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A new semianalytical method of investigating the beam dynamics for electron injectors was developed.

In this method, a short bunched electron beam is assumed to be an ensemble of several segmentation

pieces in both the longitudinal and the transverse directions. The trajectory of each electron in the

segmentation pieces is solved by the beam envelope equations while taking into account the space charge

fields produced by all the pieces, the electromagnetic fields of an rf cavity, and the image charge fields at a

cathode surface. The shape of the entire bunch is consequently calculated, and thus the emittances can be

obtained from weighted mean values of the solutions for the obtained electron trajectories. The advantage

of this method is its unique assumption for the beam parameters. We assume that each segmentation slice

is not warped in the calculations. Although if the beam energy is low and the charge density is large, this

condition is not satisfied, in practice, this condition is usually satisfied. We have performed beam

dynamics calculations to obtain traces in free space and in the BNL-type rf gun cavity by comparing

the analytical solutions with those obtained by simulation. In most cases, the emittances obtained by the

simulation become closer to those obtained analytically with increasing the number of particles used in the

simulation. Therefore, the analytically obtained emittances are expected to coincide with converged

values obtained by the simulation. The applicable range of the analytical method for the BNL-type rf gun

cavity is under 0.5 nC per bunch. This range is often used in recently built x-ray free electron laser

facilities.
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I. INTRODUCTION

The emittance calculation technique plays an important
role in the design of electron injectors, particularly, very
low emittance electron sources such as x-ray free electron
lasers (XFELs) [1–3]. There have been many reports on
envelope equations and analytical solutions for beam dy-
namics [4–8], and the time evolution of emittance can be
calculated even in rf structures and magnetic fields.

For example, in Ref. [6], longitudinal slices of a bunch
are assumed. The envelope equations used to calculate the
rms beam size of the bunch were analytically derived from
an ensemble of each slice behavior. The space charge
effects including the correlations among each slice were
analytically taken into account by considering the geomet-
rical factor of the bunch. The evolution of the transverse
rms emittance can be derived from the solutions of the rms

envelopes. The effects of rf fields can also be analytically
taken into account.
However, it is difficult to accurately calculate practical

bunch shapes by the previous analytical methods, and the

detailed emittance behavior calculated by these methods

does not agree with that of practical beams. Therefore, it

has been common to use simulation codes to perform

accurate calculations.
Some particle-tracking codes [9–13] can be used to

perform three-dimensional simulations, and can even cal-

culate the complex bunch shapes of practical beams.

However, in these methods, the calculated emittances are

often dependent on the number of particles. This is mainly

caused by the random noise in the particle position distri-

bution or in treatments for calculating the space charge

effects among closely located particles. To enhance the

accuracy of the calculated emittance, many particles are

required, which increases the computation time. In addi-

tion, depending on the initial parameters of the simulation,

emittances may not converge to the true values.
In contrast, in this paper we overcome this problem by

combining an analytical method with a simulation method

to accurately calculate the bunch shape and remove the

dependence on the number of particles.
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We introduce a bunch segmentation model that considers
segmentation pieces in both the longitudinal and the trans-
verse directions. Electrons are located at each segmentation
piece. The trajectory of each electron is calculated by
multiple beam envelope equations, which are simultaneous
ordinary differential equations, assuming interaction
among the longitudinal segments. Here, these envelope
equations describe not for the rms beam size but for each
electron trajectory, and the bunch shape can be obtained
from these trajectories. The transverse projected emittance
of the bunch can be obtained from the weighted mean of the
electron trajectories.

To consider dynamics in external fields such as rf fields,
we include actual numerical field data in the envelope
equations instead of using analytical field calculations to
obtain realistic solutions. Image charge effects at the cath-
ode surface, which is assumed to be a perfect conductor,
are taken into account in the equations by calculating the
fields from the image charge of each longitudinal segment,
making it possible to calculate the emission from the
cathode.

In Sec. II, beam envelope equations, which can be
applied for a pulsed beam regardless of its energy or
longitudinal length, are derived. These equations are a set
of transverse and longitudinal simultaneous differential
equations in the laboratory frame.

In the analysis in Sec. III, we divide a pulsed beam into
several longitudinal slices, and derive multiple beam en-
velope equations, which can be used to calculate the bunch
shape and its projected emittance. In this section, we
introduce a transverse space charge field correction scheme
used to ensure accurate calculations.

In Sec. IV, we show the accuracy of the proposed method
by comparing results for emittances obtained by the mul-
tiple beam envelope equations with those results obtained
by a particle-tracking code. We also give the calculated
beam dynamics in the BNL-type rf gun cavity and discuss
the applicable range of the multiple envelope equations.

II. BEAM ENVELOPE EQUATIONS

A. Concept of transverse beam envelope equation

Although an electron beam has a finite radius of R, in
practice it is assumed to be a one-dimensional pencil beam
as shown in Fig. 1. A transverse beam envelope equation
can be obtained by tracing an electron trajectory while

taking into account the space charge fields produced by
the pencil beam located along the z axis. The electron is
initially located at a distance of R from the beam axis.
The equation of motion of the electron is

dð�m0vÞ
dt

¼ �eðv� BþEÞ; (1)

where e is the electron charge, v is the electron velocity,
�m0v is the electron momentum, and E and B are the
electric and magnetic fields, respectively. From Eq. (1),

dv

dt
¼ � e

�m0

�
v�BþE� ðv �EÞ

c2
v

�
; (2)

where c is the velocity of light in vacuum. Here, we
consider only Er�sc and B��sc as space charge fields and

that B��sc ¼ �
c Er�sc. Ignoring E�, Bz, and ðvr

c Þ2, the r com-

ponent of Eq. (2) can be expressed as

d2R

dt2
¼� e

�3m0

Er�sc� e

�m0

�
Er��cB���

c

dR

dt
Ez

�
; (3)

where � ¼ vz=c and Er, B�, and Ez are external fields
caused by factors other than the space charge.
For a continuous beam, B��sc can be calculated from

Ampère’s law,

B��sc ¼ � �0I

2�R
; (4)

where I is the current of the continuous beam. Therefore,
Eq. (3) becomes

d2R

dt2
¼ eI

2��0m0��
3cR

� e

�m0

�
Er��cB���

c

dR

dt
Ez

�
: (5)

The first term of Eq. (5) is the space charge term and
agrees with that of Lawson’s envelope equation [4] be-
cause it is for a continuous beam.

B. Transverse envelope equation for pulsed beam

To obtain an envelope equation for a pulsed beam, the
electric field from the pulsed beam should be derived.
First, an electric field in the laboratory frame, which is

produced by an electron with linear uniform motion and
velocity v, is generally given as

EðRÞ ¼ 1

4��0�
2

�eR

½jRj2 � jv�Rj2
c2

�3=2 ; (6)

where R is a vector from the present position of the
electron. This expression is derived from the Liénard-
Wiechert potentials but all variables are defined at the
present time.
For a uniformly charged pulsed pencil beam with a

length of L, a total charge of Q and an energy of �m0c
2,

as shown in Fig. 2, dEr at point Oðz0; RÞ produced by the
charges located within width dz is calculated from Eq. (6)
as follows:

FIG. 1. Model used to derive the transverse beam envelope
equation.
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dEr ¼ � 1

4��0�
2
�Q
L
dz � R

½ðz0 � zÞ2 þ R2

�2�3=2
: (7)

Er�sc is derived by integrating Eq. (7) over z:

Er�scðz0;RÞ¼
Z L=2

�L=2
dEr

¼ Q

4��0LR

0
B@ z0�L=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz0�L=2Þ2þR2

�2

q

� z0þL=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0þL=2Þ2þR2

�2

q
1
CA: (8)

Substituting Er�scðz0; RÞ for Er�sc in Eq. (3), the trans-
verse beam envelope equation for a pulsed beam is derived.

For example, in the case of z0 ¼ 0,

Er�scð0; RÞ ¼ �Q

4��0R

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

4 þ R2

�2

q : (9)

Thus, the transverse beam envelope equation at the
bunch center is derived as follows:

d2R

dt2
¼ eQ

4��0m0�
3R

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

4 þ R2

�2

q � e

�m0

�
�
Er � �cB� � �

c
� dR
dt

Ez

�
: (10)

If �L � 2R, we can neglect R2

�2 . Then the space charge

term given by Eq. (10) coincides with that of the envelope
equation for a continuous beam given by Eq. (5), since

I ¼ Q
L �c.

C. Longitudinal envelope equations

To derive longitudinal beam envelope equations, we
assume a uniformly charged cylindrical beam instead of
a pencil beam, which propagates along the z axis with an
energy of �m0c

2, a bunch length of L, a radius of R, and a
charge density of �, as shown in Fig. 3. The planes at both

ends of the bunch are not warped in this cylindrical beam
model. That is, the longitudinal velocities of all electrons
located on a plane perpendicular to the z axis are assumed
to be equal. We also introduce another coordinate system
�, which moves with the beam. The envelope equations are
derived by tracing electrons, Pþ and P�, located at both
ends of the bunch on the beam axis, in the z-coordinate
system.
We start from the equation of motion, Eq. (2), in the

same manner as that used to derive the transverse equation.
Setting vr ¼ v� ¼ 0, the z component of Eq. (2) is

d2z

dt2
¼ � e

�3m0

ðE��sc þ EzÞ; (11)

where E��sc is the space charge field and Ez is an another

external electric field. Using Eq. (6), dE��sc at point Oð�0Þ
in Fig. 3, which is produced by charge within a volume of
rd�drd� at point P0, is expressed as

dE��scð�0Þ¼ 1

4��0�
2

��ð�0��Þ
½ð�0��Þ2þ r2

�2�3=2
rd�drd�: (12)

E��sc can be derived by integrating Eq. (12) over �, r,
and �. Since the total bunch charge Q is �R2L�, E��sc is

E��scð�0Þ¼
Z L=2

�L=2

Z R

0

Z 2�

0
dE��scð�0Þ

¼ Q

2��0R
2L

2
64�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�0�L

2

�
2þR2

�2

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�0þL

2

�
2þR2

�2

s
þ
���������0�L

2

���������
���������0þL

2

��������
3
75:

(13)

FIG. 3. Calculation model of space charge field from a cylin-
drical beam.

FIG. 2. Calculation model of space charge field generated by a
pencil beam.
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Thus, E��sc at the position of each electron is

E��scðPþÞ ¼ �Q

2��0R
2L

�
Lþ R

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ R2

�2

s �
E��scðP�Þ ¼ �E��scðPþÞ:

(14)

The longitudinal beam envelope equations for electrons
Pþ and P� are obtained by substituting Eqs. (14) into
Eq. (11).

D. Simultaneous beam envelope equations

Combining Eqs. (10), (11), and (14), transverse and
longitudinal simultaneous beam envelope equations are
derived as ordinary differential equations. Replacing L
with zðPþÞ � zðP�Þ, the simultaneous beam envelope
equations are derived as follows:

d2R

dt2
¼� e

�3m0

Er�sc½R;zðPþÞ; zðP�Þ�

� e

�m0

�
Er ��cB� ��

c
� dR
dt

Ez

�
d2zðPþÞ

dt2
¼� e

�3m0

E��sc½R; zðPþÞ; zðP�Þ�� e

�3m0

Ez

d2zðP�Þ
dt2

¼ e

�3m0

E��sc½R; zðPþÞ; zðP�Þ�� e

�3m0

Ez; (15)

where

Er�sc½R; zðPþÞ; zðP�Þ� ¼ � Q

4��0R

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½zðPþÞ�zðP�Þ�2

4 þ R2

�2

r

E��sc½R; zðPþÞ; zðP�Þ� ¼ � Q

2��0R
2½zðPþÞ � zðP�Þ�

�
�
zðPþÞ � zðP�Þ þ R

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½zðPþÞ � zðP�Þ�2 þ R2

�2

s �
:

(16)

E. Scheme of transverse emittance calculation

In principle, transverse emittance can be calculated from
the beam envelope equations.
As shown in Fig. 4, the beam is divided transversely

into n parts. The area between distances of Ri�1 and Ri

(i ¼ 1; . . . ; n and Rn ¼ R) is denoted as Si, and ri ¼
ðRi�1 þ RiÞ=2. We trace electrons at distances of
ri (i ¼ 1; . . . ; n) and R from the center of the beam to
evaluate the transverse charge distributions.
To trace all the electrons located at a distance of ri,

we have to solve simultaneous equations containing
nþ 3 dependent variables, which consist of the three
equations in Eq. (15) and the transverse equations for
each ri (i ¼ 1; . . . ; n). The charge used in the transverse
equations for ri should not be Q because ri is smaller than
R. Therefore, a correction function for Q, which is a
function of ri and R, is required, which will be discussed
in Sec. III B.
When the trace of each electron is solved, hr2i, hr02i, and

hr � r0i2 can be obtained as weighted mean values:

hAi ¼ Xn
i¼1

Wi � Ai; (17)

where each weight isWi ¼ Si=ð�R2Þ ¼ ð2i� 1Þ=n2. Then
the emittance, �x � 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihr2ihr02i � hr � r0i2p
, can be

calculated.

III. MULTIPLE BEAM ENVELOPE EQUATIONS
FOR ANALYSIS OF BEAM DYNAMICS

A. Scheme of multiple beam envelope equations

Using the beam envelope equations discussed in Sec. II,
only the radial beam size at the center of the bunch can be
calculated. Therefore, the emittance derived by the method
discussed in Sec. II E is a slice emittance at the center of
the bunch. To calculate the charge distribution of an entire
bunch and the projected emittance, the bunch should be
divided longitudinally into several slices.
A bunch segmentation model divided into m bunches is

shown in Fig. 5. Each traced electron is located not at the
longitudinal center of each slice but at the segmentation
boundary between each pair of slices. The electron located
on the circumference of each segmentation boundary, Rj

(j ¼ 1; . . . ; mþ 1), is used for the transverse trace, and the
electron at zj on the z axis is used for the longitudinal trace.

The electron located at rij, which corresponds to ri in

Fig. 4, is also used for the transverse trace. Note that Rj

differs from Ri in Fig. 4.
�j is newly introduced as the normalized longitudinal

velocity for each electron having suffix j and is dominated
by the following differential equation:

d�j

dt
¼ 1

c

d2zj

dt2
: (18)FIG. 4. Radial cross section of the beam used in the model for

emittance calculation.

A. MIZUNO et al. Phys. Rev. ST Accel. Beams 15, 064201 (2012)

064201-4



The multiple beam envelope equations finally become
simultaneous differential equations containing (nþ 3)
(mþ 1) dependent variables, Rj, rij, zj, and �j (i ¼
1; . . . ; n and j ¼ 1; . . . ; mþ 1). The projected emittance
of the bunch can be obtained by calculating weighted mean
values in both the transverse and the longitudinal
directions.

In this segmentation model, we assume that the longitu-
dinal position and normalized longitudinal velocity of each
electron located on a certain segmentation boundary j are
equal during the trace. That is, each slice is separated by
planes perpendicular to the z axis and is not be warped
during the trace.

B. Transverse space charge field calculations

The transverse space charge fields are calculated on the
basis of the pencil beam analysis in Sec. II, although these
calculations are valid only when �L � 2R. To analyze a
low-energy pulsed beam, more accurate models are re-
quired. If we adopt field analysis based on a cylindrical
beam instead of a pencil beam, the differential equations
become complicated. Therefore, we introduce a correction
function for transverse space charge fields.

Here, we consider a pencil beam and a cylindrical beam
with a length of L, where the radius of the cylindrical beam
is Rc and both beams have an energy of �m0c

2. Figure 6
shows the variations of Er along a line parallel to the beam
axis at a distance of r. The center of the beam is located at
z ¼ 0. The pencil beam field is calculated by Eq. (8), and
the cylindrical beam field is calculated by integrating Eq. (8)
numerically. The difference between these two patterns of
field variation can be approximately expressed using two
factors, a field correction factor, Erð0Þcylinder=Erð0Þpencil, and
the intersection of the two fields as shown in Fig. 6. If these
two correction factors are given, the cylindrical beam field
between the points of intersection can be obtained from the
pencil beam field by linear interpolation. These two correc-

tion factors are functions of only two variables, r=Rc and
2r=�L, for the following reasons.
The cylindrical beam field is derived by integrating the

pencil beam field given by Eq. (8) in the area within a
radius of Rc. Therefore, the strength ratio of the cylindrical
beam field to the pencil beam field is uniquely determined
by the relative values of r and the beam radius Rc. That is,
the two correction factors are clearly functions of r=Rc.
Dividing the numerator and denominator of the right-

hand side of Eq. (8) by L, the variation of the pencil beam
field with z=L becomes a function of r=�L. Therefore, the
two correction factors are also functions of 2r=�L.
Since the multiple beam envelope equations are compli-

cated, it is necessary to solve them numerically. By
preparing two-dimensional mapping data of the two cor-
rection factors as data files and loading them, the multiple
equations can be computed with corrected Er as follows:

Er�cylinder ¼ Fc

�
r

Rc

;
2r

�L
;
z

L

�
� Er�pencil; (19)

where Fc is the correction function of the transverse space
charge fields.
Note that Er outside the points of intersection in Fig. 6 is

not corrected in the multiple envelope equations because
the difference between Er for the pencil and cylindrical
beams is small and its effect on the calculated trace is
small.
Using this technique, the space charge field at a distance

of rij and inside the beam, as mentioned in Sec. II E, can

also be calculated.
External fields, such as fields in rf cavities or magnets,

which can be expressed as functions of z and r, can also be

FIG. 6. Longitudinal variation of Er produced by a pencil
beam and a cylindrical beam with a length of L. If two variables,
r=Rc ¼ 1:25 and 2r=�L ¼ 20 for example, are given, the two
correction factors, the field correction factor and z=L at the point
of intersection, are uniquely determined. The value of Er for a
cylindrical beam can be obtained from the pencil beam field and
the two correction factors.

FIG. 5. Bunch segmentation model used to derive the multiple
beam envelope equations. This indicates an initial bunch con-
figuration.
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included in the multiple envelope equations in the same
manner as that used to correct Er.

C. Summations of space charge fields

The space charge fields in the multiple envelope equa-
tions are expressed as sums of the fields produced from
each segmentation slice k. From Eqs. (8) and (13), the
space charge fields, Erijsc, ERjsc, and E�jsc, acting on a

certain electron being traced are

Erijsc ¼
1

4��0

Xm
k¼1

Fcð rij
RðkÞ ;

2rij
�ðkÞLðkÞ ;

zj�zðkÞ
LðkÞ Þ �QðkÞ

rijLðkÞ

�

0
BBBBB@

zj � zkþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzj � zkþ1Þ2 þ r2ij

�ðkÞ2
r � zj � zkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðzj � zkÞ2 þ r2ij
�ðkÞ2

r
1
CCCCCA

(20)

ERjsc ¼
1

4��0

Xm
k¼1

Fcð Rj

RðkÞ ;
2Rj

�ðkÞLðkÞ ;
zj�zðkÞ
LðkÞ Þ �QðkÞ

RjLðkÞ

�

0
BBBBB@

zj � zkþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzj � zkþ1Þ2 þ R2

j

�ðkÞ2
r � zj � zkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðzj � zkÞ2 þ R2
j

�ðkÞ2
r

1
CCCCCA

(21)

E�jsc¼
1

2��0

Xm
k¼1

QðkÞ
RðkÞ2LðkÞ

0
BBBBB@�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzj�zkþ1Þ2þRðkÞ2

�ðkÞ2
s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzj�zkÞ2þRðkÞ2

�ðkÞ2
s

þjzj�zkþ1j�jzj�zkj

1
CCCCCA;

(22)

where k is the number of slices. LðkÞ, QðkÞ, RðkÞ, zðkÞ, and
�ðkÞ are parameters of k, that is,

LðkÞ � zkþ1 � zk

QðkÞ � �tk=T �Q ¼ const

RðkÞ � ðRkþ1 þ RkÞ=2
zðkÞ � ðzkþ1 þ zkÞ=2
�ðkÞ � ð�kþ1 þ �kÞ=2;

(23)

T is the length of time for the entire bunch, and �tk is the
length of time for slice k.

Equations (20)–(22) are substituted into the envelope
equations, Eqs. (15), in place of Eqs. (16).

D. Beam emission from a cathode and
image charge effects

To calculate the beam emission from a cathode, we
assume that the cathode surface is at z ¼ 0. Initially, the
positions of all electrons are set on the cathode surface. The
electron with suffix j ¼ mþ 1, as shown in Fig. 5, at the
head of the bunch is emitted from the cathode at t ¼
tmþ1 ¼ 0, and the other electron with suffix j � mþ 1 is
emitted at t ¼ tj ¼ P

m
k¼j �tk. In practice, when solving

the differential equations,
dRj

dt ,
drij
dt , and

dzj
dt are zero when

t < tj.

We consider the condition that electron jþ 1 is emitted
and electron j is not emitted, that is, tjþ1 < t < tj. In this

case, QðkÞ in Eqs. (20)–(22) should be set as follows:

QðkÞ �

8>>><
>>>:
�tk=T �Q ðk � jþ 1Þ
ðt� tjþ1Þ=T �Q ðk ¼ jÞ
0 ðk � j� 1Þ:

(24)

Then the emission from the cathode can be calculated
continuously.
The image charge effects at the cathode can be simply

calculated by placing an image electron with the positive
charge at a symmetrical point about the cathode, which is
assumed to be a perfect conductor. The image electron
moves in the opposite direction to the real electron.
When the suffix of the image slice is �k, Qð�kÞ should
be defined as follows:

Qð�kÞ �

8>>><
>>>:
��tk=T �Q ðk � jþ 1Þ
�ðt� tjþ1Þ=T �Q ðk ¼ jÞ
0 ðk � j� 1Þ:

(25)

Note that summations in Eqs. (20)–(22) have to be
performed from k ¼ �m to m (k � 0).

IV. BEAM DYNAMICS CALCULATIONS USING
THE MULTIPLE BEAM ENVELOPE EQUATIONS

The multiple beam envelope equations are numerically
solved using Octave [14]. We use the ‘‘lsode’’ command
with the non-stiff option in Octave to analyze the differen-
tial equations. The multiple envelope equations have many
dependent variables and are complicated. Therefore, to
solve the simultaneous differential equations containing
(nþ 3) (mþ 1) variables, the equations are separated
into n sets of equations containing 4ðmþ 1Þ variables,
which are Rj, rij, �j, and zj (j ¼ 1; . . . ; mþ 1). Because

there are no relations among each rij with respect to i. The

calculations have to be performed n times, corresponding
to i ¼ 1; . . . ; n.
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A. Traces in free space

As a basic model, the trace results in free space are
discussed here. Initially, a bunch with a longitudinal length
of 3 mm, a beam radius of 0.5 mm, a charge of 1 nC per
bunch, an energy of 1 MeV, and an emittance of 0 mrad is
set at z ¼ 0. Both the transverse and the longitudinal
charge densities are assumed to be uniform. The bunch is
traced for a distance of 0.1 m along the z axis in free space.
The manner of bunch segmentation is the same as that
shown in Fig. 5, where m ¼ 10, n ¼ 10, z1 ¼ 0, and
zmþ1 ¼ 3 mm. The length of the segmentation slices at
both ends of the bunch is set to be shorter than that of the
middle slices as shown in Fig. 5.

The calculation results, along with those for a particle-
tracking simulation code [13] developed by the authors,
are shown in Fig. 7. The horizontal axis is expressed
not as a time scale but as a distance scale, where zðtÞ ¼R
t
0 �ðtÞc � dt. In the simulation code, initial particles

are aligned using Hammersley’s sequence [15] to reduce
the random noise caused by the distributions of particle

positions. The number of particles used in the simulation
code is 1� 105.
Figure 7(a) shows bunch shapes after tracing for a

distance of 0.1 m. Each dot on the solid lines is an electron
traced using the envelope equations. The clouds of small
dots are the particles in the simulation code. The particles
are color coded according to the initial segmentation slices
used in the multiple envelope equations.
Although the simulation code is three dimensional, in

Fig. 7(a) r is plotted as a variable on the vertical axis to
compare it with the two-dimensional envelope equations.
Figure 7(b) shows the energy distributions in the bunch

after tracing for a distance of 0.1 m. The dots on the line
represent the results obtained by the beam envelope
equations.
Figure 7(c) shows the time evolutions of the rms nor-

malized emittances, which are defined as

�x � h�ih�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihx02i � hx � x0i2

q
ðsimulationÞ

�x � 1
2h�ih�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2ihr02i � hr � r0i2

q
ðequationÞ:

(26)

Even when 2R=�L is 0.46 in Fig. 7(a), for which the
treatment of a short bunch with low energy is required, the
results obtained by the envelope equations and the simu-
lation code show good agreement.

B. Emittance accuracy

Figure 8 shows the results of free-space traces with an
energy of 6 MeV. The bunch shapes are in good agreement
with each other, although the emittances obtained by the
envelope equations are less than those obtained by the
simulation. Figure 9 shows the emittance dependence on
the number of particles in the simulation at z ¼ 0:1.
The emittances are normalized by their values when n ¼
1� 105. Since the beam size remains small, and thus the
charge density is large, for an energy of 6 MeV, the effect
of the random noise of the particle distribution is enhanced.
Therefore, the variation of emittance with respect to the
number of particles is larger than that for an energy of
1 MeV, and the emittance does not converge even when
n ¼ 2� 105.
The number of particles does not appear explicitly in the

envelope equations, and the emittance obtained by the
simulation code is expected to become close to that obtained
by the equations with increasing the number of particles.
Therefore, the emittance calculated by the equations is more
accurate than that calculated by the simulation code.
In addition, calculation time of the envelope equations is

much shorter than that of the simulation. Though depend-
ing on a type of CPU, it is an order of a week for the
simulation when n ¼ 2� 105 using a single core of Xeon
W5590 3.33 GHz. In contrast, it is an order of a minute for
the envelope equations.
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FIG. 7. Results of free-space traces with an energy of 1 MeV
and a charge per bunch of 1.0 nC. (a) Bunch shapes after 0.1 m
trace. (b) Energy distributions in the bunch after 0.1 m trace.
(c) Time evolutions of emittances.
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C. Beam dynamics in BNL-type rf gun cavity

The beam dynamics in the 1.6 cell BNL-type rf gun
cavity is calculated. A list of the initial parameters is shown
in Table I. The laser spot size and energy at the exit of the
cavity are obtained from Ref. [16]. The initial thermal
emittance is not taken into account, thus it is assumed to
be 0 mrad. The calculations include only emission from the

cathode and acceleration in the cavity and do not include
any other external fields such as focusing fields.
Figure 10 shows calculation results for a charge of 0.1 nC

per bunch including the effects of image charge fields at the
cathode. The number of particles used in the simulations is
1� 105. The bunch shapes and energy distributions at the
exit of the cavity (z ¼ 150 mm) are shown.
Figure 10(c) shows time evolutions of the emittances.

The emittances oscillate in the rf cavity. These oscillations
are caused by each slice having a different time evolution

TABLE I. Parameters for beam dynamics calculations in
BNL-type rf gun cavity.

Laser length 10 ps uniform

Laser spot size 	 1.3 mm uniform

Maximum electric field on the

cathode

120:8 MV=m

Energy at the exit of the cavity 5.75 MeV

Initial rf phase (when the head of

the bunch is emitted)

sin 25 deg.

Initial emittance 0 mrad
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particle simulation code. The emittances are normalized to those
when n ¼ 1� 105. The emittances calculated by the envelope
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of the rotation angle in the phase space. Since the envelope
equations can calculate not only a slice emittance but the
total projected emittance of the bunch, the results obtained
by the equations agree with those of the simulation code.

Emittances without image charge fields at the cathode
are also plotted in Fig. 10(c); the effects of the image
charge fields obtained from the equations and the simula-
tion also coincide with each other.

Figure 11 shows the emittance dependence on the num-
ber of particles. The emittances are normalized by their
value when n ¼ 1� 105. Similarly to the results of the
free-space traces, the emittance obtained by the simulation
becomes closer to that obtained by the equations with
increasing the number of particles.

Figure 12 shows the results for a charge of 1 nC per
bunch. The time evolution pattern of emittance obtained by
the equations and the simulation coincide with each other,
although the value of emittance is slightly different. There
are two possible causes of this difference, one related to the
simulation and one related to the envelope equations.

The cause related to the simulation is an error in the
calculation of the image charge fields. In our tracking simu-
lation code, since the position of the image particle r is the
same as that of the corresponding real particle, the distance
between the two particles becomes short near the cathode
and a very large interaction force appears. Thus, a shield
length is introduced, and the interaction between the real and
image particles is not calculated if the distance between them
is less than this length. However, the shield length cannot be
determined logically in the simulation. Since this treatment
is not required in the analytical method, the results for the
envelope equations are expected to be more accurate.

The cause related to the envelope equations is the warp
of the slice shape. In the envelope equations, each slice
must be separated by a plane perpendicular to the z axis
according to the assumption in the segmentation bunch
model. However, the results of the simulation in
Fig. 12(a) indicate that each segmentation boundary be-
comes curved, because E��sc on the z axis and that on an

off-axis line are different. This is one of the limitations of
our multiple envelope equation analysis. Both of the above
two problems are caused by a high charge density.

Note that each solid line in a calculated bunch shape
must not intercross. The crossing has possibility to occur
when the charge density is high. Though insofar as each
slice is not warped in the simulation, it is expected not to
occur. This can be checked from a calculated result of the
envelope equations, and there is no crossing in Fig. 12(a).
Figure 13 shows the calculated emittance as the

function of charge per bunch evaluated at z ¼ 0:15 m.
Since the calculations do not take into account the
initial thermal emittance, the emittance is expressed as
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equations is shown as an arrow. The charge per bunch is 0.1 nC.
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�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rfð
rÞ2 þ �scðqÞ2

p
, where, �rf is the rf emittance,

�sc is the space charge emittance, 
r is the rms bunch
radius, and q is the charge per bunch. In this case, the rf
emittance is 0:25� mmmrad from Fig. 13 because
�scð0Þ ¼ 0. The applicable range of the multiple envelope
equations under the conditions in Table I is under
0:5 nC=bunch, since the emittances obtained by the equa-
tions and the simulation coincide with each other in this
range. This range is often used in recently built XFEL
facilities [17,18].

V. CONCLUSION

A new semianalytical method for investigating the beam
dynamics of electron injectors was developed by deriving
multiple beam envelope equations incorporating a bunch
segmentation model and a transverse space charge field
correction scheme.

The advantage of this method is its unique assumption
for the beam parameters. We assume that each segmenta-
tion slice is not warped in the calculations. Although if the
beam energy is low and the charge density is large, this
condition is not satisfied, in practice this condition is
usually satisfied.

We have performed beam dynamics calculations to ob-
tain traces in free space and in the BNL-type rf gun cavity
by comparing the analytical solutions with those obtained
by the simulation. In most cases, including that of an rf gun
cavity with a low charge, the bunch shape and the energy
distribution in the bunch agree with those obtained by the
simulation. The emittances obtained by the simulation
become closer to those obtained analytically with increas-
ing number of particles used in the simulation. Therefore,
the analytically obtained emittances are expected to coin-
cide with converged values obtained by the simulation.

On the other hand, significantly warped slices were found
in the simulation result for the trace of a 1 nC per bunch in the
BNL-type rf gun cavity. The applicable range of the analyti-
cal solutions for the BNL-type rf gun was under 0.5 nC per
bunch, since each slice does not warp in this range. This
range is often used in recently built XFEL facilities.
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