau’s contour integration technique, and causality.

This particular method appears to be periodically redis-
covered by physicists over the decades. Because the
Laplace transform and Fourier transform are related by a
Wick rotation, the same formal structure exists either look-
ing at the initial value problem or at frequency responses.
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APPENDIX A

Assuming the distribution function satisfying

limjP̂j!1 F̂ðP̂Þ ¼ 0, the dispersion integral can be written,

after integration by parts, as

D̂ðsÞ ¼ �i
Z 1

�1
FðP̂Þ 1

ðP̂� �̂� isÞ2 dP̂; (A1)

for ReðsÞ> 0 (Ref. [23]). Defining

s � R � ei½�þð�=2Þ�; (A2)

the requirement of ReðsÞ> 0 leads to

sin� < 0: (A3)

Inserting (A3) into (A2) and changing the integration
variable to

P̂ 1 � P̂

R
(A4)

produces

D̂ðsÞ ¼ �i
Z 1

�1
F̂ðP̂Þ

ðP̂� �̂þ R � ei�Þ2 dP

¼ �i

R

Z 1

�1
F̂1ðP̂1Þ

ðP̂1 � �̂
R þ cos�þ i sin�Þ2

dP̂1; (A5)

where

F̂ 1ðP̂1Þ ¼ F̂ðP̂1RÞ: (A6)

Explicitly writing Eq. (A5) into real and imaginary part
and change the integration variable to

P̂ 2 � P̂1 � �̂

R
þ cos�; (A7)

Eq. (A5) becomes

D̂ðsÞ ¼ �1

R

Z 1

�1
F̂2ðP̂2Þð2P̂2 sin�þ i½P̂2

2 � sin2��Þ
ðP̂2

2 þ sin2�Þ2 dP̂2

(A8)

with

F̂ 2ðP̂2Þ¼ F̂1

�
P̂2þ�̂

R
�cos�

�
¼ F̂

��
P̂2þ�̂

R
�cos�

�
R

�
:

(A9)

Taking into account Eq. (A3) and changing the integra-
tion variable of (A8) to

x � P̂2

� sin�
(A10)

generates

D̂ðsÞ¼ 1

Rsin�

Z 1

�1
F̂3ðxÞð�2xþ i½x2�1�Þ

ðx2þ1Þ2 dP̂3; (A11)

with

F̂ 3ðxÞ ¼ F̂2ð�x sin�Þ ¼ F̂

�
�
�
x sin�� �̂

R
þ cos�

�
R

�
:

(A12)

The amplitude of Eq. (A11) is given by

jD̂ðsÞj2 ¼ 1

R2sin2�

��Z 1

�1
F̂3ðxÞ2x
ðx2 þ 1Þ2 dx

�
2

þ
�Z 1

�1
F̂3ðxÞðx2 � 1Þ
ðx2 þ 1Þ2 dx

�
2
�
: (A13)

Noticing the distribution function F̂3ðxÞ ¼ F̂ðP̂Þ 	 0,
2x � x2 þ 1, and
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�Z 1

�1
F̂3ðxÞx2
ðx2 þ 1Þ2 dx�

Z 1

�1
F̂3ðxÞ

ðx2 þ 1Þ2 dx
�
2

�
�Z 1

�1
F̂3ðxÞx2
ðx2 þ 1Þ2 dxþ

Z 1

�1
F̂3ðxÞ

ðx2 þ 1Þ2 dx
�
2
; (A14)

we obtain the upper limit of jDðsÞj:

jD̂ðsÞj2 � 2

R2sin2�

�Z 1

�1
F̂3ðxÞ
x2 þ 1

dx

�
2
; (A15)

i.e.

jD̂ðsÞj �
ffiffiffi
2

p
Rj sin�j

Z 1

�1
F̂3ðxÞ
x2 þ 1

dx: (A16)

Assuming the distribution function F̂ðP̂Þ satisfies
F̂ðP̂Þ � aF̂0ðP̂Þ; 8 P̂ (A17)

with

F̂ 0ðP̂Þ � 1

�q̂

1

1þ P̂2=q̂2
(A18)

and a being the ratio of the maximum of F̂ðP̂Þ with respect
to F̂0ðP̂Þ, i.e.

a � F̂max

F̂0;max

: (A19)

Applying Eq. (A17) to Eq. (A18) leads to

jD̂ðsÞj� F̂max

ffiffiffi
2

p
Rjsin�j

Z 1

�1
1

x2þ1

q̂2

q̂2þðxsin�� �̂
Rþcos�Þ2R2

dx

¼
ffiffiffi
2

p
�F̂max~q

2

Rjsin�j
�

1

ði� �̂
Rsin�þ cos�

sin�Þ2þ ~q2

þ1

~q

1

ði~qþ �̂
Rsin�� cos�

sin�Þ2þ1

�

¼
ffiffiffi
2

p
F̂max�~q

Rjsin�j
1þ ~q

ðcos�sin�� �̂
Rsin�Þ2þð1þ ~qÞ2

(A20)

with

~q � q

Rj sin�j : (A21)

Inserting Eq. (A21) into Eq. (A20) leads to

jD̂ðsÞj� ffiffiffi
2

p
�q̂F̂max

1

R2

1þ q̂
Rjsin�j

ðcos�� �̂
RÞ2þðsin�þ q̂

RÞ2
: (A22)

In the limit of R ¼ jsj ! 1, Eq. (A22) becomes

lim
jsj!1

jD̂ðsÞj � ffiffiffi
2

p
�q̂F̂max

1

jsj2
�
1þ q̂

ReðsÞ
�
¼ 0 (A23)

for ReðsÞ> 0.

Let us separate the contour C in Fig. 3 in two homoge-
nous parts, the arc s ¼ R � ei�; ��=2þ arcsinð"RÞ< �<

�=2þ arcsinð"RÞ and the vertical line s ¼ "� i�� R<

�< R with R ! 1. Let us consider " > 0 being an arbi-
trary small positive number. From Eq. (A23) we then can
estimate that on the arc

lim
jsj!1

jD̂ðsÞj � ffiffiffi
2

p
�q̂F̂max

1

jsj2
�
1þ q̂

ReðsÞ
�
¼ 0: (A24)

Selecting R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
�q̂F̂max

" ½1þ q̂
"�

q
we make

lim
R!1jD̂ðsÞj � " (A25)

on the entire arc. Since " > 0 is an arbitrary small positive

number, setting " ! 0 proves that D̂ðsÞ �>0 at jsj ! 1
in the right plane of ReðsÞ> 0.

APPENDIX B

An explicit calculation may be made to characterize the
number of growing modes versus the detuning. The real
part of the dispersion relation is given by

F̂ 0ð�̂� �iÞ ¼ 0; (B1)

where the detuning must be defined in reference to some
characteristic energy, and �i characterizes some root.
Let us consider how windings appear and disappear

topologically. Running from � ¼ �1, the first extremum
must be a local maximum given our assumptions. Denote
its location by �o. Now consider

sgn

�
P

Z dF̂

dP̂

dP̂

ðP̂þ �o � �̂Þ
�
: (B2)

If this sign is positive, the contour crosses in the upper
half-plane. If it is negative, it crosses in the lower half-
plane. Now consider the next point, a local minimum. This
is crossing back over from the left half-plane to the right
half-plane. Consider the same question of sign. If its sign
has changed then the contour has crossed back over around
the origin in the opposite half-plane.
If we make a table, then the first two crossings can be

either (þþ ), (þ�), (�þ), or (��). The (þ�) con-
figuration adds one to the winding number, and is the first
configuration due to the derivative of the dispersion func-
tion at the top of the contour. The next one can be either
(��) or (�þ). The (��) does not affect the winding
number, while the (�þ) increases it by one. The next sign
in the sequence must always match the previous sign, and
the number of these pairs with opposite signs corresponds
to the winding number. The total number of windings can
be calculated by keeping track of how many times the
contour crosses from the one half-plane to the other, and
how. Therefore, the number of growing modes and their
critical points are intimately related to the sign of the above
principal value integral at each crossing.
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As an example, consider the contour in Fig. 7. Following
with the discussion above, the first crossing is above the
origin, and it crosses back below the origin, so its sign is
(þ�). It then crosses the vertical axis above the origin
again, and then back below the origin, so that is a (�þ).
Finally, there is a crossing below the origin which then
crosses back below the origin, so this is a (��). The table
then reads (þ�, �þ , �� ). The last crossing does not
affect the winding, the first (þ�) corresponds to an in-
crease in the winding number by one, and the second one
adds another one, as it is looping back again.

If, on the other hand, the sequence were (þ�) followed
by (��) and another (��), as would be the case if the
detuning where changed and therefore vertically shifted
the contour, this would correspond to a winding number of
one, and therefore one growing mode. This gives a simple
way to compute numerically the winding number without
resorting to the contour plots, although it is not as intuitive
or enjoyable.
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