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Recirculating linear accelerators (RLA’s) provide a compact and efficient way of accelerating particle

beams to medium and high energies by reusing the same linac for multiple passes. In the conventional

scheme, after each pass, the different energy beams coming out of the linac are separated and directed into

appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we

present a concept of an RLA return arc based on linear combined-function magnets, in which two and

potentially more consecutive passes with very different energies are transported through the same string of

magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function

magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for

all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped

return arc for a dogbone RLA capable of transporting two beam passes with momenta different by a factor

of 2. We present the results of tracking simulations of the two passes and lay out the path to end-to-end

design and simulation of a complete dogbone RLA.
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I. INTRODUCTION

Reusing the same linac in a recirculating linear accelera-
tor (RLA) [1] for multiple beam passes provides for a more
compact accelerator design and leads to significant cost
savings. In a conventional RLA [2], the different-energy
passes coming out of the linac are separated and directed
into individual return arcs for recirculation. Thus, each pass
through the linac requires a separate fixed-energy arc, in-
creasing the complexity of theRLA. Themaximumnumber
of passes through the RLA’s linac is often limited by design
considerations for the switch-yard, which first spreads the
different-energy passes to go into the appropriate arcs and
then recombines them to align the beam with the linac axis.
In this paper, we present a return-arc design concept, which
allows two and potentially more consecutive passes with
very different energies to be transported through the same
string of magnets. In the proposed design, the arc is built of
linear combined-functions magnets with variable dipole
and quadrupole field components, which are adjusted to
control the optics of the multiple passes.

Themultipass arc design has a number of advantages over
separate-arc [2] or pulsed-arc [3] approaches. It eliminates
the need for a complicated switch-yard, it reduces the total
beam-line length, there is no need to accommodate multiple
beam lines in the same tunnel or construct separate tunnels
for individual arcs, and there is no need for vertical bypasses,
which may be required for separate arcs complicating the

optics. This helps to increase the number of passes through
the linac thus enhancing the top energy available with the
same-size footprint. The design employs only fixed-field
magnets, which alleviates the requirements on magnets
and power supplies and greatly simplifies injection and
extraction. The fixed-field design also allows for a rapid
continuous-wave (CW) acceleration. Another important
feature of the design is a large dynamic aperture character-
istic of linear-field lattices. It is fairly straightforward and
inexpensive to design and build linear-field combined-
function magnets even with relatively large apertures [4].
A dogbone-shaped RLA [5] with multipass arcs [6] was

initially proposed for accelerating muons in the future
Neutrino Factory and Muon Collider. Of all available
particle species, accelerating a muon beam is, perhaps,
the most challenging due to its large 6D emittance, short
muon lifetime, and the wish to accelerate both muon
charges in the same RLA simultaneously. Therefore, in
this paper, we will be paying special attention to muon
acceleration aspects. However, the multipass arc design
concept is also applicable to both dogbone and racetrack
RLA’s for electrons and ions. Besides high-energy physics,
such RLA’s can find uses in free electron lasers and as
accelerators for nuclear physics. Compact smaller-scale
RLA’s can benefit numerous applications [7–10] in indus-
try, material science, astrophysics, medical isotope produc-
tion, radiation cancer therapy, power generation, homeland
security, and many other areas.

II. DESIGN REQUIREMENTS

Our goal is to configure the arc’s magnetic structure so
that it can accommodate multiple beam passes with sub-
stantially different energies. Keeping the emphasis on
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muon beams, the following constraints are imposed on the
arc design.

(a) The arc’s magnetic optics must be mirror symmetric
for each pass, so that the beams of both charges can
propagate through the arc in opposite directions equiva-
lently. For a symmetric magnetic structure, this leads to the
linear optics requirement that, for all passes, the Twiss �
functions must be equal and have equal-magnitude
opposite-sign slopes (as a function of the longitudinal
coordinate) at the beginning and end of the arc:

�i
x;yB ¼ �i

x;yE; (1)

�i
x;yB ¼ ��i

x;yE; (2)

where �x;y and �x;y are the horizontal and vertical Twiss �

and � functions, respectively, subscripts B and E denote
the locations at the beginning and end of the arc, and
superscript i refers to the pass number.

(b) Assuming a flat horizontal arc, each pass’s reference
orbit must have zero horizontal offset x and zero slope x0
(the prime denotes a derivative with respect to the longi-
tudinal coordinate) at the beginning and end of the arc:

xiB ¼ xiE ¼ 0; (3)

x0iB ¼ x0iE ¼ 0; (4)

to ensure that all energy beams are centered inside the
linac.

(c) The horizontal dispersion Dx and its slope D0
x must

be zero at the beginning and end of the arc for all passes:

Di
xB ¼ Di

xE ¼ 0; (5)

D0i
x B ¼ D0i

x E ¼ 0; (6)

to keep the linac dispersion free.
(d) The times of flight or, equivalently, the path lengths

of the different-energy passes must provide proper syn-
chronization with the linac.

(e) The orbit offsets as well as beta functions and dis-
persion must be maintained within reasonable limits for all
energies to keep the magnet aperture sizes acceptable.

(f) The dynamic aperture and momentum acceptance at
all energies must be adequate for large-emittance beams
such as those of muons.

Since the arc’s magnetic structure is mirror symmetric,
if one chooses some values of �i

x;yB and �i
x;yB and sets

xiB ¼ 0, x0iB ¼ 0, Di
xB ¼ 0, and D0i

x B ¼ 0, it is sufficient to
require that, at the arc’s symmetry point,

�i
x;yS ¼ 0; (7)

x0iS ¼ 0; (8)

D0i
x S ¼ 0; (9)

where subscript S denotes the symmetry point location in
the middle of the arc. The conditions given by Eqs. (7)–(9)
impose a total of 4� i constraints. These constraints are
optimal from the point of view of matching to the linac,
however, they are not necessary requirements. We are
intentionally considering a conservative case with the
most constraints to illustrate the multipass arc concept.
Depending on a specific situation, one might also consider
relieving some of the constraints.
It is often convenient, especially for large arcs, to con-

struct the lattice of identical superperiods. One must then
apply the constraints of Eqs. (7)–(9) to each superperiod,
i.e., indices B, E, and S now refer to the beginning, end,
and symmetry point, respectively, of the superperiod. In
addition, to ensure proper matching between the super-
periods, one must set �i

x;yB ¼ 0. This is equivalent to

requiring that each superperiod has a periodic optics solu-
tion at each energy. Another advantage of this approach is
that, under the discussed constraints, superperiods bending
in opposite directions but otherwise identical are automati-
cally matched to each other. This allows, for instance,
construction of droplet-shaped return arcs, which include
outward- and inward-bending sections. Reversing all bends
in a superperiod preserves the linear optics but reflects the
signs of x andDx. Given the constraints of Eqs. (3), (5), and
(6), the opposite-bending periods are then still matched to
each other.
Note that the points between the superperiods are con-

venient locations for insertion of any additional straight
sections if needed because the dispersion there is sup-
pressed for all passes and all-energy beams are centered
in the beam line as per Eqs. (3), (5), and (6). Therefore,
only � function matching is required. Inserting same-
length straight sections between all superperiods also pre-
serves the arc’s overall geometry.

III. DESIGN APPROACH

We first considered an arc design based on a nonlinear
nonscaling fixed-field alternating-gradient (NS-FFAG) lat-
tice [11]. The underlying structurewas a triplet composed of
in-out-in-(out-in-out-)bending combined-function magnets
with fixed dipole and variable quadrupole, sextupole, and
octupole field components. Having a few multipole compo-
nents in each magnet provides a large number of knobs to
satisfy conditions (7)–(9). An appropriate optics solution
was demonstrated [6,12]; however, optimization of the non-
linear dynamics for multiple passes is rather challenging.
Therefore, we next investigated a linear NS-FFAG arc

design. The lattice structure was similar to that of the non-
linear solution but each combined-function magnet only
had fixed dipole and variable quadrupole field components.
A solution based on the linear NS-FFAG approach was also
demonstrated [13]. It had a number of advantages over the
nonlinear design: (i) much greater dynamic aperture char-
acteristic of linear-field lattices; (ii) simpler optimization of
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the nonlinear dynamics; (iii) simpler control of the refer-
ence orbit at each energy because of a lower sensitivity to
magnetic field parameters than in the nonlinear case, which
makes it easier to minimize the orbit excursion and adjust
the path-length/time-of-flight; (iv) simpler control over the
� functions and dispersion; (v) lower sensitivity to mag-
netic field errors and magnet misalignments and simpler
error correction; (vi) simpler combined-function magnet
design with dipole and quadrupole field components only.

Since each combined-function magnet now only had one
variable parameter, namely, the quadrupole strength, the
number of magnets had to be increased to provide enough
knobs to meet all of the constraints in Eqs. (7)–(9).
Furthermore, because of the mirror symmetry, only one-
half of the magnets in a superperiod are independent. This
made each superperiod longer and/or more finely struc-
tured. Another disadvantage shared by both the nonlinear
and linear NS-FFAG-based designs is an inefficient use of
the channel’s length due to the alternating in-out-in (or out-
in-out) bends in the underlying triplet structure, i.e., bend-
ing the beam by a certain net angle requires a total bend of
3 times that angle. This makes the NS-FFAG-based designs
relatively long and hard to compete with the separate-arc
arrangement. In the concept presented in this paper, we
deviate from the conventional FFAG scheme by not requir-
ing regular alternating bends.

A solution satisfying the requirements discussed in
Sec. II can be obtained using only same-direction bends,
which would shorten the arc by almost a factor of 3.
However, there is still the problem of the large number
of linear combined-function magnets required to satisfy
Eqs. (7)–(9). Therefore, we introduce another concept [14]
doubling the number of available parameters without in-
creasing the number of magnets. We make the bending
angles of some of the combined-function magnets variable
with a constraint that the bending angles of all magnets in a
superperiod must add up to a given fixed total bend:

X

n

�n ¼ �net ¼ const; (10)

where �n is the bending angle of nth magnet in the super-
period defined for a nominal-energy trajectory going along
the center of the magnet and �net is the superperiod’s total
bending angle. Note that the superperiod’s magnetic struc-
ture is maintained mirror symmetric, therefore, only a half
of the magnets in the superperiod can have independent

field parameters, namely, the bending angles and quadru-
pole strengths. Such an approach combines compactness
of the design with all of the above advantages of a linear
NS-FFAG scheme.

IV. LINEAR OPTICS

We demonstrate the multipass arc concept in application
to a proposed dogbone-shaped muon RLA [5] with two
double-pass droplet return arcs. In that scheme illustrated
in Fig. 1, both positively and negatively charged
0:9 GeV=c muon beams are injected in the middle of a
0:6 GeV=pass linac. The linac is then traversed by
the beams 4 times accelerating them to 3:6 GeV=c.
Therefore, one of the return arcs must accommodate 1.2
and 2:4 GeV=c muon momenta, while the other arc must
accommodate 1.8 and 3:0 GeV=c momenta. Since the two
arcs can be designed using the same approach, below we
focus our discussion on the 1:2=2:4 GeV=c arc whose
design is somewhat more challenging due to the greater
fractional momentum difference of the two passes.
Each droplet arc consists of a 60� outward bend, a 300�

inward bend, and another 60� outward bend so that the net
bend is 180�. This arc geometry has the advantage that, if
the outward and inward bends are composed of similar
cells, the geometry automatically closes without the need
for any additional straight sections, making it simpler and
more compact.
To study the optics for large momentum offsets, we used

the polymorphic tracking code (PTC) module [15] of
MAD-X [16]. While perturbative-method codes are not suit-

able for such studies, PTC allows symplectic integration
through all elements with user control over the precision
with full or expanded Hamiltonian.
We assume that the arc is composed of identical super-

periods. In our relatively low energy range, we use the
maximum possible bend of 60� per superperiod to have the
largest possible number of magnets in the superperiod and,
therefore, the largest number of free parameters for optics
tuning. The superperiod consists of 24 combined-function
magnets with dipole and quadrupole field components. For
this initial demonstration, we chose hard-edge sector mag-
nets because it is more straightforward to subdivide them
into thin slices for tracking. The magnets are 0.5 m long
and are separated by 0.2 m gaps. The total arclength is then
117.6 m. Note that, in practice, it is more convenient to use

FIG. 1. Schematic layout of a 4.5-pass 3:6 GeV=c muon RLA.
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rectangular magnets and there is no conceptual problem
with converting the magnet shape in the solution from
sector to rectangular. It is also straightforward to modify
the design to include realistic magnet fringe fields.

Because of the droplet arc’s geometric closing, the first
and last few magnets of the arc overlap. These magnets
cannot contain quadrupole field components because the
symmetry would otherwise lead to the quadrupole fields
having opposite slopes in the overlapping magnets.
Therefore, we keep the first two magnets of each super-
period as pure dipoles. Their bending angles are fixed and
are chosen to provide a sufficient separation of the incom-
ing and outgoing higher-momentum beam while keeping
the separation of the lower- and higher-momentum beams
within acceptable limits. Also based on these considera-
tions, we choose the higher 2:4 GeV=c momentum as the
reference momentum going through the magnet centers.

The beam trajectories at the beginning of the arc are
shown in Fig. 2. After the first two magnets, the distance of
about 33 cm between the incoming and outgoing
2:4 GeV=c orbits is perhaps enough to insert separate
magnets in the incoming and outgoing lines. For simplicity
and to illustrate our multipass concept more clearly, the
design presented in this paper is composed of identical
symmetric supercells, which means that there are pure
dipoles at the beginning and end of each supercell.
However, none of the arc’s inner magnets have to be pure
dipoles. This opens another avenue for design optimiza-
tion, in particular, one can reduce the orbit excursion and
therefore the required magnet apertures inside the arc.

Note that a racetrack geometry does not have the above
pure-dipole spreader/recombiner restriction, i.e., all mag-
nets in a racetrack arc can have both dipole and quadrupole
field components, which can help minimize the orbit ex-
cursion everywhere in the arc. Additionally, neither ge-
ometry requires that one of the passes has to go through the
magnet centers. A solution can be obtained when momenta
of all passes are different from the nominal center-line
momentum [13]. This might be particularly useful for
adjusting the path-lengths/times-of-flight of the different
passes for synchronization with the linac.

As discussed in Sec. II, each superperiod is symmetric
with respect to its center. Therefore, out of the 24 magnets
constituting the superperiod, 12 are independent. The first
two of these magnets are pure dipoles with fixed bending
angles of 6� each. The remaining 10 magnets each have
variable dipole and quadrupole field components with a
constraint of Eq. (10) on the bending angles that the super-
period’s net bend is 60�. This gives a total of 19 indepen-
dent parameters.
Following the description in Sec. II, when solving for the

1.2 and 2:4 GeV=c reference orbits and optics of the super-
period, the beginning values of the orbit offset (xiB), dis-
persion (Di

xB), their slopes (x0iB and D0i
x B), and the �

functions (�i
x;yB) were all set to zero for both momenta.

The initial values of the horizontal and vertical � functions
(�i

x;yB) were all set at 2 m for both momenta to provide

easy matching to the linac and to keep the peak values of
the � functions in the superperiod at acceptable levels. The
19 independent magnet parameters discussed above were
then tuned to meet the requirements of Eqs. (7)–(9), i.e., to
give zero slopes of the orbit offset, dispersion, and �
functions at the center of the superperiod for the two
momenta. The symmetry then ensures that Eqs. (3)–(6)
are satisfied at the superperiod’s exit.
Since the 2:4 GeV=c beam goes through the magnet

centers, its reference orbit by definition has zero offset
everywhere. This results in a total of 2 passes�
4 constraints=pass� 1 ¼ 7 constraints with 19 fitting pa-
rameters available. The extra free parameters were used to
control the maximum values of the orbit deviation, �
functions, and dispersion. The resulting magnet parameters
in the first half of the outward-bending superperiod are
listed in Table I. In terms of magnetic field requirements,
the maximum dipole field in Table I is about 1.7 Twhile the
maximum quadrupole gradient is about 28 T=m.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.5  1  1.5  2  2.5

y 
(m

)

x (m)
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2.4 GeV/c

FIG. 2. The apex of the droplet arc with the pure dipoles acting
as a spreader/recombiner of the different-momentum trajectories.

TABLE I. Bending angles �, bending radii �, dipole fields B,
and quadrupole strengths @By=@x of the magnets in the first half

of the outward-bending superperiod. The parameters are defined
with respect to the channel’s nominal axis coinciding with the
2:4 GeV=c reference orbit.

Magnet # � (�) � (m) B (T) @By=@x (T=m)

1 �6:000 4.775 �1:677 0.000

2 �6:000 4.775 �1:677 0.000

3 1.976 14.497 0.552 19.529

4 �5:008 5.720 �1:399 �24:584

5 �2:823 10.149 �0:789 28.342

6 �2:572 11.140 �0:719 �22:321

7 0.501 57.222 0.140 21.206

8 �1:950 14.691 �0:545 �21:230

9 �1:763 16.245 �0:493 23.233

10 �2:472 11.588 �0:691 �27:653

11 �1:982 14.456 �0:554 24.536

12 �1:907 15.023 �0:533 �18:612
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Figures 3 and 4 show 1.2 and 2:4 GeV=c solutions,
respectively, for the periodic orbits, dispersion, and �
functions of an outward-bending superperiod. Since the
only difference of an inward-bending superperiod from
the outward-bending one is that its bends are reversed, its

optics is identical to Figs. 3 and 4 except that the signs of
the reference orbits and dispersion are flipped. The
1:2 GeV=c optics of a complete droplet arc is shown in
Fig. 5. It illustrates how the whole arc is built out of
individual outward- and inward-bending superperiods.
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FIG. 3. 1:2 GeV=c optics of an outward-bending superperiod:
the horizontal reference orbit xref and dispersionDx (top) and the
horizontal and vertical � functions (bottom).
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Note, in particular, the matching points between the super-
periods bending in the same and opposite directions. The
2:4 GeV=c optics of a complete arcs can be constructed
similarly using the data in Fig. 4.

Figure 6 shows geometric layout of the 1.2 and2:4 GeV=c
reference orbits. The displacement of the 1:2 GeV=c orbit
was enhanced by a factor of 10. Note that because of the
varying bending angles, the arc is not perfectly circular.
The largest orbit separation of about 19 cm is determined
primarily by the necessity to spread/recombine the different-
momentum orbits at the beginning of the arc. It sets the
requirements on themagnet apertures. However, such a large
separation occurs only in a small number of magnets while
the remaining magnets may have smaller apertures. The
maximum orbit deviation is reduced for smaller momentum
ratios such as that of the 1:8=3:0 GeV=c arc.

The magnet parameters in Table I and the orbit offsets in
Figs. 3–5 are specified with respect to a nominal-
momentum trajectory, which defines the nominal axis of

the magnetic channel. As discussed above, the nominal
momentum in our case was set at 2:4 GeV=c. In practice,
however, the actual magnets do not have to be centered on
the channel’s nominal axis. In fact, to optimally use the
magnets’ good-field regions and minimize the required
apertures, the center of each physical magnet transversely
should be placed approximately halfway between the 1.2
and 2:4 GeV=c orbits. Linearity of the magnetic field
allows for a straightforward transformation of the dipole
component (the quadrupole component is unchanged) to
account for the transverse shift.

V. TRACKING RESULTS

To validate our linear optics design, we used the PTC
module of MAD-X to track a bunch of 3000 muons through
the droplet arc. The tracking results for the 1.2 and
2:4 GeV=c passes are shown in Figs. 7 and 8 respectively.
In each case, the initial bunch distribution was Gaussian
with no cross correlations between the 6D phase-space
coordinates. At each momentum, the horizontal "xN and
vertical "yN normalized rms emittances were both 30 mm

mrad, the rms bunch length �z was 1 cm, and the rms
relative momentum spread �p=p was 1� 10�3.
Figures 7 and 8 compare the horizontal (a), vertical (b),

and longitudinal (c) phase-space distributions of the initial
bunch (shown in blue) to those after the bunch’s single pass
through the complete droplet arc (shown in red). We inten-
tionally chose the values of the initial transverse and
longitudinal emittances at the levels where the bunch was
beginning to get deformed at 1:2 GeV=c to probe the limits
of the arc’s dynamic aperture and momentum acceptance.
Note, in particular, in Fig. 7(c) that the longitudinal dy-
namics starts getting affected by the amplitude path-length
dependence, which is a general problem of large-
transverse-emittance beams [17]. The particle transmission
rates (not including muon decay) were 92.8% at
1:2 GeV=c and 100% at 2:4 GeV=c.
The results shown in Figs. 7 and 8 indicate that, even

without any nonlinear optimization, the arc’s dynamic
aperture might be adequate for deeply cooled muon beams
[18,19]. To accommodate a large momentum spread char-
acteristic of muon beams, the arc’s longitudinal dynamics
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y 
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FIG. 6. Geometric layout of the 1.2 and 2:4 GeV=c reference
orbits. The displacement of the 1:2 GeV=c orbit is magnified by
a factor of 10.

FIG. 7. Horizontal (a), vertical (b), and longitudinal (c) phase-space distributions of a 1:2 GeV=cmuon bunch before (blue) and after
(red) passing through the droplet arc.
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needs to be optimized by compensating chromatic and
amplitude-dependent path-length effects and preparing a
proper initial bunch state. On the other hand, even without
any optimization, the arc properties readily meet the dy-
namic aperture and momentum acceptance requirements
for the typical accelerator beam emittances of most other
particle species, such as electrons, protons, deuterons, etc.
The tracking in Figs. 7 and 8 was performed for an ideal
lattice with no magnet misalignments or magnetic field
errors. Studying the sensitivity to such imperfections is
not one of the goals of this paper; however, preliminary
simulations of these effects seem rather encouraging.

VI. MATCHING TO LINAC AND COMPLETE RLA
DESIGN CONSIDERATIONS

A complete end-to-end RLA design is beyond the scope
of this paper. However, as a proof of principle, one can
design a corresponding linac with energy gain of 600 MeV
per pass, which is matched by design to previously de-
scribed two-pass arcs for both passes simultaneously. As
illustrated in Fig. 9, this multipass linac optics can be
accomplished by adjusting the strengths of the linac’s
fixed-field quadrupoles. The presented solution was
accomplished by modifying the so-called bisected linac

profile [20], where the quadrupole strengths increase line-
arly from the linac’s center toward the edges. Perhaps the
Twiss parameters at the entrance into the arcs can be
further optimized from the point of view of better matching
to the linac; optimizing the arc and linac optics is an
iterative process.
Another critical issue that needs to be considered when

developing a complete RLA design is proper synchroniza-
tion of all passes with the linac’s rf. The difference in the
times of flight of the different passes in each arc must be
either close to zero or close to an integer number of rf
oscillation periods. The time-of-flight difference between
the passes arises due to a combination of the differences in
their speeds and path lengths.
Since 1.2 and 2:4 GeV=cmuons are not ultrarelativistic,

there is a non-negligible effect of their speed difference. As
it can be seen from Fig. 6, the 1:2 GeV=c orbit in our
design is clearly longer than the 2:4 GeV=c one. Thus, the
time-of-flight difference between the two passes must be
adjusted to the nearest integer number (including zero) of
rf periods. One option is to manipulate the path lengths
inside the arc. For instance, one can make 1:2 GeV=c to be
the central momentum instead of 2:4 GeV=c in the arc’s
inner superperiods, which would compensate some of the
time-of-flight difference. Another option is to place

FIG. 9. Linac optics matched to both arcs for all passes simultaneously. The arrows indicate arc locations.

FIG. 8. Horizontal (a), vertical (b), and longitudinal (c) phase-space distributions of a 2:4 GeV=cmuon bunch before (blue) and after
(red) passing through the droplet arc.
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path-length chicanes [21,22] between the superperiods or
in front of the arc. A chicane located in front of the arc
would have a cumulative effect on the opposite-direction
passes. Combining both options might be the best
approach.

VII. CONCLUSIONS

We developed a concept of an RLA return arc based on
linear combined-function magnets, in which two and po-
tentially more consecutive passes with very different en-
ergies are transported through the same string of magnets.
We demonstrated that, by adjusting the dipole and quad-
rupole field components of the constituting linear
combined-function magnets, the arc can be made achro-
matic and to have zero initial and final reference orbit
offsets for two beam energies. Such an approach combines
compactness of the design with the many benefits [13,14]
of a conventional linear NS-FFAG scheme.

We applied the concept to design a droplet-shaped return
arc for a dogbone muon RLA capable of transporting two
beam passes with momenta different by a factor of 2. We
obtained solutions for the reference orbits and linear optics
of the two passes. Tracking simulations of the developed
design showed that, with appropriate optimization of the
longitudinal dynamics, it may be adequate for deeply
cooled muon beams and it readily meets the dynamic
aperture and momentum acceptance requirements for the
typical accelerator beam emittances of most other particle
species. There is a straightforward path to a complete RLA
design. In that regard, we showed a proof-of-principle
transverse matching of the arc to the linac for all passes
simultaneously and discussed synchronization of the dif-
ferent passes with the linac’s rf.

The proposed multipass arc concept has a number of
attractive features. It can increase the number of passes
through the linac, thus, leading to a more efficient use of rf
and higher energies available with the same-size accelera-
tor footprint. It eliminates the need for a complicated
switch-yard, it reduces the total beam-line length, there is
no need to accommodate multiple beam lines in the same
tunnel or construct separate tunnels for individual arcs. The
design relies solely on fixed magnetic fields, thus, weak-
ening the requirements on magnets and power supplies and
greatly simplifying injection and extraction. It allows for a
CW operation. Engineering design and fabrication of
linear-field combined-function magnets does not seem to
present a challenge [4] even for relatively large apertures.
Thus, the multipass approach may benefit many applica-
tions in science and industry.
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