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The aim of our study is the numerical computation of the wakefield and energy loss per unit length

for relativistic, short (<10 ns) proton bunches interacting with an electron cloud inside the beam pipe.

We present analytical expressions for the energy loss in the impulse kick approximation. For the

simulation of the wakefields a 2D self-consistent, electrostatic particle-in-cell (PIC) code is employed.

Results for the energy loss and for the wakefields are presented for the parameter scope of the CERN LHC

and SPS. For selected parameters the results are compared to a three-dimensional (3D) electromagnetic

PIC code.
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I. INTRODUCTION

Electron clouds limit the intensity of hadron beams
in modern high energy synchrotrons and colliders (see
e.g. [1]). In the CERN LHC effects related to electron
clouds have been observed at different bunch spacings
[2]. The operation with 25 ns bunch trains is presently
limited by electron cloud effects. For electron clouds the
main observations are usually a pressure rise in the warm
regions and an increase of the beam screen temperature in
the cold sections due to the additional heat load. Besides
there are the beam-based observations, like, e.g., head-tail
instabilities above a threshold bunch intensity or below a
certain threshold bunch spacing. Electron cloud induced
beam instabilities are also of concern for the design of the
SIS-100 synchrotron, which is part of the FAIR project
at GSI [3]. From the instability growth rate, one can
estimate the cloud density, provided that one has a suffi-
ciently accurate numerical model of the interaction of the
single bunch with the cloud. This interaction results in a
wakefield induced by the bunch in the electron cloud.
There are also important observations below the instabil-
ity threshold. In the SPS and in the LHC, one attributes
the observed slow transverse emittance growth as well as
the rf phase shift of individual bunches in the train to the
effect of the electron cloud [4]. Both effects depend again
on the wakefield induced by a short, relativistic bunch in
the cloud. The present study has been motivated by ob-
servations in the CERN SPS and LHC where an increase
in the shift of the synchronous phase ��s with decreasing
bunch spacing has been observed [2,5]. In the LHC
rf phase shifts of the order 0:01� & �� & 1� were

observed. The observed shifts increase linearly with the
bunch intensity. After extensive scrubbing runs with
50 ns bunch spacing the slope ��s=Ni of the rf phase
shift with the number of protons in the bunch Ni gradu-
ally decreased over the period of the scrubbing run. After
the scrubbing runs, the slope decreased by 1 order of
magnitude [6]. In order to use the measured rf phase shift
for a quantitative estimate of the electron cloud density
analytical models for the energy loss of bunches in
electron clouds are required. In this study we will present
simple expressions for the energy loss and compare them
to simulation results. We will concentrate on the simula-
tion of the wakefield and on the resulting energy loss of
an individual bunch in a train. Wakefields induced by a
short, relativistic bunch in a preexisting, homogeneous
electron cloud have already been obtained numerically in
Ref. [7]. Numerical results for the ‘‘pinching’’ of the
electron density caused by a LHC bunch were analyzed
in Ref. [4]. Analytic expressions for wakefields and
impedances in the framework of the dielectric response
theory were obtained in Ref. [8]. The dielectric approach
results in a vanishing longitudinal wakefield and energy
loss for relativistic bunches. Therefore we will use a
numerical model for the wakefield together with analyti-
cal expressions for the stopping power in the impulse
kick approximation. In Sec. II we briefly describe the
relation between the energy loss, the rf phase shift, and
the longitudinal wakefield. The simplified model for the
electron cloud’s equation of motion is presented in
Sec. III. An analytic expression for the energy loss of a
short bunch within the impulse kick approximation is
obtained in Sec. IV. In Sec. the modification of this
expression due to electron space charge effects is dis-
cussed. The two numerical models used in the study are
briefly described in Sec. V. The numerical results for the
wakefields and the stopping power are presented in
Sec. VI.
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II. ENERGY LOSS AND RF PHASE SHIFT

During beam storage, the rf phase shift�� in a rf bucket is

sinð��sÞ ¼
�Wp

qVrf

; (1)

where q is the ion charge,Vrf is the rf amplitude, and�Wp is

the energy loss per particle and per turn. Themeasurement of
��s can be used to gain information on the longitudinal
impedance spectrum [9]. InLHC theobserveddependenceof
the rf phase shift on the bunch spacing indicates that electron
clouds can be the source of the energy loss. In general, the
stopping power S (total energy loss of the bunch per length
unit) can be written as

dW

ds
¼ �

Z
�ið~rÞEzð ~rÞd3r � �q

Z
�ðzÞEzðzÞdz; (2)

where�i is the bunch charge density,EzðzÞ is the longitudinal
electric field induced by the bunch, �ðzÞ is the line density
of the bunch, and q ¼ e is the particle charge. z ¼ s� s0 is
the longitudinal coordinate relative to the synchronous
particle at s0. The energy loss per particle and per turn is

�Wp ¼ L

Ni

�
dW

ds

�
; (3)

where L is the ring circumference,Ni the number of protons
in the bunch, and h� � �i represents the stopping power aver-
aged over the ring circumference. If the electric field induced
by the bunch can be described in terms of a longitudinal

impedance Zk, the energy loss per ion and per turn can be
obtained from Eq. (2) as (see [10])

�Wp

L
¼ � q2

NiR

Z 1

�1
j�ð!Þj2 ReZkð!Þd!; (4)

where Zk is the longitudinal ring impedance. For short
bunches, the energy loss is independent of the bunch length

and depends on the area under ReZkð!Þ only. The present
study focuses on the wakefield induced by the bunch in an
electron cloudand the resulting stoppingpower.Thequestion
whether or not the obtained longitudinal wakefield can be
described in terms of a longitudinal impedance is also of
general relevance. However, we will not provide the answer
to this question in the present study. The impedance, repre-
senting the accelerator environment and the cloud, should
only depend on the initial electron cloud parameters, inde-
pendent on the bunch profile and intensity. The stopping
power will then depend on the total bunch charge Qi ¼
qNi as S / Q2

i . Thus, the scaling of the stopping power
with the bunch intensity and length can already give an
indication if an impedance description is possible for a
certain bunch parameter regime. It is important to notice
that the energy transferred by the bunch to the electrons is
finally deposited in the pipe wall. The heat load (in W=m)
is directly related to the stopping power via cS=lbb, where lbb
is the bunch distance.

In the following we will estimate the energy loss due to
electron clouds from a simplified analytical model. The
results from the analytic expression will be compared to
the energy loss obtained from a simulation model. First, we
will describe the model for the interaction of the bunch
with the cloud.

III. ELECTRON EQUATION OF MOTION

The rigid bunch of velocity v0 � c interacts with the
electrons via its transverse electric field Ei

rðr; zÞ. Here we
will ignore the beam’s magnetic field as well as any
magnetic field induced by the electrons. For a transverse
Gaussian beam profile, we obtain for the electric field

Ei
rðr; zÞ ¼ q�ðz; tÞ

2��0r

�
1� exp

�
� r2

2�2
?

��
: (5)

For the sake of simplicity, we assume a round beam of
radius a ¼ 2�?. a is the radius of the rms equivalent
constant beam profile. The line density of the bunch is
assumed to be Gaussian with

�ðzÞ ¼ Niffiffiffiffiffiffiffi
2�

p
�z

exp

�
� z2

2�2
z

�
; (6)

where z ¼ z0 � ct, Ni is the number of ions in the bunch,
�z is the rms bunch length. The resulting electron equation
of motion is

r00 þ �2ðr; zÞr ¼ eEe
rðr; zÞ
mec

2
; (7)

where �ðr; zÞ represents the focusing force due to the
beam’s transverse electric field and Ee

r is the electric field
of the electron cloud. For r < a and a constant beam
profile, the focusing gradient is

�ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðzÞre

p
a

: (8)

The electron space charge field Ee
rðr; zÞ induced by the

bunch in the cloud has to be obtained from Gauss law
with the electron charge density �eðr; zÞ.

IV. ENERGY LOSS OF SHORT BUNCHES

First, we will ignore the effect of electron space charge.
Furthermore, we will assume that the bunch length �z is
short relative to the electron oscillation length in the bunch
center ��1ð0Þ ¼ ��1

0 ,

�0�z & 1; (9)

and that the electrons are homogeneously distributed inside
the beam pipe of radius Rp � a. In this case, the majority

of the electrons will simply receive a transverse impulse
kick from the passing bunch (see also Ref. [11]):
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�p?ðbÞ¼ 1

c

Z 1

�1
F?ðb;sÞds; F?¼�eEi

?ðb;sÞ: (10)

b is the impact parameter or transverse distance between
the electron and the beam axis. The total energy gain of the
electrons per unit length is

dWe

ds
¼ ne

2me

Z Rp

0
2��p2

?ðbÞbdb (11)

and the stopping power

S ¼ dWe

ds
� Q2

i nere
"0

ln

�
Rp

a

�
: (12)

The corresponding rf phase shift per unit length is (assum-
ing ��s � 1)

d��s

ds
� Qinere

"0Vrf

ln

�
Rp

a

�
: (13)

So far we have neglected the effect of dipole or quadrupole
magnetic fields on the electrons. In a dipole field, the
number of cyclotron oscillation per bunch length can be
estimated from

Nc � !c�z

2�c
; (14)

where !c is the cyclotron frequency eBy=me (see also

Ref. [11]). For Nc � 1 we can assume that the electrons
only respond along the magnetic field lines and the stop-
ping power given by Eq. (12) is reduced by the factor

1

2�

Z 2�

0
sin2�d� ¼ 1

2
: (15)

Electron cloud space charge

In the following we will present a simple model for the
effect of electron space charge on the stopping power. This
model is based on Mulser’s oscillator model [12]. The
force exerted on the electrons by a relativistic bunch is
purely transverse. Therefore the stopping power and the
longitudinal wakefield obtained from the linear, dielectric
plasma theory would both be zero (see, e.g., Refs. [13,14]).
This can also be seen from the longitudinal electron cloud
impedance obtained analytically from the dielectric theory
in Ref. [8]. Both, the space charge impedance seen by the
beam as well as the contribution of the electrons, go to zero
in the relativistic limit. This is because of the vanishing
longitudinal bunch force component. In the relativistic
limit the longitudinal wakefield is created by the transverse
bunch force causing the pinching of the electrons.
Therefore, instead of the dielectric theory, we use
Mulser’s oscillator model [12] in which the energy loss
of the bunch is obtained from the energy transferred into
plasma waves. During the passage of the bunch through the
cloud, the bunch excites plasma oscillators along its path
s ¼ ct according to

	00 þ!2
pe

c2
	 ¼ �2ðb; zÞb; (16)

where 	 is the oscillator offset and

!pe ¼
ffiffiffiffiffiffiffiffiffiffiffi
e2ne
me"0

s
(17)

is the plasma frequency. b is the impact parameter or
transverse distance between the oscillator and the passing
bunch. The position of the oscillator is assumed to remain
constant during the interaction. The resulting oscillator
amplitude at s ¼ 1 is determined by

	̂ðbÞ ¼ b

�e

Z 1

�1
�ðb; sÞ2 cosð�esÞds; (18)

where �e ¼ !pe=c is the inverse ‘‘dynamical Debye

length.’’ The energy loss per unit length can be calculated
from the energy transferred into plasma waves behind the
bunch,

dWe

ds
¼ 1

2
mene!

2
pe

Z Rp

0
2�	̂2bdb; (19)

and the stopping power for Rp � a results as

S ¼ dWe

ds
� Q2

i �
2
e

4�"0
ln

�
Rp

a

�
expð��2

e�
2
zÞ (20)

which is exactly Eq. (12) multiplied by an exponential
factor. For electron cloud densities exceeding �e�z � 1,
the stopping power is reduced by the plasma shielding
effect of the cloud.

V. SIMULATION MODELS

In order to go beyond the impulse kick approximation
and to study the effect of the self-consistent electron space
charge field, a two-dimensional (2D), electrostatic (ES)
particle-in-cell (PIC) code was employed. In the 2D model
the electrons evolve in a ðx; yÞ plane perpendicular to the
bunch direction of motion. Poisson’s equation is solved in
2D for the electrostatic potential �ðx; yÞ each time step
using the electron charge density �eðx; y; tÞ and the known
bunch density �iðx; y; z ¼ z0 � ctÞ.� ¼ 0 is set at the pipe
boundary. At the beam pipe electrons are either elastically
reflected, absorbed, or multiplied according to the second-
ary emission yield (SEY) given in Ref. [15].
The 2D electron density is stored every time step tj. At

the end of a simulation run, a 3D electron density is
constructed from the stored 2D slices �eðx; y; z ¼
z0 � ctjÞ. The 3D potential �ðx; y; zÞ is obtained numeri-

cally from the Poisson equation using �eðx; y; zÞ. In the
case of a circular beam pipe and without an external B
field, a Poisson solver in cylindrical ðr; zÞ coordinates is
sufficient. From the derivative of the potential�ðx; y; zÞwe
obtain the longitudinal electric field as
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EzðzÞ ¼ �
�
@�ðx; y; zÞ

@z

�
; (21)

where h� � �i indicates the average over the transverse beam
profile. The stopping power is obtained from the longitu-
dinal electric field and Eq. (2). For selected parameters, the
stopping power and the electric field obtained from the 2D
model were compared to simulation results obtained from
the three-dimensional (3D) electromagnetic (EM) PIC
code VORPAL [16]. In VORPAL a short, single bunch pene-
trates an initially homogeneous electron cloud in a cylin-
drical pipe. At the pipe wall the electrons are simply
absorbed.

VI. SIMULATION RESULTS

In our simulation we will first study the stopping power
in an initially homogenous, low density (&1013 m�3)
electron cloud. The results are compared to Eq. (12).
Afterwards we will analyze electron space charge effects
for higher cloud densities. The results are compared
to Eq. (20). The validity of the 2D electrostatic model is
checked by comparing the longitudinal wakefields from
the 2D and the 3D simulations. Finally, we compare the
stopping power and wakefields obtained for a homogene-
ous cloud with the more realistic situation of a bunch
interacting with a saturated electron cloud generated by
the previous bunches.

In our studies we use two parameter sets. The first one is
close to the LHC parameters at injection energy with the
rms bunch length �z ¼ 0:1 m, beam radius a ¼ 0:002 m,
and pipe radius Rp ¼ 0:02 m. The second set is close to the

SPS parameters at extraction energy with the longer rms
bunch length �z ¼ 0:25 m, beam radius a ¼ 0:004 m, and
pipe radius Rp ¼ 0:04 m. In both cases the number of

protons per bunch is chosen as Ni ¼ 1011 and the velocity
of the bunches is set to c.

A. Low electron densities

For the LHC parameter, set the stopping power obtained
from Eq. (12) divided by the number of bunch particles Ni

is shown in Fig. 1 as a function of Ni. The electron density
is chosen as ne ¼ 1012 m�3. The analytic result is com-
pared to the stopping power obtained by solving Eq. (7)
numerically (see Sec. V). For Ni ¼ 1011 the electron den-
sity profile from the simulation is shown in Fig. 2. The
result is very close to the plots shown in Ref. [4], where
also the characteristic stripe structure seen in Fig. 2 is
analyzed in detail. Electron space charge is included in
the simulations, but its does not affect the stopping power
and the wakefield for ne ¼ 1012 m�3. For the electron
density shown in Fig. 2 the electric field is obtained from
Poisson’s equation. The resulting longitudinal electric field
is shown in Fig. 3. Here we also compared the results from
the 2D and the 3D simulations. Both simulation models
lead to the same stopping power and wakefield.

FIG. 1. Stopping power as a function of the number of parti-
cles in the bunch. The analytic result obtained from Eq. (12) is
represented by the solid curve. The symbols represent the results
obtained from the simulation. The red dashed line corresponds to
�0�z ¼ 10.

FIG. 2. Electron cloud density contour obtained from the
tracking simulation for LHC parameters. The initial electron
cloud charge density �e0 ¼ ene, with ne ¼ 1012 m�3, is used to
normalize the color scale.

FIG. 3. Longitudinal electric field obtained from the 2D ES
and the 3D EM simulations for ne ¼ 1012 m�3.
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The comparison of the analytical and numerical results
shown in Fig. 1 indicates that the momentum kick approxi-
mation is valid for �0�z & 10. For �0�z * 10 the energy
loss per particle decreases (see Fig. 1) because of the
dominant trapping of electrons in the beam potential. If
particle trapping is important, the momentum kick ap-
proximation leading to Eq. (12) is not valid. Electrons
that are trapped and detrapped adiabatically do not ex-
change net energy with the bunch.

As an example for this trapping regime, we show in
Fig. 4 the electron density profile obtained from the simu-
lation for Ni ¼ 1013, which corresponds to �0�z � 50.
Compared to Fig. 2 the density profile is more symmetric
about the bunch center at z ¼ 0 which results in a more
symmetric wakefield and consequently in a smaller energy
loss (as also seen in Fig. 1).

For long (>10 ns) and intense proton or heavy-ion
bunches, like in the projected SIS-100 at GSI, the energy
loss will be much lower than predicted by Eq. (12) and the
rf phase shift might be too low to be measured.

For both the LHC and the SPS parameter sets, the kick
approximation is valid and we obtain from Eq. (12) with
ne ¼ 1012 m�3 the stopping power S � 12 eV=m for the
energy loss per proton and unit length, which corresponds
to ��s � 2� 10�4 deg=m, for Vrf ¼ 3:5 MV. For the
LHC this would correspond to ��s � 0:5 deg, assuming
the cloud would cover 10% of the ring circumference. The
order of magnitude agrees with the LHC observations [6].

B. High electron densities

For the SPS parameter set, the stopping power obtained
from Eq. (20) as a function of the electron cloud density is
shown inFig. 5. The symbols represent the simulation results
and the vertical line indicates that the dynamical Debye
length ��1

e is equal to the rms bunch length �z. One can
observe that the stopping power from the simulations starts
to drop at �e�z � 1. However, Eq. (20) underestimates the

simulation results for electron densities above this value.
The simple, linear oscillator model behind Eq. (20) cannot
correctly reproduce the coupling of the LHC bunch to the
plasma modes in the beam pipe. Still, the analytical result
[Eq. (20)] is useful to estimate the onset of electron space
charge effects. It is worth noting that Eq. (20) with the
substitution �z ! �z=2 reproduces the simulation results
very well, also in the case of the shorter LHC bunch. For
electron cloud densities above �e�z � 1, the bunch excites
undamped plasma waves in the electron cloud. For an initial
ne ¼ 1016 m�3 (�e�z � 5), the contour plot of the electron
cloud density obtained from the 2D ES simulation is shown
in Fig. 6. One can clearly see the density waves launched
behind the bunch. The weak density fluctuations in front of
the bunch are caused by the intrinsic numerical noise of the
PIC code for high densities. The resulting longitudinal elec-
tric field is shown in Fig. 7. The wavelength corresponds

FIG. 4. Electron cloud density contour obtained from the
tracking simulation for a larger number of particles per bunch
Ni ¼ 1013. The initial electron cloud charge density �e0 ¼ ene,
with ne ¼ 1012 m�3, is used to normalize the color scale.

FIG. 5. Stopping power as a function of the electron density.
The analytic results obtained from Eq. (20) for �z ¼ 0:25 m is
represented by the solid curve. The symbols represent the results
obtained from the simulations. The vertical, dotted line corre-
sponds to �e�z ¼ 1. The dashed blue curve corresponds to
Eq. (20) for �z ! �z=2.

FIG. 6. Electron cloud density contour obtained from the 2D
ES simulation for an electron cloud density ne ¼ 1016 m�3. The
initial electron cloud charge density �e0 ¼ ene, with ne ¼
1016 m�3, is used to normalize the color scale.
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very well to the expected 2��e � 0:3 m, which is the
oscillation period of a plasma oscillation times the beam’s
velocity c. In the plot we compare the wakefields from the
2D and the 3D simulations for ne ¼ 1016 m�3 (�e�z � 5).
Again both simulation models lead to the same stopping
power and wakefield. Thus, we can conclude that for the
target of the present study the relatively simple 2DESmodel
describes the interaction of a bunch with an electron suffi-
ciently well.

It is important to note that according to electron buildup
simulations (see also the next subsection) electron cloud
densities of the order of 1015–1016 m�3 will not be
reached, because they are well above the typical saturation
densities in a beam pipe. In order to load a stationary, dense
cloud into the simulation code, we have to set the radial
electric field at the pipe boundary to zero ErðRpÞ ¼ 0 or,

equivalently, use a homogeneous ion background. Only in
this case the dense electron cloud will be stationary (with-
out the passing bunch). For the boundary condition
�ðRpÞ ¼ 0 and without an ion background, cloud densities

of 1015–1016 m�3 would disintegrate before a wakefield
could develop.

C. Saturated cloud density

So far we ignored the effect of the preceding bunches on
the stopping power of an individual bunch. The saturated
electron cloud density seen by a bunch at the end of a train
is not homogeneous, as assumed so far. The maximum
electron density is limited by the electron’s space charge
potential. The electron density grows until the space charge
potential of the cloud exceeds the initial kinetic energy Es

of the secondary electrons. The newly created electrons
cannot penetrate into the electron cloud and remain near
the pipe wall. The density of a homogeneous, saturated
cloud can be easily obtained as (see also Ref. [1])

nes � Es

�mec
2R2

pre
: (22)

For LHC parameters and Es � 2 eV we obtain nes �
1012 m�3. However, Eq. (22) only describes the initial
stage of the saturation process, when the cloud is still
homogeneous. If we assume that during the later stages
an inhomogeneous cloud density with a dense layer of
thickness d � Rp at the wall develops, then the average

cloud density nes can be higher than Eq. (22). The realistic
saturated cloud density must be obtained from numerical
simulations. Within our 2D simulation model we per-
formed simulation studies for the example case of a LHC
bunch train with 25 ns bunch spacing. The electron reflec-
tion and generation at the wall is treated using the SEY
given in Ref. [15]. For the chosen example parameters, we
obtain an averaged electron density of nes � 1013 m�3.
The electron density for the saturated cloud is shown in
Fig. 8 as a function of the coordinates ðx; sÞ. It can be seen
that the freshly generated electrons remain close to the wall
before they are accelerated in the bunch potential. Because
of their large impact factor b ¼ Rp, the electrons cross the

axis well behind the bunch head. The large density spots
around the axis (x ¼ 0) correspond to this crossing point.
The resulting longitudinal electric field for one bunch is
shown in Fig. 9. Compared to the electric field created
in a homogeneous cloud, the electric field minimum is
shifted backwards. This can be explained by the dominant
contribution by electrons initially located near the wall.
The obtained stopping power is smaller by roughly a factor
3 compared to the corresponding homogeneous cloud den-
sity (taken at the head of the bunch). The reduction in the
stopping power can be explained by the concentration of
the electrons at the wall. If ne is the average electron
density in the pipe, the local electron density near the
pipe is

ned ¼ ne
R2
p

R2
p � ðRp � dÞ2 � ne

Rp

2d
: (23)

FIG. 8. Contour plot of the saturated electron cloud density
obtained from the 2D simulation for LHC parameters. The
electron cloud charge density �e0 ¼ ene, with ne ¼ 1013 m�3,
is used to normalize the color scale.

FIG. 7. Longitudinal electric field obtained from the 2D ES
and the 3D EM simulations for ne ¼ 1016 m�3.
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If we make the substitution a ! Rp � d with d � Rp in

Eq. (12), we obtain for the stopping power in a saturated
electron cloud

Ss � Q2
i �

2
e

8�"0
: (24)

Ss is smaller by the factor 2 lnðRp=aÞ than the stopping

power in a homogeneous cloud of the same average density
[Eq. (12)]. For SPS and LHC parameters, this corresponds
to a maximum reduction of the stopping power by a factor
4.6. A finite layer thickness d will result in a smaller
reduction. For example, a layer thickness of d ¼ 0:3Rp

would result in a reduction factor of only 3.2, which is
closer to the stopping power obtained from the simulations.
It is important to note that the effect of electron space
charge on the stopping power cannot be analyzed sepa-
rately in the simulations, because it also determines the
saturation density.

VII. CONCLUSIONS

The energy loss and wakefield of a short, relativistic
proton bunch in an electron cloud has been studied within a
2D electrostatic simulation model. The results were com-
pared to 3D full EM simulations. For SPS and LHC-type
bunches, the 2D ES model is found to be sufficient to
predict the stopping power and the longitudinal wakefield
induced in an electron cloud. We found that for sufficiently
short bunches or �0�z & 10 the energy loss in a homoge-
neous cloud can be described very well by an analytic
formula. For �0�z & 10 we find that the stopping power
scales according to / Q2

i , which would be equivalent to
the effect of a longitudinal resistive impedance. For an
example electron cloud density of 1012 m�3 and assuming
that the cloud would cover 10% of the ring circumference,
our analytic expression predicts an rf phase shift of

��s � 0:5 deg in LHC. The order of magnitude agrees
with the LHC observations. Detailed comparisons of
the presented theoretical models with the SPS and LHC
observations will be the subject of future studies. For
electron densities well above the typical 1011–1013 m�3

or �e�z * 1, the ‘‘shielding’’ effect of the space charge
field of the electrons reduces the stopping power. This
reduction can be described by a simple exponential multi-
plication factor. A detailed study of the structure of the
wakefield together with analytic expressions remains as
the subject for future work. An analytic description of the
stopping power of a short bunch in a saturated cloud is
more difficult. In a saturated cloud the electrons are con-
centrated at the pipe wall. From a simple analytic expres-
sion we obtain the stopping power in a saturated cloud,
which is lower compared to the value in the equivalent
homogeneous cloud. The reduction in the stopping power
is confirmed by 2D simulation results for bunch trains
interacting with a saturated cloud.
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