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We consider the longitudinal point-charge wakefield, wðsÞ, for an axisymmetric collimator having inner

radius b, outer radius d, inner length g, and taper length L. The taper angle � is defined by tan� ¼
ðd� bÞ=L. Using the electromagnetic simulation code ECHO, we explore the dependence of the wakefield

on a collimator’s geometric parameters over a wide range of profiles: from small-angle tapers to step-

function transitions. The point-charge wakefield is determined using an approximation introduced by

Podobedov and Stupakov. We have found it useful to exhibit the wakefield as a function of the scaled

variable s=d�. For small taper angles, our results illustrate the satisfaction of the longitudinal scaling

found by Stupakov, Bane, and Zagorodnov; and for larger taper angles, the breaking of this longitudinal

scaling is clearly depicted. The use of the scaled variable s=d� turns out to be especially well suited to

describing the wakefield for a collimator with step-function profile (� ¼ �=2).

DOI: 10.1103/PhysRevSTAB.15.054405 PACS numbers: 41.20.Jb, 41.60.�m

I. INTRODUCTION

Knowledge of wakefields is of critical importance for
determining the current-dependent collective effects limit-
ing performance in high-intensity accelerators. In recent
years, there has been considerable effort to understand the
properties of the short-range wakefield generated when a
short bunch passes through a collimating structure.
Progress in understanding this subject has been achieved
through both analytical and numerical studies. In this
paper, using the 2D electromagnetic simulation ECHO

code [1,2], we carry out an investigation of the longitudinal
short-range wakefield due to an axisymmetric collimator.

We consider the highly relativistic limit in which a
particle traveling at the speed of light c, passes through
a step function or tapered collimator illustrated in
Figs. 1(a) and 1(b). We denote the smaller pipe radius by
b, the larger radius by d, the length of the inner section of
the collimator by g, and the length of the taper by L. The
taper angle � is defined by tan� ¼ ðd� bÞ=L. The longi-
tudinal wakefield produced by a point charge is denoted
wðsÞ, where s is the distance of the test particle behind the
driving particle.

Podobedov and Stupakov [3,4] have noted that the point-
charge wakefield for a collimator can be written in the form

wðs;b;d;g;LÞ¼cZ0

�
logðd=bÞ�ðsÞþDðs;b;d;g;LÞ; (1)

where Z0 is the impedance of free space. The delta function
term corresponds to the result in the optical regime [5]. The
causal functionDðsÞvanishes for s < 0 and is discontinuous

at s ¼ 0. Since the impedance vanishes at zero frequency, it
follows that Z 1

0
dsDðsÞ ¼ � cZ0

�
logðd=bÞ: (2)

In this paper, in order to facilitate the illustration of the
behavior of the wakefield over a wide range of parameters
and for larger s, we prefer to introduce the normalized
causal function uðsÞ, via

wðs;b;d;g;LÞ¼cZ0

�
logðd=bÞ½�ðsÞ�uðs;b;d;g;LÞ�; (3)

where

Z 1

0
dsuðsÞ ¼ 1: (4)

Using this normalized function, the ratio of the loss

factor kloss to that in the optical regime [5,6] koptloss is easily

expressed. For a Gaussian bunch of rms width �, this ratio
is given by

klossð�Þ=koptlossð�Þ ¼ 1�
Z 1

0
dsuðsÞ expð�s2=4�2Þ; (5)

where k
opt
lossð�Þ ¼ ðcZ0=2�

3=2�Þ logðd=bÞ.

FIG. 1. Step collimator (a) and tapered collimator (b).

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 15, 054405 (2012)

1098-4402=12=15(5)=054405(6) 054405-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.15.054405
http://creativecommons.org/licenses/by/3.0/


For a small-angle tapered collimator ðsatÞ, it is shown in
Ref. [4] that

Dsatð0Þ ffi � cZ0

�b�
; (6)

and for a step collimator ðstÞ, it follows from the work of
Okamoto, Jiang, and Gluckstern [7] that

Dstð0Þ ffi � 0:6cZ0

�bð�=2Þ : (7)

We now note that, to within �10% accuracy,

1

�b
ffi logðd=bÞ

d
; for 1:5 � d=b � 6: (8)

In this paper, we shall restrict our attention to collima-
tors with parameters within the range 1:5 � d=b � 6.
In this case, Eqs. (6) and (8) imply that, for small-angle
tapers,

usatð0Þ ffi �

d�
; (9)

and Eqs. (7) and (8) show that for a step collimator,

ustð0Þ ffi 0:6�

dð�=2Þ : (10)

The short-range wakefield depends predominantly on
the two length scales b� and d�. In illustrating its behav-
ior, one can plot the wakefield versus the variable s=b� or
s=d�. In this paper, in order to illustrate more clearly the
behavior of the wakefield at longer distances, we prefer to
utilize the variable s=d�.

For the short-range wakefield (s=d� & 0:3), our nu-
merical calculations demonstrate that the dependence on
g is very weak and they support the approximate validity of
the scaling relation,

wðs;b;d;g;LÞfficZ0

�
log

�
d

b

��
�ðsÞ� 1

d�
f

�
s

d�
;
b

d

��
: (11)

With the wakefield approximated by Eq. (11), it follows
from Eq. (5) that the departure of the loss factor from the
optical approximation for short bunches (�=d� & 0:15)
can be estimated by

klossð�Þ=koptlossð�Þ ffi 1� ffiffiffiffi
�

p
f

�
0;
b

d

�
�

d�
; (12)

with fð0; bdÞ varying from �3 for small-angle tapers to

�1:8 for step collimators. Equation (12) is a more accurate
expression for the loss factor than the similar relation given
in Eq. (12.26) of Ref. [8].

II. DIMENSIONAL ANALYSIS

We motivate our discussion by using dimensional analy-
sis and the longitudinal scaling relation introduced in
Ref. [9]. From dimensional analysis, we can write

uðs; b; d; g; LÞ ¼ 1

d
u1

�
s

d
;
b

d
;
g

d
;
L

d

�
: (13)

In the special case of a step collimator, for which L ¼ 0,

ustðs;b; d; gÞ ¼ 1

d
ust1

�
s

d
;
b

d
;
g

d
; 0

�
: (14)

We have determined that when g is not too short (see
Fig. 2), the wakefield depends very weakly on g, so we can
simplify Eq. (14) to read

ustðs; b; d; gÞ ffi 1

d
ust2

�
s

d
;
b

d

�
: (15)

The corresponding weak dependence of the impedance
of a step collimator on g was found in the analysis of
Ref. [7].
Our ECHO calculations have uncovered the surprising

result that in the parameter range we are considering
[see Eq. (8)], and for s=d * 0:5, the dependence on b=d
is very weak (see Fig. 3), so to a reasonable approximation,

ustðs;b; d; gÞ ffi 1

d
ust3

�
s

d

�
: (16)

Clearly, in Eq. (13), we could have chosen to set the
length scale with any of the lengths in the problem.
Equation (16) provides one motivation for our choice to
single out the dependence on the larger radius d.
For a small-angle tapered collimator, it has been shown

[9] that an important longitudinal scaling relation holds for
the short-range wakefield,

wsatðs;b; d; g; LÞ ¼ �wsat

�
s�; b; d;

g

�
;
L

�

�
; (17)

where � is a dimensionless parameter. The scaling relation
(17) holds trivially for the delta function term in Eq. (3). It
therefore follows from Eqs. (13) and (17) that
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FIG. 2. The function f ffi d�U�0 versus s=d� for step colli-
mators (� ¼ �=2) with d ¼ 6 mm, b ¼ 3 mm, �0 ¼ 50 �m
and g ¼ 1 mm, g ¼ 10 mm, 50 mm, and 100 mm.
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usat1

�
s

d
;
b

d
;
g

d
;
L

d

�
¼ �usat1

�
s�

d
;
b

d
;
g

�d
;
L

�d

�
: (18)

We now choose � ¼ L=ðd� bÞ, obtaining

usat1

�
s

d
;
b

d
;
g

d
;
L

d

�
¼ L

d�b
usat1

�
sL

dðd�bÞ ;
b

d
;
gðd�bÞ

Ld
;
d�b

d

�
;

(19)

and, hence,

usatðs; b; d; g; LÞ ¼ L

dðd� bÞu
sat
2

�
sL

dðd� bÞ ;
b

d
;
gðd� bÞ

Ld

�
:

(20)

Recall that the taper angle � is defined by tan� ¼
ðd� bÞ=L. We can rewrite Eq. (20) in the form

usatðs;b; d; g; LÞ ¼ 1

d tan�
usat2

�
s

d tan�
;
b

d
;
g tan�

d

�
: (21)

Based on the ECHO calculations, we have found that the
dependence on g is weak for s=d� & 0:3. Neglecting the
dependence on g, and replacing tan� by the angle � in
the first argument of usat2 , we obtain the approximate scal-
ing relation:

usatðs; b; d; g; LÞ ffi 1

d�
usat2

�
s

d�
;
b

d

�
: (22)

Let us note that Eq. (22), which we have just introduced
for the tapered collimator, has a form consistent with
Eq. (15) found for the step collimator (� ¼ �=2).
Therefore, we can hope that Eq. (15) will have an approxi-
mate validity for large collimator angles. Our numerical
calculations show that replacing the tangent by the angle
extends the range of usefulness of Eq. (15). In the context
of the derivation of the scaling relation of Ref. [9],

replacing tan� by the angle � corresponds to moving out
of the region of validity of the paraxial approximation,
which is only applicable for a smooth, slowly varying
wall. Once the taper angle approaches �=2, the scaling is
broken and the function f begins to depend also on the
angle � itself. The special case of the wakefield of the step
collimator (� ¼ �=2) turns out to exhibit very interesting
behavior deserving individual attention.

III. APPROXIMATE CALCULATION
OF THE POINT-CHARGE WAKEFIELD

Using ECHO, we cannot directly calculate the point-
charge wakefield. In Refs. [3,4], an approximate method
for determining the point-charge wake has been intro-
duced. Following this approach, we use ECHO to calculate
the wakefieldW�0ðsÞ produced by a Gaussian bunch of rms
width �0. We choose �0 small enough so that the wake is
resistive. We then approximate Eq. (3) by

W�0ðs; b; d; g; LÞ ¼ cZ0

�
logðd=bÞ

�
1ffiffiffiffiffiffiffi

2�
p

�0

exp

��s2

2�2
0

�

�U�0ðs;b; d; g; LÞ
�
: (23)

For s � �0, the point-charge wake is well approximated
by Eq. (23), hence,

uðs; b; d; g; LÞ ffi U�0ðs; b; d; g; LÞ ðs � �0Þ: (24)

In this manner, we approximate the scaling function
introduced in Eq. (11) by

f ffi d�U�0ðs;b; d; g; LÞ ðs � �0Þ: (25)

We shall now discuss the results of our ECHO calcula-
tions and illustrate the scaling of the short-range wakefield.

A. Step collimators

In Fig. 2, we plot the scaling function f ffi d�U�0 versus
s=d� for step collimators (� ¼ �=2) with d ¼ 6 mm, b ¼
3 mm, �0 ¼ 50 �m and g ¼ 1 mm, g ¼ 10 mm, 50 mm,
and 100 mm.We note that f is quite independent of g. Only
negligible variation is observed when g varies from 100 to
10 mm. Even at g ¼ 1 mm the deviation is very small. In
Fig. 3, we plot f ffi d�U�0 versus s=d� for step collima-
tors with b ¼ 3 mm and d ¼ 6 mm (black), 12 mm
(green) and 18 mm (orange), and with b ¼ 6 mm and d ¼
12 mm (red). The rms length of the charge distribution
�0 ¼ 50 �m is chosen to be small enough to assure that
the wakefield is resistive. The close agreement of the
wakefields for these different parameters is striking.
These results clearly show that the dependence of the
scaling function f on the ratio b=d is surprisingly weak,
as noted in Eq. (16).

The scaled loss factor kloss=k
opt
loss as a function of �=d�

(� ¼ �=2) for several step collimators is illustrated in

0 1 2 3 4 5
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3

2s d

d
2

U
0

d 6mm, b 3mm, g 50mm, 0 50 m

d 18mm, b 3mm, g 50mm, 0 50 m

d 12mm, b 6mm, g 10mm, 0 50 m

d 12mm, b 3mm, g 10mm, 0 50 m

FIG. 3. For step collimator, we plot ð�d=2ÞU�0 ðs; b; d; gÞ
versus 2s=�d for �0 ¼ 50 �m and d ¼ 12 mm, b ¼ 3 mm,
g ¼ 10 mm (green); d ¼ 12 mm, b ¼ 6 mm, g ¼ 10 mm
(red); d ¼ 18 mm, b ¼ 3 mm, g ¼ 50 mm (orange); and d ¼
6 mm, b ¼ 3 mm, g ¼ 50 mm (black).
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Fig. 4. Good agreement is found with Eq. (12) for
2�=�d & 0:15.

B. Tapered collimators

In Fig. 5, we plot the scaling function f ffi d�U�0 versus
s=d� for tapered collimators with d ¼ 6 mm, b ¼ 3 mm,
L ¼ 6:25 mm, �0 ¼ 30 �m and g ¼ 12:5 mm (green),
50 mm (aqua), and 100 mm (red). We note that for s=d� &
0:3, f is quite independent of g. In Fig. 6, we plot the
function f ffi d�U�0 versus s=d� for collimators with d ¼
6 mm and b ¼ 3 mm. The cases with taper length L *
6:25 mm (red, blue, orange) satisfy the longitudinal scal-
ing (17) very accurately. The longitudinal scaling is seen to
be broken when L � 3:125 mm. The accuracy of the ap-
proximation of Eq. (11) for the cases of L ¼ 3:12 mm
(aqua) and L ¼ 1:56 mm (green) has been significantly
improved by the replacement of tan� by the angle � as
suggested following Eq. (21). (See Fig. 11 in the
Appendix.) Even in the case of the step collimator (black),

Eq. (11) provides a rough approximation for small s. In
Fig. 7, we plot the function f ffi d�U�0 versus s=d� for
collimators with d ¼ 12 mm and b ¼ 3 mm. The cases
with taper length L * 12:5 mm (pink, black, orange) sat-
isfy the longitudinal scaling (17) very accurately. The
longitudinal scaling is seen to be broken for the cases of
L & 6:25 mm (red, aqua, green). In Fig. 8, we plot the
function f ffi d�U�0 versus s=d� for collimators with d ¼
6 mm, b ¼ 3 mm, L ¼ 25 mm (red); d ¼ 12 mm,
b ¼ 3 mm, L ¼ 50 mm (black); and d ¼ 18 mm, b ¼
3 mm, L ¼ 50 mm (green) for values of L sufficiently
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FIG. 5. The function f ffi d�U�0 versus s=d� for tapered
collimators with d ¼ 6 mm, b ¼ 3 mm, �0 ¼ 30 �m and g ¼
12:5 mm, 50 mm, and 100 mm.
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FIG. 6. For tapered collimators, we plot d�U�0 versus s=d�
for d ¼ 6 mm, b ¼ 3 mm and g ¼ 3:12 mm, L ¼ 1:56 mm,
�0 ¼ 32 �m (green); g ¼ 6:25 mm, L ¼ 3:12 mm, �0 ¼
32 �m (aqua); g ¼ 12:5 mm, L ¼ 6:25, �0 ¼ 32 �m (red);
g ¼ 25 mm, L ¼ 12:5 mm, �0 ¼ 16 �m (blue); and g ¼
50 mm, L ¼ 25 mm, �0 ¼ 8 �m (orange). The black curve
corresponds to a step collimator. We see that longitudinal scaling
is only accurately satisfied for L * 6:25 mm.
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Round step g ¼ 10 mm.
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FIG. 7. For tapered collimators, we plot d�U�0 versus s=d�
for d ¼ 12 mm and b ¼ 3 mm and g ¼ 3:12 mm, L ¼
1:56 mm, �0 ¼ 30 �m (green); g ¼ 6:25 mm, L ¼ 3:12 mm,
�0 ¼ 30 �m (aqua); g ¼ 12:5 mm, L ¼ 6:25, �0 ¼ 30 �m
(red); g ¼ 18:8 mm, L ¼ 9:4 mm, �0 ¼ 30 �m (blue); g ¼
25 mm, L ¼ 12:5 mm, �0 ¼ 20 �m (orange); d ¼ 12 mm,
g ¼ 50 mm, L ¼ 25 mm, �0 ¼ 10 �m (black); and g ¼
100 mm, L ¼ 50 mm, �0 ¼ 10 �m (purple).
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large to assure longitudinal scaling (17) is accurately sat-
isfied. We see that for s=d� & 0:3, there is approximate
agreement between the curves corresponding to different
values of b=d, illustrating the weak dependence on the
ratio b=d in the approximate scaling relation (11).

The scaled loss factor kloss=k
opt
loss as a function of �=d�

for several tapered collimators is illustrated in Fig. 9. Good
agreement is found with Eq. (12) for �=d� & 0:15.

IV. FURTHER DISCUSSION OF LOSS FACTOR

In a previous paper [10], we presented a phenomeno-
logical formula approximating the loss factor of an axi-
symmetric collimator,

kloss=k
opt
loss ffi

�
2

�
arctan

�
0:2d2

�L

��
2
: (26)

This formula is expected to hold for small � � b and
large d=b. In Fig. 10, we present the data from Fig. 9(a),

but now we plot kloss=k
opt
loss versus L�=d

2.

We note that for small� � b, large d=b, and large taper
length L, the loss factor is well approximated by the
asymptotic relation,

kloss

k
opt
loss

	 0:016
d4

�2L2
: (27)

V. CONCLUDING REMARKS

In Refs. [3,4], Podobedov and Stupakov noted that the
point-charge wakefield for a collimator can be written in
the form of Eq. (1).
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FIG. 8. For small-angle tapered collimators satisfying longitu-
dinal scaling, we plot d�U�0 versus s=d� for d ¼ 6 mm, b ¼
3 mm, L ¼ 25 mm (red); d ¼ 12 mm, b ¼ 3 mm, L ¼ 50 mm
(black); and d ¼ 18 mm, b ¼ 3 mm, L ¼ 50 mm (green).
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FIG. 9. For tapered collimators, we plot kloss=k
opt
loss versus

�=d�. The solid line corresponds to Eq. (12). (a) Varied taper
length L for fixed bunch length � ¼ 0:5 mm for collimators
with d ¼ 50 mm, b ¼ 6:25 mm (green dots), d ¼ 25 mm, b ¼
6:25 mm (red dots), d ¼ 12:5 mm, b ¼ 3:125 mm (blue dots),
and inner length g ¼ 10 mm. (b) Varied bunch length � for fixed
taper length L with d ¼ 6 mm, b ¼ 3 mm, L ¼ 6:25 mm, and
g ¼ 100 mm (red dots); d ¼ 50 mm, b ¼ 6:25 mm, L ¼
50 mm, and g ¼ 50 mm (green dots).
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FIG. 10. We plot the ratio of the simulated loss factor (ECHO)
to the loss factor in the optical regime kloss=k

opt
loss versus the

dimensionless scaled length L�=d2 for the various tapered
structures with fixed bunch length of � ¼ 0:5 mm and varied
taper length for d ¼ 50 mm and b ¼ 6:25 mm (green dots), d ¼
25 mm and b ¼ 6:25 mm (red dots), and d ¼ 12:5 mm and b ¼
3:125 mm (blue dots). The inner length is g ¼ 10 mm. The dark
red curve is given by Eq. (26).
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In this paper, we used the ECHO code [1,2] to carry
out an extensive study of the dependence of the wakefield
on the transverse geometric parameters. For a tapered
collimator, we have shown that the short-range wakefield,
for s=d� & 0:3 and � & �=3, is well approximated by
Eq. (11).

Having factored out the logðd=bÞ term, we have found
that in the range 1:5 � d

b � 6 of Eq. (8), the scaling function

f depends only weakly on b=d.
For small taper angle, � & �=4, the ECHO calculations

confirm that the longitudinal scaling [9] relation (17) is
accurately satisfied, as shown in Eq. (17).

The approximation of Eq. (11) properly satisfies Eq. (17)
for small taper angle. The longitudinal scaling is broken for
angles large compared with �=4. We have found that using
the taper angle � in Eq. (11), rather than its tangent, allows
Eq. (11) to remain a good approximation for larger angles
ð�� �=3Þ, beyond the regime where Eq. (17) is satisfied.
As the taper angle increases further, Eq. (11) becomes less
accurate, and the function f begins to depend on the angle
� itself.

The case of a step collimator (� ¼ �=2) is quite inter-
esting. For the parameters that we have considered, its
wakefield is well approximated by

wstepðs;b; d; g; LÞ ffi cZ0

�
log

�
d

b

��
�ðsÞ � 1

d
Fstep

�
s

d
;
b

d

��
;

(28)

where the dependence on b=d is very weak for s=d > 0:5
(see Fig. 3). The very weak dependence of Fstep on b=d is
quite remarkable, and we did not anticipate this simple
behavior.
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APPENDIX

In Fig. 6, we plotted d�U�0 versus s=d�. Here, in
Fig. 11, we present a plot of ½dðd� bÞ=L�U�0 versus
Ls=½dðd� bÞ�. Comparison of these two figures illustrates
the improvement for larger angles obtained by replacing
tan� by the angle � in transitioning from Eq. (21) to

Eq. (22). Of course, the scaling in Fig. 11 totally fails for
L ! 0, while that in Fig. 6 still has some approximate
validity as � ! �=2.
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FIG. 11. For tapered collimator, we plot ½dðd� bÞ=L�U�0

versus Ls=½dðd� bÞ� for d ¼ 6 mm, b ¼ 3 mm and g ¼
3:12 mm, L ¼ 1:56 mm, �0 ¼ 32 �m (green); g ¼ 6:25 mm,
L ¼ 3:12 mm, �0 ¼ 32 �m (aqua); g ¼ 12:5 mm, L ¼ 6:25,
�0 ¼ 32 �m (red); g ¼ 25 mm, L ¼ 12:5 mm, �0 ¼ 16 �m
(blue); and g ¼ 50 mm, L ¼ 25 mm, �0 ¼ 8 �m (orange).
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