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Transverse instability of a bunched beam is investigated with synchrotron oscillations, space charge

tune shift, and resistive wall wakefield taken into account. A boxcar model is used for a general analysis,

and truncated Gaussian distribution is invoked for details. The beam spectrum, instability growth rate, and

effects of chromaticity are studied in a wide range of parameters, both with head-tail and collective bunch

interactions included. Influence of internal bunch oscillations on the collective instabilities is investigated

thoroughly. Landau damping caused by the space charge tune spread is discussed, and the instability

thresholds of different modes of truncated Gaussian bunch are estimated.
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I. INTRODUCTION

Transverse instability of a bunched beam in a ring
accelerator has been considered independently by
Pellegrini [1] and Sands [2] with synchrotron oscillations
and some internal degrees of freedom of the bunch taken
into account (‘‘head-tail instability’’). Later Sacherer has
investigated the effect in depth, including dependence of
the bunch eigenmodes on amplitude of synchrotron oscil-
lations (‘‘radial modes’’ [3]).

The role of the bunch space charge was studied in
Refs. [4,5], where it has been shown that the space charge
produced tune spread can suppress many of the head-tail
modes due to Landau damping, acting on instability much
like other sources of the incoherent tune spread. First
results have been obtained with an assumption that the
space charge tune shift is significantly less than synchro-
tron tune. Closer examination of the problem in Ref. [5]
has led to the conclusion that almost all head-tail modes are
prone to Landau damping until when the space charge tune
shift is about less than the synchrotron tune. The damping
vanishes when the shift becomes greater, lower eigen-
modes being free from the decay first. The lowest (rigid)
mode is the only universal exception from the rule being
potentially unstable with any space charge. Sometimes
one or two following modes hold the stability as well,
depending on the bunch shape.

Joint action of the space charge and a short-range wake-
field was studied in Ref. [6] where instability growth rate
has been found at different bunch parameters such as its
shape, length, chromaticity, etc. Transverse modes cou-
pling instability was considered in the work as well, and

it has been shown that this rigorous effect cannot be caused
by negative wake like the resistive wall one.
Single-bunch instabilities were actually investigated in

mentioned articles because only short-range forces have
been included in the consideration. A more general theory
is developed in this paper where a bunched beam with an
arbitrary number of bunches is examined taking into ac-
count the space charge, intrabunch, and bunch-to-bunch
interactions. Both of these interactions affect the beam
eigenmodes including the instability growth rate, although
one or the other can dominate in specific situations result-
ing in different effects. The commonly used terms such as
‘‘collective modes instability’’ or ‘‘head-tail instability’’
are treated from this particular standpoint in the paper.
The presentation is focused first on resistive wall instability
[7–9], although the results can be rather easily adapted for
other known wakefields. The boxcar model is intensively
used to get a general outlook of the problem in a wide
range of parameters. A more realistic truncated Gaussian
bunch is closely examined in a limiting case of low syn-
chrotron frequency, though the opposite case of high fre-
quency is invoked as well to estimate thresholds of Landau
damping. It is assumed that the external field is linear;
however, nonlinearity of the space charge field is taken into
account at the analysis.

II. BUNCHED BEAM GENERAL EQUATIONS

We will consider a beam consisting of J bunches of
length 2�0, uniformly distributed over the azimuth at the
interval of �� ¼ 2�=J > 2�0. Sometimes we will use also
the normalized intrabunch longitudinal coordinate � hav-
ing a range�1 � � � 1within each of the bunches. In the
beam rest frame of reference, the relation of these global
and local variables is

� ¼ j��þ �0�; (1)

where j is the bunch number. As a rule, unified symbols
will be used for different presentations of some function,
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with subindex n added if needed. For example, linear beam
density in the range of the jth bunch can be presented as

fð�Þ � fðj��þ �0�Þ � fjð�Þ: (2)

The conjugated longitudinal momentum u will be de-
fined to satisfy the condition A2 ¼ �2 þ u2, where A � 1 is
the normalized amplitude of synchrotron oscillations. This
variable is proportional to the momentum deviation of the
considered particle with respect to the central bunch mo-
mentum. However, the proportionality coefficient is not a
factor in the circumstance.

The distribution function of the jth bunch will be de-
noted as FjðAÞ, and the bunch shape will be described by

the function

�jð�Þ ¼
Z 1

�1
Fj½Að�; uÞ�du; (3)

whose normalization is insignificant in this point and will
be specified later.

When coherent transverse oscillations occur, the beam
obtains transverse displacements Xð�; uÞ, which is a fast-
oscillating function depending on the point of the longitu-
dinal phase space. However, another (slower-oscillating)
variable is more convenient for the present purposes:

Yð�; uÞ ¼ Xð�; uÞ exp½i�ðQ0 þ �Þ�; (4)

where Q0 is the base betatron tune without space charge
included, and � ¼ ��=� is the effective chromaticity with
� as the conventional chromaticity and � ¼ �� 1=	2 as
the slippage factor. Then, with space charge tune shift
�Qð�Þ and wakefield Wð�Þ included, the function Y sat-
isfies the equation in the rest frame [5,6]:


Yð�; uÞ þ iQs

@Y

@�s

þ�Qð�Þ½Yð�; uÞ � �Yð�Þ�

¼ Wð�Þ exp½i�ðQ0 þ �Þ�; (5)

where 
 ¼ Q�Q0 is the coherent tune shift away from
the base tune, and �s and Qs are synchrotron phase and
tune. Note that the space charge tune shift should be
averaged over the beam transverse section as it has been
shown in Ref. [5]. Therefore its nonlinearity does not occur
in Eq. (5) and does not affect the coherent oscillations.

The function �Yð�Þ symbolizes an average transverse
displacement of all particles positioned on azimuth � being
defined by the expression

�ð�Þ �Yð�Þ ¼
Z 1

�1
Fð�; uÞYð�; uÞdu (6)

(similar expression is valid for the functions X and �X). The
general form of the wakefield is

Wð�Þ ¼ 2
Z 1

�
�ð�0Þ �Xð�0Þ exp½ið�0 � �ÞQ
�qð�0 � �Þd�0

¼ 2 expð�iQ
�Þ
Z 1

�
�ð�0Þ �Yð�0Þ

� exp½i�0ð
� �Þ�qð�0 � �Þd�0; (7)

where the wake function qð�Þ depends on the beam cou-
pling impedance and will be specified in succeeding sec-
tions. In the case in question, it is reasonable to represent
the wakefield as a sum over all bunches preceding the
examined one, including all preceding turns. Then, for
the jth bunch, Eq. (5) obtains the form


Yjð�;uÞþ iQs

@Yj

@�s

þ�Qjð�Þ½Yjð�;uÞ� �Yjð�Þ�

¼2
Z 1

�
exp½�i��0ð�0 ��Þ�q½�0ð�0 ��Þ� �Yjð�0Þ�jð�0Þd�0

þ2
X1

j0¼jþ1

Z 1

�1
expf�i�½j0��þ�0ð�0 ��Þ�g

�q½j0��þ�0ð�0 ��Þ� �Yj0 ð�0Þ�j0 ð�0Þd�0 (8)

with � ¼ � � 
. Periodicity conditions following from
Eq. (4) have to be added to these equations:

YjþJð�; uÞ ¼ Yjð�; uÞ exp½�2�iðQ0 þ �Þ�: (9)

Symmetric beam

If the bunches are quite identical so that FjðAÞ ¼ FðAÞ,
�jð�Þ ¼ �ð�Þ, and �Qjð�Þ ¼ �Qð�Þ independently on j,

all solutions of series (8) with periodicity condition (9) can
be presented in the form

YðkÞ
j ð�; uÞ ¼ �YðkÞð�; uÞ exp

�
2�ij

J
ð� þQ0 � kÞ

�
; (10)

where k ¼ 1; 2; . . . ; J. These collective modes depend on
internal bunch oscillations, i.e., on the head-tail modes
which, in this case, satisfy the equation


YðkÞþ iQs

@YðkÞ

@�s

þ�Q½YðkÞ� �YðkÞ�

¼2
Z 1

�
exp½�i��0ð�0 ��Þ�q½�0ð�0 ��Þ� �YðkÞð�0Þ�ð�0Þd�0

þX1
j¼1

expð�2�ijÞ
Z 1

�1
exp½�i��0ð�0 ��Þ�

�q

�
2�j

J
þ�0ð�0 ��Þ

�
�YðkÞð�0Þ�ð�0Þd�0 (11)

with  ¼ ðk�Q0 � 
Þ=M. Normalization condition will
be used further for the symmetric beamZ 1

�1
�ð�Þd� ¼ 1: (12)
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III. RESISTIVE WAKE

Resistive wall instability has been considered first in
Refs. [7,8]. Corresponding wake function qð�Þ is negative
and can be presented in the convenient form:

qð�Þ ¼ �q0

ffiffiffiffiffiffiffi
2�

�

s
; q0 ¼ r0NbR

2
0

2�	�Q0b
3

ffiffiffiffiffiffiffiffiffiffi
�0

2��

s
(13)

with Nb as the number of particles per bunch, r0 ¼ e2=mc2

as the classic radius of the particles,R0 as themachine radius,
�0 ¼ �c=R0 as the beam angular velocity,� as the specific
conductivity of the beam pipe, and b as the pipe radius.
Substitution of this expression into Eq. (11) results in


YðkÞ þ iQs

@YðkÞ

@�s

þ�Q½YðkÞ � �YðkÞ�

¼ �2q0

ffiffiffiffiffiffiffi
2�

�0

s
expði��0�Þ

�Z 1

�

yð�0Þd�0ffiffiffiffiffiffiffiffiffiffiffiffiffi
�0 � �

p

þ X1
j¼1

expð�2�ijÞ
Z 1

�1

yð�0Þd�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tjþ �0 � �

p �
(14)

with T ¼ ��=�0 as the bunch spacing in terms of the vari-
able �, and the notation

yð�Þ ¼ �YðkÞð�Þ�ð�Þ expð�i��0�Þ
is used for shortness.

The square root in the last integral of Eq. (14) moder-
ately depends on the addition (�0 � �), so the expansion
into Taylor series can be applied resulting in


YðkÞþ iQs

@YðkÞ

@�s

þ�Q½YðkÞ � �YðkÞ�

’q0 expði��0�Þ
2
4�2

ffiffiffiffiffiffiffi
2�

�0

s Z 1

�

yð�0Þd�0ffiffiffiffiffiffiffiffiffiffiffiffi
�0 ��

p

þ ffiffiffiffiffi
M

p �
V1ðÞ

Z 1

�1
yð�0Þd�0 �V2ðÞB

�
Z 1

�1
yð�0Þð�0 ��Þd�0

�35; (15)

where B ¼ M�0=� is the bunch factor, and the designa-
tions

V1ðÞ ¼ �2
X1
j¼1

expð�2�ijÞffiffiffi
j

p ; (16)

V2ðÞ ¼ � 1

2

X1
j¼1

expð�2�ijÞ
j

ffiffiffi
j

p (17)

are used. Both of them are periodical functions of , one
period of V2ðÞ being plotted in Fig. 1. Because the func-
tion V1ðÞ has singularities, it is multiplied by the aperiodic

factor
ffiffiffiffiffiffijjp

to have a more compact graph in the presented
area. It goes without saying that the form of the plots

depends on wake function. However, in most cases it
does not change a general structure of Eq. (15) as well as
many subsequent inferences.

IV. BOXCAR MODEL

The obtained equations can be used with any realistic
distribution function, although the models with infinite
linear density should be ruled out (airbag is an example).
However, it may be a big problem to find their solutions,
even without wakefield. In this regard, of special interest is
the boxcar model, because its eigenmodes can be presented
in an analytic form with q0 ¼ 0 and any Qs and �Q. It
gives a great possibility to outline an overall picture of the
wakefield produced effects in a wide range of parameters.
Therefore we consider this case in detail applying the
distribution function,

FðAÞ ¼ FbcðAÞ ¼ 1

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

p ; at A < 1; (18)

and constant bunch density �bc ¼ 1=2 at j�j< 1, accord-
ingly. The eigenmodes of such a bunch without wakefield
(i.e., at q0 ¼ 0) has been investigated in Refs. [3,5]. The
most important features of them are described below to be
developed further with the wakefield added.
All mentioned solutions are derivable from Legendre

polynomials �Yð�Þ ¼ Pnð�Þ with n ¼ 0; 1; 2; . . . . Being
substituted to Eq. (15) with q0 ¼ 0 and any k, the function
Pnð�Þ generates 2nþ 1 different solutions Yð�; uÞ ¼
Pn;mð�; uÞ with m ¼ n; n� 2; . . . ; 2� n;�n. All the solu-
tions are polynomials of power n in space ð�; uÞ satisfying
the orthogonality conditions,ZZ

FbcPn1;m1
P�
n2;m2

d�du / �n1;n2�m1;m2
; (19)
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FIG. 1. Functions V1 and V2 characterizing the effect of re-
sistive wall wakefield dependent on harmonic number. The
functions period is � ¼ 1, but V1ðÞ is multiplied by factorffiffiffiffiffiffijkjp

to suppress its singularity at  ¼ 0 in the graph.
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where the star symbolizes complex conjugation (similar
expressions are valid with any distribution function and
corresponding eigenfunctions, see [5]). Related eigentunes

n;m are real numbers depending on the parameter � ¼
Qs=�Q as it is plotted in Fig. 2. It is seen that, at� ¼ 0, all
eigentunes of the type 
n;n start from the point 
 ¼ 0. It
means that corresponding coherent tunes coincide with the
base betatron tune Q ¼ Q0. All other eigentunes 
n;m<n

start from the point 
 ¼ ��Q which corresponds to the
incoherent betatron tune with the space charge included:
Q ¼ Q0 � �Q. At � � 1, all the eigentunes acquire ad-
ditions �
 / Q2

s=�Q, and corresponding eigenfunctions
retain about linear polarization. In this case, the functions
Pn;n depend mostly on the longitudinal coordinate �,
whereas other functions Pn;m with m< n depend mostly

on the momentum u (numerous examples can be found in
Ref. [5]). However, at � � 1 both kinds of solutions
merge together forming the multipoles Pn;m ¼ Rn;mðAÞ�
expðim�sÞ characterized by specific dependence on the
synchrotron phase. The radial modes Rn;mðAÞ describe

dependence of the solutions on synchrotron amplitude
and come from the Legendre polynomials of powers n ¼
jmj, jmj þ 2, etc. Note that the functions Rm;mðAÞ represent
the lowest (minimally oscillating) radial modes of given
multipolarity m. Corresponding eigentunes are mðmþ
1Þ=2�Q2

s=�Q at � � 1 and about mQs at � � 1. The
functions Rn;m with n > m have more radial oscillations

being traditionally treated as higher radial modes.

Low wake

The study of the boxcar model is continued in this
subsection with an additional assumption that the wake-
field is small enough to apply the perturbation methods
(applicability of this approximation will be discussed

in Sec. VB). Then � ¼ � in Eq. (15), and the additions
to the eigentunes can be presented in the form

�
n;m ¼ q0�n;mð�Þ
2
42

ffiffiffiffiffiffiffi
2�

�0

s
fnð�0�Þ þ

ffiffiffiffiffi
M

p ½gnð�0�ÞV1ðÞ

þ ihnð�0�ÞV2ðÞB�
3
5 (20)

with the coefficients

�n;mð�Þ ¼
�ZZ

FbcjPn;mj2d�du
��1

(21)

fnð�0�Þ ¼ �
Z 1

�1
y�nð�Þd�

Z 1

�

yð�0Þd�0ffiffiffiffiffiffiffiffiffiffiffiffiffi
�0 � �

p (22)

gnð�0�Þ ¼
��������
Z 1

�1
ynð�Þd�

��������2

(23)

hnð�0�Þ ¼ 2 Im
Z 1

�1
y�nð�Þ�d�

Z 1

�1
ynð�0Þd�0: (24)

In principle, these relations are adaptable to any form of the
bunch with low wakefield. However, the boxcar model
allows one to investigate the problem completely because
its eigenfunctions Pm;nð�; uÞ and ynð�Þ ¼ Pnð�Þ�ð�Þ�
expð�i�0��Þ are really known with any �. The results
are presented graphically in Figs. 3–7 and commented
below.
The coefficients �n;m depend only on the ratio � ¼

Qs=�Q being unaffected by the bunch length and chroma-
ticity (Fig. 3). They describe the most general action of
synchrotron oscillations and space charge on transverse
coherent motion of bunched beams, including the instabil-
ity growth rate. It is seen that the space charge enhances the
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FIG. 2. Eigentunes of the boxcar bunch against synchrotron
tune. Space charge tune shift �Q is used as a scaling factor. Two
families of the tunes, starting from the points 0 and�1 at� ¼ 0,
unite into multipoles at large �.
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FIG. 3. Coefficients �n;m describing influence of synchrotron
oscillations and space charge tune shift on coherent oscillations
of the boxcar bunch. The eigenmode characteristic numbers
ðn;mÞ are marked near the curves.
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effect of the wakefield on the lowest radial modes Pm;m

(m � 0) but depresses its impact on the higher modes Pn;m

(n > m). It appears well explicable taking into account
behavior of different eigenfunctions at small �. As it has
been mentioned above, the lowest radial functions depend
only slightly on u, so that the overall displacement of the
beam at given � is about the same as displacements of its
parts with different momentum, as it follows from Eq. (6).
In contrast, the higher radial functions depend mostly on u
which circumstance results in some suppression of the
overall beam displacement in comparison with the partial
ones. Accordingly, a relative lower wakefield is excited by
the higher modes, proportionally less affecting the beam

motion. The important expression �0;0 ¼ 1 should be em-

phasized as well since it is valid with any� and means that
the space charge does not affect the lowest (rigid) mode at
all. Actually, the statement is true not only for the boxcar
model but for any bunched beam, because Eq. (5) with
W ¼ 0 has a solution 
 ¼ 0, Y ¼ �Y ¼ 1 with any distri-
bution function and �.
In contrast with this, the part of Eq. (20) enclosed in

square brackets describes an influence of the bunch length
and chromaticity on different n modes, independently on
their multipolarity m. The part includes three terms asso-
ciated with three different physical effects.
Interaction of particles inside the bunch is described

by complex coefficients fnð�0�Þ which are plotted in
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 f n
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FIG. 5. Imaginary parts of the functions fn are plotted likewise
in Fig. 4. They represent contribution of the intrabunch interac-
tion to the instability growth rate as it is described by Eq. (20).
The right-hand parts of these odd functions are shown.
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FIG. 7. Functions hnð�0�Þ of the boxcar bunch against chro-
maticity. The curves represent the multibunch effect due to
variation of the resistive wall wakefield inside a bunch. The
right-hand parts of these odd functions are shown.
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FIG. 4. Real parts of the functions fnð�0�Þ of the boxcar bunch
against phase advance due to chromaticity. The curves represent
contribution of intrabunch (head-tail) interaction to the coherent
tune as it is described by Eq. (20). The right-hand parts of these
even functions are shown.
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FIG. 6. Functions gnð�0�Þ of the boxcar bunch vs the phase
advance due to chromaticity. They represent the major multi-
bunch impact on coherent tunes, as it is described by Eq. (20).
Only the right-hand parts of these even functions are shown.
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Figs. 4 and 5 for several lower n. With nonzero chroma-
ticity, this interaction is capable of causing the head-tail
instability of different modes whose basic properties have
been predicted in the earliest works [1,2]. This is a single-
bunch effect which is proportional to the bunch population
and does not depend on the number of the bunches.
Therefore it is the most pronounced with short-range
wakes being of secondary importance effect for resistive
wall instability.

The second term in the square brackets describes the
main effect of collective interaction of bunches. As a rule,
it gives a maximal contribution to the tune shift, especially
if the beam consists of many bunches. Indeed, one can get
the estimations which are applicable to the most unstable
modes at M � 1:

jj ’
��������k�Q0

M

��������� 1; i:e: V1ðÞ ’
�
1þ 

jj
�

1ffiffiffiffiffiffijjp :

Then the total contribution of this term to the tune is

�
n;m ’ q0M�n;mgnð�0�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijk�Q0j
p �

1þ i
k�Q0

jk�Q0j
�
: (25)

Therefore, with Eq. (13) for q0 used, the addition to the
initial coherent frequency ! ¼ �0ðk�Q0Þ can be pre-
sented in the form

�!n;m ¼ r0c�N�ð!Þ
2�	Q0b

3

�
1þ i

!

j!j
�
�n;mgnð�0�Þ; (26)

where N ¼ MNb is the total beam intensity, and �ð!Þ is
skin depth at frequency !. The first part of this formula
coincides with the well-known expression for resistive wall
instability of coasting beams [7,8]. The factors�n;m reflect

the impact of bunching on different head-tail modes, as it
has been described above. The last multiplier gnð�0�Þ
describes the influence of chromaticity. In this regard, it
is pertinent to dwell on the different character of chromatic
effects in coasting and bunched beams.

In the former case, chromaticity leads to a spread of
incoherent betatron frequencies whose phenomenon can
cause Landau damping and result in total suppressions
(prevention) of the instability. In contrast with this, all
particles of a bunch have one and the same average mo-
mentum because they are equalized through synchrotron
oscillations. In such conditions, chromaticity does not
contribute a systematic tune spread and cannot bring about
Landau damping at once. Instead, the additional slip of
betatron phases of particles with respect to the coherent
field affects the particle oscillations resulting in a change of
the instability growth rate. As it follows from Fig. 6, the
instability peak transfers from lower internal modes to
higher ones when the chromaticity increases, which phe-
nomenon looks as the most descriptive chromaticity mani-
festation in the boxcar model.

However, it should be taken into account that chroma-
ticity is not a sole factor which is responsible for Landau

damping. In particular, space charge tune spread itself can
produce a similar effect in bunched beams. As it has been
shown in Refs. [4,5], the higher internal modes are more
sensitive to this kind of damping and have to be suppressed
first. Therefore, it is not inconceivable that increase of
chromaticity leads not only to the above-mentioned shift
of the instability peaks, but also to an intensification of
Landau damping and to suppression of higher head-tail
modes. If so, the rigid mode could be the only exclusion
from the rule because it is not prone to this kind of Landau
damping. However, this problem cannot be explored in the
framework of the boxcar model which ignores the space
charge tune spread at all. Therefore, we postpone its de-
tailed analysis to Sec. VI where a more realistic truncated
Gaussian distribution will be invoked.
Turning back to general Eq. (20), it is pertinent to note a

peculiarity of a single-bunch beam which can be unstable
only in a restricted region of betatron tunes. As it follows
from Fig. 1 at M ¼ 1, imaginary parts of the coefficients
V1 and V2 are positive only at 0< k�Q0 < 0:5. It means
that, without chromaticity, the instability is feasible only
when betatron tune is located between half integer and next
integer (e.g. Q0 ¼ 0:75 but not 0.25). Such a result has
been obtained first in Ref. [9] for a short bunch where
chromaticity was ignored by the model. However, it is
apparent from Eq. (20) that it is an essential factor for a
real long bunch, first of all because it triggers the head-tail
interaction. For example, the single bunch with zero chro-
maticity is quite stable at k�Q ¼ �0:25, B ¼ 0:5.
However, the rigid mode becomes unstable at these
parameters and �0� ¼ 1, obtaining the growth rate
Im�
0;0 ’ ð0:35� 0:26Þq0 ¼ 0:09q0 (the first term in

this expression is the head-tail contribution, and the second
one reflects turn by turn interaction). Of course, chroma-
ticity of opposite sign could prevent such a situation but
higher modes instability would be enforced by this, as it
follows from Fig. 6.
The last term in Eq. (20) is a part of the collective

interaction which describes the field variation of preceding
bunches inside the considered one (Fig. 7). The influence
of this addition looks much like to the head-tail interaction
whose statement can be checked by comparison of Figs. 5
and 7. However, the effect strongly depends on collective
mode being proportional to the coefficient V2ðÞ. For
the example above, its contribution to the rigid mode
instability is about �q0h0ð�0�Þ=16 which is less than the
‘‘normal’’ head-tail effect in order of value. Therefore, this
part of the resistive wake is negligible in practice.

V. LOW SYNCHROTRON FREQUENCY

The boxcar model gives a chance to get a general view
of the problem, but maybe it omits some important
details being not sufficiently realistic by itself. Therefore,
another way of looking at the problem is developed in this
section based on the approach Qs � �Q which is rather
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characteristic of many proton machines. As it has been
shown in previous sections and illustrated by Fig. 3, in
this limiting case the space charge suppresses all the modes
like Yn;mð�; uÞwith m � n. Therefore the following results
are actually concerned only with the modes Yn;nð�Þ which
will be denoted below simply as Ynð�; uÞ. The equation for
the space part of this function is derived in Ref. [6].
Applying it with the resistive wall wakefield presented by
Eq. (13), one can get the equation

U2ð�Þ �Y00ð�Þ�
�
�þU2�Q�0ð�Þ

ð�Qþ
Þ�
�
�Y0ð�Þþ
ð�Qþ
Þ

Q2
s

�Y

¼q0�Qexpði��0�Þ
Q2

s

2
4�2

ffiffiffiffiffiffiffi
2�

�0

s Z 1

�

yð�0Þd�0ffiffiffiffiffiffiffiffiffiffiffiffi
�0 ��

p

þ ffiffiffiffiffi
M

p �
V1

Z 1

�1
yð�0Þd�0 �V2B

Z 1

�1
yð�0Þð�0 ��Þd�0

�35
(27)

with

U2ð�Þ ¼ 1

�ð�Þ
Z

Fð�; uÞu2du: (28)

As it has been shown in Refs. [5,10], eigentunes of this
equation are about 
n 	 nðnþ 1ÞQ2

s=�Q in order of value
being similar to the boxcar case in behavior. Therefore, for
not very high eigenmodes with rather small synchrotron
tunes, Eq. (27) can be simplified using the approximation
j
j � �Q and resulting in

U2ð�Þ �Y00ð�Þ ¼ Zð�Þ; (29)

where

Zð�Þ ¼
�
�þU2�0

�

�
�Y0 � 
�Q

Q2
s

�Y þ q0�Q expði��0�Þ
Q2

s

�
2
4�2

ffiffiffiffiffiffiffi
2�

�0

s Z 1

�

yð�0Þd�0ffiffiffiffiffiffiffiffiffiffiffiffiffi
�0 � �

p þ ffiffiffiffiffi
M

p �
V1

Z 1

�1
yð�0Þd�0

� V2B
Z 1

�1
yð�0Þð�0 � �Þd�0

�35: (30)

Boundary conditions of this equation are evident from the
relation U2ð
1Þ ¼ 0 which follows from definition (28)
and will be reinforced by examples in subsequent sections.
Therefore, any appropriate solution of Eq. (29) should
satisfy the relations

Zð
1Þ ¼ 0: (31)

Because Eq. (27) is linear and uniform, initial conditions
�Yð1Þ ¼ 1, Zð1Þ ¼ 0 can be used in practice to calculate the
function Zð�Þ everywhere with any trial 
, and to separate
thereafter the eigentunes 
n assuring the condition
Zð�1Þ ¼ 0 [5,6]. The method is especially effective with
q0 ¼ 0 for determination of the bunch basic modes. In

particular, it confirms that Legendre polynomials are solu-
tions of Eq. (27) in the framework of the boxcar model.
Generally, it is easy to show that the basic eigenfunctions of
any bunch are regular functions satisfying the orthogonality
conditions

Z 1

�1

�Yn1ð�Þ �Yn2ð�Þ�ð�Þd� ¼ �n1;n2 : (32)

Therefore, with enough small q0, the additions to the ei-
gentunes can be calculated with the help of the standard
perturbation technique, which results in an expression like
Eq. (20):

�
n ¼ q0

2
42

ffiffiffiffiffiffiffi
2�

�0

s
fn þ

ffiffiffiffiffi
M

p ðgnV1 þ ihnV2BÞ
3
5 (33)

with the same coefficients V1 and V2. Equations (22)–(24)
can be used as well with appropriate eigenfunctions
ynð�Þ ¼ �Ynð�Þ�ð�Þ expð�i�0��Þ to calculate the coeffi-
cients fn, gn, hn. All the factors �n;n ¼ 1 in this limiting

case due to normalization condition (32).

A. Truncated Gaussian bunch with low wake

Equation (27) can be numerically solved with different
distribution functions providing rather similar results. A
truncated Gaussian bunch is considered in this subsection
as the most realistic example. It is characterized by the
distribution function FðAÞ ¼ FGðAÞ which is

FGðAÞ ¼ C

2
ffiffiffi
2

p
�

�
exp

1� A2

2�2
� 1

�
at A � 1; (34)

where the normalizing coefficient C depends on the rms
bunch length �. Other related functions are

�ð�Þ¼C

� ffiffiffiffi
�

p
2

expðT2ÞerfðTÞ�T

�
’2CT3

3

�
1þ2T2

5

�
(35)

and

U2 ¼ �2

�
1� 2CT3

3�

�
’ 2�2T2

5
(36)

with T2 ¼ ð1� �2Þ=ð2�2Þ (approximate expressions for
j�j ’ 1 are added).
The case � ¼ 1=3 (3� truncation, C ¼ 0:016) is con-

sidered below in details. Solutions of Eqs. (29) and (30) are
found numerically with q0 ¼ 0 to be substituted in Eq. (33)
for the tune shifts. Linear density of the bunch and six
normalized basic eigenfunctions are drawn in Fig. 8.
Corresponding eigentunes have the form 
n ¼ �nQ

2
s=

�Qc with coefficients �n which are also presented in the
picture in the brackets [for comparison: �n ¼ nðnþ 1Þ=2
for the boxcar model]. Here and further, the subindex c
marks the bunch center.
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The coefficients fn, gn, and gn are plotted in Figs. 9–12
which are closely similar to Figs. 4–7 associated with the
boxcar model. Of course, it is necessary to take into
account that the Gaussian bunch has less rms length in

comparison with the boxcar one (1=3 instead 1=
ffiffiffi
3

p
), so the

Gaussian plots should be proportionally wider. An absence
of the secondary oscillations is well explicable due to
smoother bunch boundaries.

Other smooth models (e.g. parabolic bunch) have
been checked as well and were demonstrating similar
behavior if the bunch rms sizes are equalized. With
these reservations, one can assert that the boxcar model
provides the adequate description of bunched beam

coherent instability within the low synchrotron frequency
limit.

B. Expanded low wake approach

Formally, Eq. (33) is applicable if shifts of the spectral
lines �
n are small in comparison with basic separations
of the lines which are


nþ1 � 
n ¼ ð�nþ1 � �nÞ Q2
s

�Qc

’ ðnþ 1Þ Q2
s

�Qc

: (37)

Therefore, for the lowest mode, the condition of applica-
bility is
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FIG. 8. Normalized eigenfunctions of Gaussian bunch trun-
cated on the 3� level (0th–5th modes). Related reduced eigen-
numbers �n are given in the parentheses. The black curve
represents the bunch lineal density (unnormalized).
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FIG. 9. Real parts of the functions fnð�0�Þ of the truncated
Gaussian bunch against the bunch length and chromaticity. The
curves present the contribution of intrabunch (head-tail) inter-
action into coherent tune, as it is described by Eq. (33). The
right-hand parts of these even functions are shown.
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FIG. 10. Imaginary parts of the functions fn of the truncated
Gaussian bunch are plotted likewise in Fig. 4. They represent the
effect of the intrabunch interaction on the instability growth rate.
The right-hand parts of these odd functions are shown.
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FIG. 11. Functions gnð�0�Þ of the truncated Gaussian bunch
against the phase advance due to chromaticity. The curves
represent the major multibunch resistive wall effect on coherent
tunes, as it is described by Eq. (33). The right-hand parts of these
even functions are shown.
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j�
0j � Q2
s

�Qc

: (38)

The left-hand part of this expression is close to the insta-
bility growth rate whose value is essentially less than 1, in
practice (for example, j�
0j< 0:1). However, the right-
hand part may be still less because it includes the square of
the synchrotron frequency, e.g. �2

s=�Qc ¼ 0:052=0:25 ¼
0:01. This example is provided to demonstrate that a
violation of condition (38) is a quite possible occasion,
especially when the collective modes instability of a multi-
bunch beam is considered.

Therefore, we will investigate this important case in
greater detail without the assumption that the multibunch
contribution is extremely small. To do this, one can draw
on the fact that dependence of the major part of the wake-
field ð/ V1Þ on the coordinate is known, being given by the
factor expði��0�Þ. Therefore, solutions of Eq. (29) can be
presented in the form

�Yð�Þ ¼ q0V1ðÞ
ffiffiffiffiffi
M

p Z 1

�1

�Yð�0Þ�ð�0Þ

� expð�i��0�
0Þd�0 X1

n¼0

en�nð�Þ

� �n

; (39)

where �n and �n are the eigenfunctions and eigentunes of
the equation with V1 ¼ 0, and en are coefficients of the
expansion

expði��0�Þ ¼
X1
n¼0

en�nð�Þ: (40)

It immediately results in the dispersion equation,

1 ¼ q0V1

ffiffiffiffiffi
M

p X1
n¼0

en

� �n

Z 1

�1
�nð�Þ�ð�Þ expð�i��0�Þd�:

(41)

In principle, new basic eigenfunctions and eigentunes
could be found with the help of the same technique which
has been used in the beginning of this section for determi-
nation of similar values �Ynð�Þ and 
n However, it would be
a more difficult problem to calculate the coefficients en
because the functions�nð�Þ are not orthogonal, in contrast
with �Yn. Therefore we need to turn back to the approxi-
mation�n ¼ �Yn which is certainly acceptable at low head-
tail interaction, and does not violate the overall structure of
Eq. (41). As a result, the dispersion equation obtains the
form

1 ’ X1
n¼0

q0V1

ffiffiffiffiffi
M

p
gnð�0�Þ


� 
n � q0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�=�0

p
fn þ ihnV2B

ffiffiffiffiffi
M

p Þ (42)

with the same coefficients fn, gn, hn which have been
presented by Figs. 9–12 for the truncated Gaussian bunch.
With an additional condition

q0jV1j
ffiffiffiffiffi
M

p � Q2
s

�Qc

; (43)

the low wakefield approximation is totally satisfied, and
Eq. (42) gives the same result as earlier, Eq. (33).
Another easy but very important case is zero chromatic-

ity, when sum (42) holds the only term n ¼ 0 because
gnð0Þ ¼ �n;0. It means that solely the rigid internal mode

can be excited at such conditions. Appearing inside some
collective mode, it provides the tune shift,

�
0 ¼ q0

2
42

ffiffiffiffiffiffiffi
2�

�0

s
f0ð0Þ þ

ffiffiffiffiffi
M

p
V1

�
k�Q0

M

�35: (44)

This expression formally coincides with Eq. (33) at � ¼ 0
but can be applied with higher coefficients V1.
Generally, series (42) contains a restricted number of

summands whose conclusion follows from Figs. 6 and 11.
In particular, one can see that the terms n ¼ 0 and n ¼ 1
give the major contributions to the sum at j�0�j<	3.
Equation (42) has two actual solutions in this case, at least
one of them can be unstable. In the extreme case when
inverse inequality of Eq. (43) is fulfilled, one of the eigen-
tunes is real, and another frequency shift is

�! ’ q0�0V1ðÞ
ffiffiffiffiffi
M

p ½g0ð�0�Þ þ g1ð�0�Þ�

’ r0c�N�ð!Þ
2�	Q0b

3

�
1þ i

!

j!j
�
½g0ð�0�Þ þ g1ð�0�Þ�: (45)

Rather weak dependence of this expression on chromatic-
ity engages one’s attention. In relative units, the addition
is 1 at �0� ¼ 0 and about 0.8 at �0� ¼ 3. However, it
should be reminded again that the low synchrotron fre-
quency limit is considered here. The role of this factor and
possible consequences of its violation are discussed in the
next section.
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FIG. 12. Functions hnð�0�Þ of the truncated Gaussian bunch.
The curves represent the multibunch effect due to variation of the
resistive wall wakefield inside a bunch. The right-hand parts of
these odd functions are shown.

TRANSVERSE MODES AND INSTABILITIES OF A . . . Phys. Rev. ST Accel. Beams 15, 054403 (2012)

054403-9



VI. THE INSTABILITY THRESHOLD

It could be concluded from previous analysis that the
boxcar is a quite adequate model for investigation of the
bunched beam instability, and only minor and almost ob-
vious changes are needed for more realistic distributions.
However, it would be a premature conclusion because the
space charge tune spread is ignored in the boxcar model.
Meanwhile, in certain situations the spread can cause
Landau damping and suppress many unstable modes of
the real bunch, as it has been shown in Refs. [4,5]. The
rigid intrabunch mode is the only occasion when this
mechanism does not work and cannot prevent instability
with any combination of other parameters.

At present, the problem is adequately covered only in the
limits � � 1 and � � 1. In the first case, this kind of
Landau damping truly works and suppresses almost all
internal modes [5]. However, the mechanism is turned off
in the opposite limiting case which was just the subject of
the previous section. The only conclusion can be done from
these facts: this stabilization mechanism has a threshold
character being actually turned on at rather large �. The
goal of this section is to get a more exact estimation of the
threshold on the assumption that space charge makes a
predominant contribution to the beam coupling impedance.

It has to be restated preliminarily that Landau damping
arises when coherent frequency penetrates rather deep into
the area of incoherent tunes of the system. Then the parti-
cles which own tunes are located below or above the
coherent tune, are exited in contraphases by the coherent
field, transforming its energy to the incoherent form (beam
heating). This mechanism generates the beam decoherence
and creates the instability threshold.

A well-known practical recommendation follows from
this statement for coasting beams: incoherent tune spread
should exceed the space charge tune shift to avoid the beam
instability. In principle, a wakefield (for example, resistive
wall contribution) affects this criterion; however, its influ-
ence is small in practice if the space charge dominates in
the impedance budget. The last approximation is just the
case of our exploration.

An additional important property of bunched beams is
that, with coherent frequency ! and synchrotron one �s,
the particles experience an influence of all harmonics with
frequencies !þ l�s, where l is an integer. The intense
energy transfer is possible if any of them falls in the region
of incoherent betatron frequencies averaged over the syn-
chrotron phase. A fast look at Fig. 2 reveals that harmonics
of the index l ¼ m have the most chance to do this, with a
given bunch mode. Therefore, more informative graphs
can be obtained by a transformation of each curve

n;mð�Þ to the 
n;m �m�. The results are presented in

Fig. 13 for the boxcar model by solid lines of the same
color as in Fig. 2.

It looks like a reasonable assumption that a coherent
spectrum of a realistic bunch has similar behavior, at least

qualitatively. However, incoherent tune spread has a non-
zero value in such a case, in contrast with the boxcar
model. In particular, averaged tunes of the truncated
Gaussian bunch as considered in Sec. VA fall in the region
�1< 
=�Qc <�0:274 which is marked in Fig. 13 by the
dot-dashed line.
The following conclusions can be drawn from these

plots: (i) rigid mode oscillations (n ¼ m ¼ 0) are poten-
tially unstable with any �; (ii) lowest radial modes
(n ¼ m) of higher multipoles (m � 1) can be unstable at
�<	1; (iii) the more is m, the less is the corresponding
threshold of �; (iv) all higher radial modes n > m are
stable with any � because their coherent tunes start from
the point 
 ¼ �1 and fall into the incoherent area.
These conclusions are in a reasonable agreement with

Ref. [5] where it has been shown that only the rigid mode
(0, 0) of the Gaussian bunch is unstable at� � 1. One can
anticipate from Fig. 13 that thresholds of other modes are
arranged at �< 0:5. It is a region where the low �
approximation could be fitted to refine the results. To
accomplish this, we consider Eq. (27) with q0 ¼ 0 but
without previously used simplification 
 � �Qc. In such
a case, boundary conditions (31) should be a little changed
to obtain the form

Y0ð
1Þ ¼ 
2

Q2
s

: (46)

Numerical solutions of the equation have been calculated
with help of the same technique as previously.
Corresponding eigentunes are plotted in Fig. 13 by dashed
lines located above the Gaussian incoherent boundary
because they should not penetrate in this region, as it is
argued above. The merge points which can be treated as
estimated thresholds of the head-tail modes are presented
in Table I.
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FIG. 13. Transformed eigentunes against synchrotron tune:
solid lines—boxcar model; dashed lines—Gaussian bunch with
3� truncation. Space charge tune shift in the bunch center is used
for scaling. Averaged over time incoherent betatron tunes are
located below the presented incoherent boundary.
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Distributions with more pronounced boundaries demon-
strate similar behavior but maybe a higher stability. For
example, three modes of parabolic bunch retain the stabil-
ity at � ! 1 [5]. The boxcar bunch is an extreme case
when all the modes are unaffected by this sort of damping.
It is pertinent to note some repulsing of coherent tunes
from the incoherent area whose effect enhances with a
higher value of �.

Although these statements are nothing more than esti-
mations founded on extrapolation of the limiting cases
� � 1 and � � 1, nevertheless they allow one to make
important suggestions concerning an influence of chroma-
ticity on stability of bunched beams with wakefields. As it
might be expected from Figs. 6 and 11, an increase of
chromaticity should not drastically affect the instability
growth rate, because its main effect is simply a switch of
the bunch oscillations from a lower internal mode to a
higher one. For example, it follows from Fig. 11 that the
most unstable internal modes of the Gaussian bunch are
n ¼ 1 at j�0�j ¼ 4 and n ¼ 2 at j�0�j ¼ 6, in both cases
the instability growth rate being about 0.45 in used relative
units (the head-tail contribution is neglected in the estima-
tions because it is relatively small in multibunch beams).
However, now we must take into account that these results
were obtained with the assumption � ¼ 0. Let us consider
the case � ¼ 0:5 as another example. Then, according to
Table I and Fig. 11, modes n � 2 cannot be observed being
suppressed by Landau damping, and chromaticity phase
advance j�0�j ’ 10 is practically sufficient to suppress the
instability entirely, including both 0th and 1st modes.

VII. SUMMARYAND CONCLUSION

Transverse instability of a bunched beam is studied in
the paper with synchrotron oscillations, space charge, and
wakefield taken into account. The resistive wall wakefield
is considered as the most commonly encountered and
practically important case. However, many of the results
have a wider field of applicability and, with small changes,
can be adapted to other wake functions. The boxcar model
of the bunch is extensively used to reach a general outline
of the problem in a vast range of parameters. A more
realistic Gaussian distribution is invoked in some cases

for comparison and detailed investigations of important
problems including Landau damping.
Eigenfunctions and eigentunes of the beam are inves-

tigated both with intrabunch and interbunch interactions
taken into account. Contributions of the interactions to the
instability growth rate are studied over a wide range of the
parameters, including an impact of the bunch length and
chromaticity. It is shown that the wide known head-tail and
collective mode instabilities are the extreme cases when
one kind of the interaction certainly dominates. However,
an essential influence of the intrabunch degrees of freedom
on the collective instabilities is especially emphasized and
investigated in detail. In particular, it is shown that a
variability of the internal bunch modes explains why the
instability growth rate depends on the bunch parameters
including space charge tune shift, synchrotron tune, bunch
length, and chromaticity.
It is noted that space charge tune spread can cause

Landau damping and suppress most of the unstable modes.
The phenomenon appears at a rather large ratio of synchro-
tron frequency to the space charge tune shift, lower internal
modes obtaining the stability at the larger ratio. Several
modes of Gaussian bunch are considered in the paper, and
their thresholds are estimated by comparison of the limit-
ing cases.
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