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We have designed an ‘‘ultimate’’ storage ring for a future light source that would be resided in the

positron-electron-project (PEP) tunnel and achieves the diffraction-limited emittances (at 1.5 Å) of

12 pm-rad in both horizontal and vertical planes with a 4.5-GeVelectron beam. These emittances include

the contribution of intrabeam scattering at a nominal current of 200 mA in 3300 bunches. This quality

beam in conjunction with a conventional 4-m undulator in a straight section can generate synchrotron

radiation having a spectral brightness above 1022 ½photons=s=mm2=mrad2=0:1%BW� at a 10 keV photon

energy. The high coherence at the diffraction limit makes this design competitive with 4th generation light

sources based on an energy recovery linac. In addition, the beam lifetime is several hours and the dynamic

aperture is large enough to allow off-axis injection. The alignment and stability tolerances, though

challenging, are achievable. A ring with all these properties is only possible because of several major

advances in mitigating the effects of nonlinear resonances.
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I. INTRODUCTION

An ultimate storage ring (USR) [1], defined as an
electron ring-based light source having an emittance in
both transverse planes at the diffraction limit for the
range of x-ray wavelengths of interest for a scientific
community, would provide very high brightness photons
having high transverse coherence that would extend the
capabilities of x-ray imaging and probe techniques be-
yond today’s performance. It would be a cost-effective,
high-coherence 4th generation light source [2], competi-
tive with one based on energy recovery linac (ERL)
technology [3], serving a large number of users studying
material, chemical, and biological sciences. Furthermore,
because of the experience accumulated over many dec-
ades of ring operation, it would have the great advantage
of stability and reliability. Given that there are three
predominant spectral ranges of interest for the photon

science community roughly specified as � 6 �A (with

electron energy � 2 GeV), 6� 0:5 �A (with electron

energy 3 to 5 GeV), and � 0:5 �A (with electron energy
� 6 GeV), USRs having diffraction-limited emittances
(defined as �=4� for wavelength �) on the scale of
100, 10, and 1 pm-rad can be considered.

In this paper we consider the design of a midenergy USR
having 10-pm-rad emittance. It is a tremendous challenge
to design a storage ring having such an extremely low

emittance, a factor of 100 smaller than those in existing
midenergy light sources, especially such that it has
adequate dynamic aperture and beam lifetime. In many
ultralow emittance designs [4–8], the injection acceptances
are not large enough for accumulation of the electron
beam, necessitating on-axis injection where stored electron
bunches are completely replaced with newly injected ones.
Recently, starting with the MAX-IV 7-bend achromatic
cell [9], we have made significant progress [10,11] with
the design of positron-electron-project (PEP)-X, a USR
that would inhabit the decommissioned PEP-II tunnel at
SLAC (Fig. 1). The enlargement of the dynamic aperture is
largely a result of the cancellations [12] of the 4th-order
resonances in the 3rd-order achromats [13] and the effec-
tive use of lattice optimization programs [14,15].
In this paper, we will show those cancellations of the

4th-order resonances using an analytical approach based
on the exponential Lie operators and the Poisson brackets.
Wherever possible, our analytical results will be compared
with their numerical counterparts [12]. Using the derived
formulas, we will construct 4th-order geometric achromats
and use them as modules for the lattice of the PEP-X USR,
noting that only geometric terms are canceled to the 4th
order.
We begin with a review of spontaneous synchrotron

radiation emitted from an undulator in an electron storage
ring in Sec. II and evaluate the performances of PEP-X as a
diffraction-limited light source based on the lattice andbeam
parameters. We will outline our lattice design in Sec. III
where both linear optics and nonlinear analysis will be
considered and presented in an integrated and coherent
fashion. In Sec. IV, we will present the performance of the
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design lattice along with the analysis of the machine toler-
ances and single-particle dynamics.

Continuing into Sec. V, we will consider the scattering
effects within the electron bunch. Finally, we will briefly
estimate several important collective instabilities in Sec. VI
and will discuss aspects of our design in the conclusion.

II. SPONTANEOUS SYNCHROTRON RADIATION

The wavelength of synchrotron radiation at the nth har-
monic from an electron beam in a planar undulator having a
period of �u and a peak magnetic field B0 is given by

�n ¼ �u

2n�2
ð1þ K2=2Þ; ðn ¼ 1; 3; 5; . . .Þ; (2.1)

where � is the Lorentz relativistic factor and K ¼
eB0�u=2�mc is the undulator strength parameter. The
bandwidth of the spectral line at the nth harmonic is in-
versely proportional to the product of the number of undu-
lator periods Nu and the harmonic number n,

�!

!n

� 1

nNu

: (2.2)

The angle-integrated photon spectral flux in the forward
direction is proportional to the electron beam current I and
can be written as [16]

F n ¼ �

2
�Nu

�!

!

I

e
Qn

�
nK2

4þ 2K2

�
: (2.3)

Here � is the fine structure constant and the function
QnðYÞ is defined by

QnðYÞ ¼ 4Y½Jðnþ1Þ=2ðYÞ � Jðn�1Þ=2ðYÞ�2; (2.4)

where Jm are the Bessel functions. To achieve a higher flux,
one of the important performance parameters for a light

source, one needs a higher current, a longer undulator, and
a reasonable value of the undulator strength K, as illus-
trated in Fig. 2. As an example, we calculate the photon
spectral flux using the PEP-X parameters in Table I and
show the results in Fig. 3.
Another important aspect of a light source is its spectral

brightness Bn, defined as the ratio of the photon spectral
flux to the volume of the convoluted phase of the electron
beam and the photon beam in the two transverse dimen-
sions, namely, [16],

B n ¼ F n

4�2�x�
0
x�y�

0
y

; (2.5)

where the convoluted sizes and divergences are

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

n=1

n=3

n=5

n=7
n=9

K

Q
n(Y

)

FIG. 2. Function Qnð nK2
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FIG. 1. Layout of PEP-X at SLAC as an ultimate storage ring.
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�x;y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

x;y þ �2
�

q
; (2.6)

�0
x;y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�02

x;y þ �02
�

q
: (2.7)

Here �x;y, �
0
x;y are the rms sizes and divergences of the

electron beam, respectively. Given the undulator length
Lu ¼ Nu�u, the size and divergence of the photon beam
are given by

�� ¼
ffiffiffiffiffiffiffiffiffiffiffi
�nLu

8�2

s
; (2.8)

�0
� ¼

ffiffiffiffiffiffiffiffi
�n

2Lu

s
: (2.9)

It is worth noting that the ‘‘emittance’’ of the photon beam,

�� ¼ ���
0
� ¼ �n=4�; (2.10)

depends only on its wavelength. Accordingly, its ‘‘beta’’
function is given by

�� ¼ ��

�0
�

¼ Lu

2�
: (2.11)

One can easily show that the convoluted phase space area,
2��x;y�

0
x;y, is at a minimum if the beta functions of the

electron beam are matched to those of the photon beam,
namely, �x;y ¼ ��. The matching conditions not only

maximize the brightness but also simplify its formula to be

B ðmÞ
n ¼ F n

4�2ð�x þ �n=4�Þð�y þ �n=4�Þ
; (2.12)

where �x;y are the emittances of the electron beam in the

horizontal and vertical planes, respectively. Reducing elec-
tron emittance increases brightness towards an ultimate
upper limit for spontaneous radiation from an undulator:

B ðuÞ
n ¼ 4F n

�2
n

: (2.13)

While beam brightness can be increased by reducing
electron emittance in the denominator of Eq. (2.12), this
emittance reduction may also lead to a reduction in the
achievable flux in the numerator due to collective instabil-
ities in the electron beam. The maximum brightness for
angstrom-level spontaneous radiation, the wavelengths of
interest for studying the molecular structure and properties
of materials, from a particular insertion device in a storage
ring is thus due to the trade-off between low emittance and
achievable beam current.
So far, we have ignored the emittance of the electron

beam in the longitudinal dimension. Actually, the energy
spread of the beam adds to the width of the undulator’s
spectral lines, thereby reducing spectral brightness.
Assuming the electron beam has a Gaussian distribution
in the relative energy �ð¼ dE=EÞ given by

	ð�Þ ¼ 1ffiffiffiffiffiffiffi
2�

p
��

e�ð�2=2�2
�
Þ; (2.14)

then the frequency dependence at the nth harmonic is also

a narrow Gaussian with a sigma of �!n
¼ !n=

ffiffiffi
2

p
nNu,

which is consistent with Eq. (2.2). The reduction factor
f� can then be estimated by

f� ¼ 1ffiffiffiffiffiffiffi
2�

p
��

Z 1

�1
e�ð�!2

n=2�
2
!n Þe�ð�2=2�2

�
Þd�; (2.15)

where �!n ¼ 2!n�, which can be derived from Eq. (2.1).
Carrying out the integral, we obtain

f� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ð��nNuÞ2

p : (2.16)

For a large harmonic number n or a large number of
undulator periods Nu, the reduction becomes significant.
In a typical electron storage ring having relative energy

TABLE I. Main parameters of PEP-X as an ultimate storage
ring. The effects of the intrabeam scattering and 90 m of damp-
ing wigglers are included.

Parameter Description Value

E [GeV] Beam energy 4.5

I [mA] Beam current 200

�x;y [pm-rad] x, y Emittances 11.5, 11.5

�� Energy spread 1:25� 10�3

�x;y [m] x, y Beta functions at ID 4.92, 0.8

�u [cm] Period of undulator 2.3

Lu [m] Length of undulator 4.4

K Undulator strength 2.26
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FIG. 3. Photon spectral flux in a 0.1% bandwidth calculated
using SPECTRA [48] within the forward cone of 3�0
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and the

formula [Eq. (2.3)].
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spread �� ¼ 0:001, the degradation of brightness at higher
harmonics constrains the useful number Nu of bandwidth-
reducing undulator periods to no more than a couple of
hundred. Moreover, the energy spread indirectly limits the
photon flux since it is proportional to Nu.

To give an example of a synchrotron light source reach-
ing the diffraction limit at 1-Å wavelength, we use the
PEP-X parameters tabulated in Table I and calculate the
spectral brightness as shown in Fig. 4. In the figure, one can
see a comparison of the results generated by SPECTRA and
the analytical formulas outlined in this section. At the
peaks of the odd harmonics, the agreement between the
numerical code and the analytical approach is excellent.

Finally, as the emittances approach the diffraction limit,
namely �x;y � �n=4�, the synchrotron light has more

coherence in the transverse dimensions. One can define
the fraction of coherence,

fcoh ¼ Bn

BðuÞ
n

¼ �2
n

16�2�x�
0
x�y�

0
y

; (2.17)

to quantify the degree of coherence. Using the parameters
in Table I, we calculate the coherent fraction and plot it in
Fig. 5. One can see that the PEP-X design provides ex-
tremely high-coherence multi-keV x rays.
It is clear from the figures of photon flux, spectral

brightness, and coherent fraction that PEP-X would be a
future light source superior to existing facilities such as
PETRA-III [17] or projects under construction [9,18]. It
would also be competitive with the other future light
sources [2] based on an ERL.

III. LATTICE DESIGN

To reach the diffraction limit of an angstrom, the lattice
of the PEP-X ultimate storage ring must yield a very low
electron emittance on the order of 10 pm-rad at 4.5 GeV
beam energy, while providing dispersion-free optics for
insertion devices (IDs) and sufficient dynamic aperture
for injection and beam lifetime. The cancellation of dis-
persion minimizes the electron beam size within the ID,
thus leading to enhanced brightness of the photon beam.
An additional constraint is that PEP-X must fit into the
existing 2.2-km PEP-II tunnel and therefore must adopt the
PEP-II ring layout with six 243 m long arcs and six 123 m
long straight sections as shown in Fig. 1. The PEP-X arcs
have identical lattices comprised of periodic cells, and the
long straights are made of nearly periodic alternating
focusing (F) and defocusing (D) quadupoles separated
equally in space (FODO) cells, except in the injection
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FIG. 5. Coherent fraction for the PEP-X ultimate storage ring.
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FIG. 4. Spectral brightness of PEP-X at 200 mA, calculated
using SPECTRA and the formula [Eq. (2.5)] multiplying by the
reduction factor [Eq. (2.16)].

TABLE II. PEP-X lattice parameters with damping wigglers at
zero beam current.

Parameter Value

Energy, E [GeV] 4.5

Circumference, C [m] 2199.32

Tune, 
x, 
y, 
s 113.23, 65.14, 0.0069

Emittance, �0w [pm � rad] 11.0

Bunch length, �z [mm] 3.0

Energy spread, �� 1:20� 10�3

Momentum compaction 4:96� 10�5

Damping partition number, Ix, Iy, Is 1.175, 1.00, 1.825

Damping time, �x, �y, �s [ms] 19, 22, 12

Natural chromaticity, �x0, �y0 �162:3, �130:1
Energy loss per turn, U0 [MeV] 2.95

rf voltage, Vrf [MV] 8.3

rf frequency, frf [MHz] 476

Harmonic number 3492

Wiggler length, Lw [m] 89.66

Wiggler period, �w [cm] 5.0

Wiggler peak field, Bw [T] 1.5

Length of ID straight, LID [m] 5.0

Beta at ID center, �x, �y [m] 4.92, 0.80
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straight. The latter has special optics with large �x ¼
200 m at the injection septum for maximum acceptance
of the injected beam. Although, in general, the injection
optics breaks the 6-fold ring periodicity, the effective peri-
odicity was restored by making the injection straight linear
matrix the same as in the other straights. This required that
the fractional part of the phase advance in all straights is the
same. This helps to suppress some of the ring systematic
resonances and increase the dynamic aperture to the level of
an ideal 6-fold ring aperture. The complete list of PEP-X
lattice parameters with the wiggler is shown in Table II.
Lattice of the FODOand injection straight sections have not
significantly changed since the PEP-X baseline design, and
its description can be found in the report [19].

A. Arc optics

As a result of the balance between quantum excitation
and radiation damping, an electron beam in storage rings
reaches an equilibrium distribution with horizontal emit-
tance given by [20]

�x ¼ Cq

�2

Ix

I5
I2

(3.1)

with

Cq¼ 55

32
ffiffiffi
3

p @

mc
; I2¼

I ds

	2
; I5¼

I H x

	3
ds; (3.2)

where

H x ¼ �x
02
x þ 2�xx

0
x þ �x

2
x; (3.3)

Ix is the horizontal damping partition number, 	 the
bending radius, x, 

0
x are the horizontal dispersion and

its slope, and �x, �x, �x the horizontal Courant-Snyder
parameters.

For a simple ring with identical arc cells and without
dampingwiggler, the above dependence can be simplified to

�0 ¼ Cq�
2�3

F

Ix
; (3.4)

where the parameterF ¼ I5=ðI2�3Þ depends on lattice func-
tions in the cell dipoles, and � is a bending angle per dipole.
For a minimal emittance, it is therefore desired to have a
large number of short cells with small � and cell lattice with
lowF value.Note that due to the strong dependence on�, the
rings with longer arcs have a significant advantage. For
comparison, the total length of PEP-X arcs is about 2=3 of
the ring circumference, namely 1460 m.

Optics of the theoretical minimum emittance [21]
(TME) cell can yield the lowest possible emittance corre-
sponding to the minimum value of F:

FðTMEÞ
min ¼ 1

12
ffiffiffiffiffiffi
15

p : (3.5)

This, however, requires a very strong focusing which
may limit dynamic aperture, hence in practical designs

the TME lattice is usually set to a higher F value.
Unfortunately, the TME cells are not suitable for inser-
tion devices due to lack of dispersion-free straights. On
the other hand, double bend achromat [22] (DBA) cells,
widely used in light source rings, provide the ID
dispersion-free straights, but their minimal natural emit-
tance is a factor of 3 higher relative to a TME cell with
the same bending angle. A compromise solution to obtain
both the low emittance and dispersion-free straight is a
hybrid cell—the so-called multibend achromat (MBA)—
comprised of several short TME-type units at the cell
center and a dispersion matching unit (similar to half
DBA) at each cell end.
The compact cell design requires both optical and en-

gineering solutions. An example is the MAX-IV 7-bend
achromat cell [9], where the standard TME defocusing
quadrupoles are eliminated and replaced by a defocusing
gradient in the dipoles, and the sextupole magnets are
integrated with dipoles or quadrupoles in compact blocks.
A defocusing gradient in the dipole has the added advan-
tage of higher Ix for even lower emittance.
The PEP-X MBA cell with 7 dipoles, shown in Fig. 6, is

similar to the MAX-IV cell with a few modifications. It has
a natural emittance of �0 ¼ 29:0 pm-rad at 4.5 GeV and
zero current. The factor F=Ix in this lattice is about
5.7 times higher than in an equivalent minimum emittance
TME cell due to the choice of a relatively low phase
advance required for large dynamic aperture. The chosen
cell phase advance is �x ¼ 4�þ �=4 and �y ¼
2�þ �=4, and the cell length is matched to 30.4 m. This
provides an optimal linear cell optics and yields 8 cells per
arc resulting in an identity linear transformation per each
arc. The reason for such a choice will be given in the next
section. The TME units have periodic lattice functions and
are made of a focusing quadrupole and a dipole with
defocusing gradient per unit. A matching dipole at each
cell end is gradient free and 20% shorter than the TME
dipole. The ID straight length is LID ¼ 5 m, and �x=�y ¼
4:9=0:8 m at the ID center. The �y at ID is near its optimal

value of Lu=2� for maximum brightness. Compared to
MAX-IV, this cell has 4 additional matching quadrupoles
for a larger tuning range of the ID � functions. In particu-
lar, the ID �y can be varied up to a 5 m value while the cell

phase advance is fixed and the ID�x and cell emittance are
not significantly changed.
An ultralow emittance lattice such as that of PEP-X is

characterized by very small beta functions and dispersion,
achieved with many quadrupoles and resulting in a
very large natural chromaticity. To correct the chromaticity,
the chromatic sextupole magnets become extremely strong
as the dispersion gets smaller and smaller. The nonlinear
effects generated by such strong sextupoles result in
a severe reduction of dynamic aperture. An efficient
minimization of these nonlinearities becomes essential
for a successful design of an ultimate storage ring.
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The cell sextupole scheme consists of 4 families of
chromatic sextupoles and 6 harmonic sextupoles. The
chromaticity-correcting sextupoles are placed at the center
of the TME focusing quadrupoles and at each end of the
dipole where dispersion is not zero. The harmonic sextu-
poles are placed within the two dispersion-free quadrupole
triplets adjacent to the ID straight. This scheme provides
sufficient flexibility for optimization of nonlinear chroma-
ticity and amplitude dependence of the betatron tunes from
the sextupole perturbations.

The cell magnet parameters are within a reasonable
range. At 4.5 GeV, the dipole field is <1:5 kG, the
quadrupole field is <8:6 kG at 20 mm radius, and the

sextupole field is <7:8 kG at 15 mm radius and 0.2 m
sextupole length.

B. Perturbation of sextupoles

We would like to provide a general treatment of sextu-
pole perturbation and then apply it to the design of PEP-X.
For simplicity, we start with the geometric aberrations.
Let us consider a set of thin-lens sextupoles at position
i ¼ 1; . . . ; n in a beam line. Between any two adjacent
sextupoles at positions i� 1 and i, we have a linear trans-
fer mapMi�1;i. Based on the Lie algebra method [23], the

transfer map M of the beam line can be written as [24]

M ¼ M0;1e
�:V 1ð ~zÞ:M1;2e

�:V 2ð~zÞ: . . .Mn�1;ne
�:V nð ~zÞ:Mn;nþ1; (3.6)

where ~z is a vector in the four-dimensional transverse phase
space and the vector potential V ið~zÞ¼Siðx3�3xy2Þ=6.
Here we have denoted Si as an integrated strength,

Si ¼ Li

ðB	Þ
@2By

@x2
; (3.7)

where Li is the length of the sextupole magnet and ðB	Þ the
magnetic rigidity. By repeatedly applying a similarity trans-
formation,

L�1e�:F ð~zÞ:L ¼ e�:F ðL�1 ~zÞ:; (3.8)

whereL is a linear map andF is an arbitrary function, one
can show [24]

M¼M0;nþ1e
�:V 1ðM�1

1;nþ1
~zÞ:e�:V 2ðM�1

2;nþ1
~zÞ: ...e�:V nðM�1

n;nþ1
~zÞ:;

(3.9)

where Mi;nþ1 ¼ Mi;iþ1 . . .Mn;nþ1 is the linear transfer
map from position i to nþ 1 and the superscript ‘‘�1’’ is
used to denote its inverse map. One can see from Eq. (3.9)
that the total map M is factorized into the linear map
M0;nþ1 and a nonlinear map,

e�:V 1ðM�1
1;nþ1

~zÞ:e�:V 2ðM�1
2;nþ1

~zÞ: . . . e�:V nðM�1
n;nþ1

~zÞ:; (3.10)

and more importantly all nonlinearities are effectively
transported to the end of the beam line.

FIG. 6. Lattice functions in PEP-X MBA cell with 7 dipoles. Four quadrupoles on each side of the ID straight can be used for
variation of ID beta functions.
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It is well known that one can use a linear symplectic map
A�1 tomake a coordinate transformation to the normalized
coordinates. As a consequence, the linear transfer map can
be decomposed intoMi;nþ1 ¼ A�1

i Ri;nþ1Anþ1, where

Ri;nþ1 is a rotational map with the betatron phase advances

�x;i, �y;i as the angles. Using the normalized coordinates

and repeatedly applying the similarity transformation
[Eq. (3.8)], we can rewrite the map of the beam line as

M ¼ A�1
0 R0;nþ1e

�:V 1ðR�1
1;nþ1

A1 ~zÞ:e�:V 2ðR�1
2;nþ1

A2 ~zÞ: . . . e�:V nðR�1
n;nþ1

An ~zÞ:Anþ1: (3.11)

Explicitly, we have

V iðR�1
i;nþ1Ai ~zÞ ¼ Si

ffiffiffiffiffiffiffiffi
�x;i

p
6

ð�x;ix
3
i � 3�y;ixiy

2
i Þ; (3.12)

where �x;i, �y;i are the optical beta functions at position i,
xi¼xcos�x;i�pxsin�x;i, and yi ¼ y cos�y;i � py sin�y;i.
In fact, xi; yi are the normalized coordinates respectively in
the horizontal and vertical planes at position i.

So far, we have not yet made any approximations. To
carry out the perturbation theory of the sextupoles, we need

to combine the Lie factors e�V 1 . . . e�V n in Eq. (3.11) into
a single Lie operator. This can be achieved by repeatedly
applying the Cambell-Baker-Hausdorf theorem

e:A:e:B:¼e:C:, where C¼AþBþfA;BgPB=2þ��� .
Here the bracket with the subscript ‘‘PB’’ denotes the
well-known Poisson bracket. For the perturbation of the
sextupole strength S, we obtain

M ¼ A�1
0 R0;nþ1e

:f3þf4þ...:Anþ1; (3.13)

where

f3 ¼ �Xn
i¼1

V i (3.14)

and

f4 ¼ 1

2

Xn
i¼1

Xn
j>i

fV i;V jgPB: (3.15)

Clearly, f3 is of the first order of S and f4 of the second
order. Similar to the Hamiltonian perturbation theory [25],
f3 gives the driving term of the third-order resonances
provided that the action-angle variables, x ¼ ffiffiffiffiffiffiffi

2Jx
p

cos�x,

px ¼ � ffiffiffiffiffiffiffi
2Jx

p
sin�x, y ¼ ffiffiffiffiffiffiffi

2Jy
p

cos�y, and py ¼
� ffiffiffiffiffiffiffi

2Jy
p

sin�y are used.

The Poisson bracket of any pair ofV i;j can be computed

easily and the result is given by

fV i;V jgPB¼SiSj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x;i�x;j

q
½sinð�y;i��y;jÞ�y;i�y;jxixjyiyjþsinð�x;i��x;jÞð�x;ix

2
i ��y;iy

2
i Þð�x;jx

2
j��y;jy

2
j Þ=4�: (3.16)

Clearly, all terms in the brackets are octupole like, namely
a fourth-order monomial in x, px, y, and py. It is worth
noting that this bracket vanishes when the phase differ-
ences in both planes are integers of �.

Essentially, we have worked out the first and, more
importantly, the second-order sextupole perturbation using
the Lie method. Our assumption of a thin lens could be
removed since one can always divide a thick sextupole into
many thin slices and then apply the thin-lens formulas. In
practice, it is sometimes easier to compute [12] f3 and f4
numerically using the differential algebra [26] and Dragt-
Finn factorization [27].

C. One family of sextupoles in arc

Now we can apply the general results of the perturbation
theory to the arcs of PEP-X. As we mentioned in a previous
section, we designed a periodical cell with betatron phase
advances, �x ¼ 4�þ �=4 and �y ¼ 2�þ �=4, in the

horizontal and the vertical planes, respectively. For the
linear optics, every eight of such cells makes an identity
transformation and form an achromat. In the design lattice,

every arc consists of one such achromat. We would like to
explain why this choice was made.
Let us study an achromat that consists of eight PEP-X

cells and each cell has a thin sextupole at the same location.
It is well known that f3 ¼ 0 in the achromat [13]. This can
also be shown directly using Eqs. (3.12) and (3.14). As a
result, this beam line preserves the property of an achro-
mat, even at a nonlinear level, up to the first order of
sextupole strength.
To proceed to the next order, we need to compute f4

using Eqs. (3.15) and (3.16) and add up the contributions
from all 28 brackets. Expressing the result in terms of

the complex coordinates, x ¼ ðax þ iaþx Þ=
ffiffiffi
2

p
, px ¼

ðiax þ aþx Þ=
ffiffiffi
2

p
, y¼ðayþiaþy Þ=

ffiffiffi
2

p
, py ¼ ðiay þ aþy Þ=

ffiffiffi
2

p
,

we have

f4 ¼ �1
4S

2�xfð1þ 2
ffiffiffi
2

p Þ½�2
xðaxaþx Þ2 þ �2

yðayaþy Þ2�
� 4�y½ð1þ

ffiffiffi
2

p Þ�x �
ffiffiffi
2

p
�y�ðaxaþx Þðayaþy Þ

þ �y½�x þ 2ð1þ ffiffiffi
2

p Þ�y�½e�2iðc x�c yÞðaxÞ2ðaþy Þ2
þ e2iðc x�c yÞðaþx Þ2ðayÞ2�g; (3.17)
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where c x and c y are the phase advances from the last

sextupole to the end of the achromat. One can easily see, by
using action-angle variables ax ¼

ffiffiffiffiffi
Jx

p
ei�x , aþx ¼

�i
ffiffiffiffiffi
Jx

p
e�i�x , ay ¼ ffiffiffiffiffi

Jy
p

ei�y , and aþy ¼ �i
ffiffiffiffiffi
Jy

p
e�i�y , that

there are three tune shift terms and a single resonance
driving term: 2
x � 2
y. The other resonances, 4
x, 4
y,

2
x, 2
y, and 2
x þ 2
y, are canceled out among the eight

sextupoles.
As an example, we took an arc of PEP-X and inserted

eight sextupoles with a total integrated strength S ¼
�80:0 m�2. The beta functions at the position of the
sextupoles are �x ¼ 1:002 m and �y ¼ 7:746 m, and the

phase advances relative to the beginning of the cell are
�x ¼ 2:0860 rad and �y ¼ 1:6148 rad. All nonvanishing

terms are calculated using two different methods and tabu-
lated in Table III. As one can see in the table, the agreement
between the analytical approach using Eq. (3.17) and nu-
merical computation [12] based on the differential algebra
is nearly perfect. To further illustrate the concept of can-
cellation, the fourth-order driving terms are plotted in
Fig. 7 as a function of position in the achromat. As shown
in the figure, the step changes occur at the locations of the
sextupoles and the full cancellation occurs both at the
midpoint and the end.

This kind of cancellation in resonance effects within an
achromat was discovered [12] first in one that consists of
eight TME-type cells with phase advances of �x ¼ 3�=4
and �y ¼ �=4. Interestingly enough, in that case, the only

nonvanishing resonance was 2
x þ 2
y.

These cancellations of fourth-order resonances are ex-
tremely general. They only rely on the phase advances of
the cell and its periodic property in the achromat. To
remove the residual resonance 2
x � 2
y and the three

geometric aberrations, we need to utilize the specific struc-
ture of the PEP-X MBA cell, discussed in the next section.
For multipole families of sextupoles, we have a similar
result that will be presented in the Appendix.

D. A fourth-order geometric achromat

Recently, we used the lattice design code OPA [14] to
optimize the settings of 10 sextupole families. Because of
the cancellations of most resonances, we only needed to
control the nonlinear chromaticities up to the second order,
the three remaining amplitude-dependent tune shifts, and
the residual 2
x � 2
y resonance. A good solution with

small nonlinearities was found [11]. The derivatives of the
betatron tunes are calculated using the normal form
method [28] and tabulated in Table IV along with a new
solution based on 4th-order achromats (f3 ¼ f4 ¼ 0). As
one can see from the table, the tune shift terms are signifi-
cantly reduced using the 4th-order achromats without any
degradation in the chromatic parts. The small residuals are
due to the nonlinear kinematic terms in the Hamiltonian.
As outlined in the previous section, one can compute all

contributions to f4 from all families of sextupoles by using
Eqs. (3.17) and (A1). To find a 4th-order geometric achro-
mat, we simply adjusted the strengths of six families of the
harmonic sextupoles to eliminate the five nonvanishing
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FIG. 7. The canceled fourth-order resonance terms driven by a
family of the sextupoles as they accumulated in the PEP-X
achromat.

TABLE III. The Lie factor f4 for a family of sextupoles in the PEP-X achromat.

Coefficients [m�1] Analytical Numerical

ðaxaþx Þ2 �6:1623� 103 �6:0327� 103

ðayaþy Þ2 �3:6827� 105 �3:6823� 105

ðaxaþx Þðayaþy Þ �4:2399� 105 �4:2372� 105

ðaxÞ2ðaþy Þ2 ð�2:8032� 3:8582iÞ � 105 ð�2:8059� 3:8559iÞ � 105

ðaþx Þ2ðayÞ2 ð�2:8032þ 3:8582iÞ � 105 ð�2:8059þ 3:8559iÞ � 105

TABLE IV. The nonlinear chromaticities and tune shifts due to
betatron amplitudes in the PEP-X ultimate storage ring.

Derivatives of tunes OPA solution 4th-order achromats

@
x;y=@� 0, 0 0, 0

@2
x;y=@�
2 �54, �95 �57, �89

@3
x;y=@�
3 þ1350, �104 þ1332, �150

@
x=@Jx [m�1] �5354 þ253
@
x;y=@Jy;x [m�1] þ19 610 þ1158
@
y=@Jy [m�1] �76 390 �228
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terms in f4. In fact, we have an infinite set of solutions
which can be found by searching numerically using the
Nelder-Mead method. We use the extra degree of freedom
to minimize the peak value of the harmonic sextupoles. As
a result, the peak strength is reduced by 25% from the OPA

solution. All terms in f3 and f4 are plotted as a function of
the position along one of the arcs in PEP-X in Fig. 8. One
can see from the figures that the numerical calculations
using the actual beam line confirm the analytical results.
Although we have not analyzed the chromatic effects in
this paper, in fact both the first- and second-order disper-
sions are also canceled within this achromat as shown in
Ref. [13].

For a comparison with OPA, it is worth pointing out what
OPA does: it uses a gradient search minimizer with empiri-

cally set weight factors on analytic formulas for the geo-
metric Hamiltonian modes of 1st and 2nd order in
sextupole strength and on chromaticities up to 3rd order
obtained by numeric differentiation. So it may be rather
blind and could end up in some local minimum depending
on starting values and the user’s selection of weight factors.
To set f3 ¼ f4 ¼ 0 in our method may be a superior
approach leading to a true optimum.

It is worth noting that the theory of higher-order achro-
mats was developed by Dragt [29] who found also a
numerical example of 4th-order achromat using not only
sextupoles but also octupoles. Comparing to his solution,
ours is much simpler and more practical because octupoles
are not used.

E. Damping wiggler

Because the emittance of PEP-X will increase by a
factor of 2 from the zero-current natural value of 29 pm-
rad achieved with the 7BA lattice due to intrabeam scat-
tering with 200-mA stored beam current (Sec. V), a further
reduction in emittance by about a factor of 3 is needed to

reach the diffraction limit for 1-Å x rays (assuming 100%
horizontal-vertical emittance coupling). This emittance
reduction can be achieved using one or more strong damp-
ing wigglers in one or more dispersion-free regions.
The relative reduction in natural emittance from �0 to

�w0 caused by a damping wiggler in PEP-X can be esti-
mated using an approximate analytical expression [30]:

�0w
�0

¼
�
Ix0
Ixw

� 1þ 4Cq

15�Ix0
Np�

2 h�xwi	o

�x0	
2
w
�3w

1þ 1
2Np

	o

	w
�w

; (3.18)

where Ixw, Ix0 are damping partition numbers with and
without wigglers, Np is the number of wiggler periods,

h�xwi the average horizontal � function in the wiggler, 	w

the bending radius at peak wiggler field, �w ¼ �w=2�	w,
and �w the wiggler period length. Here 	o ¼ 	c	m=
½r	c þ ð1� rÞ	m� is the effective bending radius in the
MBA cell, with 	c and 	m being the bending radii in the
main cell dipole and the matching dipole, respectively, and
r being the relative contribution from the matching dipoles
to the total bending angle.
It follows that the emittance reduction depends on the

wiggler period length, the wiggler peak field, and the total
wiggler length. Using Eq. (3.18), Fig. 9 shows the ratio of
�0w=�0 versus the wiggler peak field and the total wiggler
length for various values of wiggler period length, where
the wiggler is inserted in a long straight section with
h�xi ¼ 12:4 m. One can see that most of the damping
occurs within 100 m of the wiggler length, and that a
wiggler period below 5 cm does not significantly improve
the damping. Selecting a 90-m long wiggler with a 5-cm
period, it follows that the optimal peak field is 1.5 T. It
should be noted that a short 5-cm wiggler period implies a
small wiggler gap of 7.7 mm when using a hybrid magnet
design [31]. Awiggler with the above parameters has been
modeled in the lattice using an array of alternating field
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FIG. 8. All 3rd-order resonance terms in f3 (left) and all 4th-order resonance as well as three tune shift terms in f4 (right) generated
by the 10 families of sextupoles as they accumulated in the PEP-X achromat.
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short dipoles. The wiggler is placed in one 123-m long
FODO straight section, where it is split into 18 sections to
fit between the quadrupoles. The resultant emittance with
wigglers at zero current is �0w ¼ 11 pm-rad.

The damping wiggler creates various negative effects on
the PEP-X beam. It increases the beam rms energy spread
from 0.072% to 0.12%, and the radiation loss per turn from
0.36 to 2.95 MeV. The latter amounts to 0.59 MW at a
200 mA current. Finally, the wiggler field has intrinsic
nonlinear components on the beam trajectory affecting
large amplitude particles.

IV. DYNAMIC APERTURE

Ultimately, the goal of minimizing sextupole nonlinear
aberrations is to maximize the PEP-X dynamic aperture for
efficient horizontal injection and long beam lifetime. The
two sextupole solutions described in Sec. III E were com-
pared: the empirical optimization using OPA and the ana-
lytical 4th-order geometric achromat. Note that the latter
uses the same chromatic sextupole strengths as in the OPA

solution. The dynamic aperture was obtained in particle
tracking simulations using the LEGO [32] and ELEGANT

[33] codes. The calculations included on-momentum and
off-momentum particles and magnet errors. To include the
effects of the wiggler intrinsic nonlinear field, the 1st order
dipole wiggler model was replaced by an exact nonlinear
field wiggler model [34] in the LEGO simulations.

A. Error-free aperture

To verify the effect of residual sextupole aberrations,
dynamic apertures for the OPA and the 4th-order geometric
achromat solutions were compared without magnet errors
and with momentum error � up to 2%, as shown in Fig. 10.
The better cancellation of sextupole 4th-order geometric
terms in the achromat solution results in a superior on-
momentum aperture in both x and y planes as compared to
the OPA solution. The achromat off-momentum aperture is
also slightly better, but much closer to the OPA aperture due
to the fact that the two solutions use the same strengths for
the chromatic sextupoles, leading to similar chromatic
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FIG. 10. Momentum dependent dynamic aperture without errors for OPA (left) and 4th-order geometric achromat (right) solutions
with chromaticity set to zero, where � ¼ 0 (blue solid), 0.5% (blue dashed), 1% (red solid), 1.5% (red dashed), and 2% (green).
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aberrations (see Table IV). Based on this comparison, we
chose the achromat solution for the PEP-X ultimate lattice.

B. Error tolerances

Magnet field and alignment errors create linear and
nonlinear optics perturbations. These include distortion
of the closed orbit and betatron functions, transverse cou-
pling, chromaticity, variation of betatron tune with ampli-
tude, and excitation of betatron resonances leading to
reduced dynamic aperture. To maintain a sufficient aper-
ture, the ring must include efficient correction schemes;
also, the magnitude of such errors must be limited to an
acceptable level. To estimate the error sensitivities for
the PEP-X lattice with the 4th-order achromat sextupole
solution, LEGO and ELEGANT tracking simulations were
performed.

The ELEGANT simulations did not include actual beam
correction. Instead, it was assumed that the errors are
already corrected, and that the residual effects are 1%
beta beat and 1% transverse coupling. These were simu-
lated with sufficiently small random quadrupole field and
tilt errors. The resultant dynamic aperture for 50 machine
settings of random errors is shown in Fig. 11.

LEGO simulations included realistic correction of orbit,

beta beat, linear chromaticity, transverse coupling, and
vertical dispersion. The studied errors included magnet
field errors, horizontal and vertical misalignment, magnet
roll errors, and higher-order multipole field errors. The
latter were based on the measured field in the PEP-II
magnets [35] but applied to a smaller bore radius of the
PEP-X magnets. No errors were applied to beam position
monitors, and the linear chromaticity was adjusted to þ1.

It was found that rms misalignment of 20 �m, rms roll
error of 0.1 mrad, and relative rms field error of 10�3 in
dipoles, quadrupoles, and sextupoles are acceptable.
Dynamic apertures with the above errors including the
high order multipole field errors for 10 random settings
after correction are shown in Fig. 11. Here, the average on-
momentum horizontal dynamic aperture is 8 mm which is

sufficient for off-axis injection assuming a high quality
injected beam with 1 �m-rad normalized emittance and
effective septum width of 3 mm [19]. It should be noted
that a smaller dynamic aperture could still be accommo-
dated using on-axis injection.

V. IBS AND TOUSCHEK LIFETIME

Intrabeam scattering (IBS) describes multiple Coulomb
scattering that leads to growth in emittance and energy
spread in electron machines, whereas the Touschek effect
concerns large single Coulomb scattering events where
energy transfer from transverse to longitudinal planes leads
to particle loss. In low emittance machines such as PEP-X,
both effects are important.

A. Intrabeam scattering

We understand that obtaining round beams in a storage
ring will likely entail the use of coupling or vertical dis-
persion. But for simplicity here, for the purpose of IBS
calculations, we assume that the vertical emittance is pri-
marily generated by the coupling, and the effects of the
vertical dispersion can be ignored. Then the vertical emit-
tance is proportional to the horizontal emittance, and we
write

�x ¼ �

1þ �
and �y ¼ ��

1þ �
; (5.1)

with � being the coupling constant between 0 and 1 and
� ¼ �x þ �y being the sum emittance at finite current with

IBS. The nominal (no IBS) horizontal and vertical emit-
tances are given by �x0 ¼ �0w=ð1þ �Þ and �y0 ¼
��0w=ð1þ �Þ, where �0w is the natural emittance with
the damping wigglers at zero current and its value is given
in Table II. Note that our treatment of coupling is a
simplified one that is often used in the case of small
coupling; it assumes that the eigenfunctions of the trans-
verse motion are only slightly perturbed by the coupling. In
our case of full coupling we need to make a similar

FIG. 11. Dynamic apertures in ELEGANT (left) simulation for 50 sets of random errors (red) and without errors (black) and in LEGO

(right) for 10 sets of random errors (dash), the average aperture (green), and aperture without errors (red).
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assumption. In any case, for the PEP-X IBS calculations to
be presented below, we will at the end confirm the results
with calculations using the program SAD [36], one that
treats coupling correctly without assumptions.

In our calculation here we make the assumption that the
transverse IBS growth rate approximately satisfies

�x0
�x

þ �y0
�y

� �x
�x

� �y
�y

þ �x
Tx

¼ 0; (5.2)

where �x; �y, signify the radiation damping times in x; y,

and 1=Tx gives the IBS growth rate in amplitude (the
growth rate in emittance is just 2=Tx). A similar expression
is also used in ELEGANT. The first two terms in Eq. (5.2)
represent quantum excitation growth rates, the next two
terms those of radiation damping, and the last term that of
IBS. (A similar equation applies for the growth in momen-
tum.) Writing Eq. (5.2) in terms of the sum emittances �
and �xw, and solving the corresponding energy spread
equation, we find that the steady-state values are given by

� ¼ �0w
1� ��x=Tx

and �2
� ¼ �2

�w

1� �s=Tp

; (5.3)

where ��x ¼ �x=ð1þ ��x=�yÞ. The quantities ��w, �s, and

1=Tp signify, respectively, the nominal beam size, the

radiation damping time, and the IBS growth rate in mo-
mentum. Note that taking ��x ¼ �x does not significantly
affect the results in the case of small coupling; in the case
� ¼ 1, however, it overestimates the effective IBS growth
rate by a factor 	2 (if �x 	 �y).

For PEP-X IBS growth rates we employ the Bjorken-
Mtingwa (B-M) formulation [37], using the Nagaitsev [38]
algorithm for efficient calculation. B-M gives the local
growth rates �ð1=TxÞ and �ð1=TpÞ as integrals that depend
on beam properties and local lattice properties. These
integrals are numerically performed for all positions
around the ring, and then the growth rates are averaged
to give h�ð1=TxÞi ¼ 1=Tx, h�ð1=TpÞi ¼ 1=Tp, where h i
means to average around the ring. Given the growth rates,
the steady-state � and�� are obtained by solving Eqs. (5.3)
simultaneously. Since the growth rates depend on the beam
emittances, energy spread, and bunch length, Eqs. (5.3) are
solved by iteration using a Newton’s method.

A simplified model of the B-M equations that can be
used (with slight modification) to approximate the results
for PEP-X is the so-called ‘‘high energy approximation’’
[39]. We present it here since it relatively clearly shows
the parameter dependence of IBS, though to obtain the
numerical results for PEP-X (given below) we will use
the more accurate B-M equations. According to this
simplified model the IBS growth rate in energy spread
is given by

1

Tp
� r2ecNbðlogÞ

16�3�3=4x �3=4y �z�
3
�

h�Hgða=bÞð�x�yÞ�1=4i: (5.4)

Here re is the classical radius of the electron, c the speed
of light, Nb the number of electrons per bunch, (log) the
Coulomb log factor, � the Lorentz energy factor, �z the
bunch length, and �x and �y the optical beta functions.

Other factors in Eq. (5.4) are defined by

1

�2
H

¼ 1

�2
�

þH x

�x
; a¼�H

�

ffiffiffiffiffiffi
�x

�x

s
; b¼�H

�

ffiffiffiffiffiffi
�y

�y

s
; (5.5)

gð�Þ ¼ �ð0:021�0:044 ln�Þ; (5.6)

with H x the dispersion invariant defined in Eq. (3.3).
Note that the high energy approximation has validity
when a; b 
 1, which holds for PEP-X parameters.
In the high energy approximation, the horizontal IBS

growth rate is given in terms of the momentum growth rate
simply as

1

Tx

¼ �2
�

�x
hH x�ð1=TpÞi: (5.7)

We see that only the arcs contribute significantly to
IBS-induced emittance growth, since only in the arcs is
H x nonzero. Note that in the original description of the
high energy approximation (Ref. [39]), hH x�ð1=TpÞi in
Eq. (5.7) is replaced by hH xið1=TpÞ; for the PEP-X lattice,

however, there are correlations that make that version of
the equation a poor approximation to B-M.
In scattering calculations like IBS, a Coulomb log term,

(log) in Eq. (5.4), is often used to take into account the
contribution of very large and very small impact parameter
events. Because of the small impact parameter events, the
tails of the steady-state bunch distributions are not
Gaussian and the standard way of computing (log) over-
emphasizes their importance. To better represent the size of
the bunch core, we adjust (log) to cut away events with
growth rate greater than the synchrotron damping rate, as
was first proposed by Raubenheimer [40,41]. For PEP-X,
(log) becomes � 11.
For our IBS calculations for PEP-X using lattice pa-

rameters found in Table II, we assume that the nominal
current is below the threshold of the microwave instability
and that potential well bunch lengthening is not significant
(so that �z ¼ �zw��=��w). We assume the vertical emit-
tance is given by coupling with � ¼ 1. The results of our
IBS calculations for the PEP-X lattice at the nominal I ¼
200 mA with the number of bunches M ¼ 3300, which
corresponds to 0.5 nC bunch charge, are shown in Table V,
where we give steady-state emittances, �x and �y, energy

spread ��, and bunch length �z. We note that for PEP-X,
IBS has little effect on �� and �z; however, at the nominal
current �x is double the zero-current value.
At nominal current the horizontal IBS growth rate is

T�1
x ¼ 52 s�1, and the energy growth rate T�1

p ¼ 7:4 s�1.

The growth rate, as expected, is significant only in the arcs.
Note that from the high energy approximation, Eqs. (5.4)
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and (5.7), we obtain T�1
x ¼ 53:7 s�1 and T�1

p ¼ 8:9 s�1,

in reasonable agreement to the Bjorken-Mtingwa solution.
A comparison IBS calculation was performed using the

optics program SAD [36]. SAD treats coupling without
assumptions by obtaining, e.g., the true emittance invari-
ants, and it can also solve the B-M IBS equations. For the
calculation in the dispersion-free regions of PEP-X, we
first adjusted quadrupole strengths to bring the tunes close
together. Then 400 quadrupole magnets (in these regions)
were rotated by small random amounts and adjusted by an
overall scale factor to give �x0 � �y0. Finally IBS calcu-

lations were performed, giving �x � �y � 11 pm, a result

not far from our earlier obtained 11.5 pm. Note that the SAD

calculations were repeated for 10 seeds (for the random
number generator), and the results varied by only a few
percent.

In addition to the calculations for nominal current, we
have also calculated the steady-state emittances �x and �y
as functions of beam current I; the result is shown in
Fig. 12 (the solid curve). In our calculations we have again
observed that for PEP-X the growth of longitudinal emit-
tance due to IBS is very small. This means that, to a good
approximation, �� and �z can be taken to have their
nominal values and one need only solve the first of Eqs.
(5.3). In this case the horizontal emittance as a function of
current can be approximated by a solution (the maximum
real solution) of the equation

�
�x
�x0

�
5=2 �

�
�x
�x0

�
3=2 ¼ �

�
I

IA

�
; (5.8)

with � a constant and IA ¼ 17 kA the Alfvén current. Here
the best fit is obtained with � ¼ 3:2� 105 (see the dashed
curve in Fig. 12).
Finally, to demonstrate that 4.5 GeV is near the optimal

energy for our lattice, we have performed IBS calculations
for different energies. Note that the lattice is scalable with
energy except in the wiggler and undulator regions which
are assumed to have nominally fixed-field magnets. In
Fig. 13 we plot emittance �x ¼ �y vs electron energy E;

we see that the emittance minimum is broad, and that the
minimum is near our nominal energy.

B. Touschek lifetime

Touschek lifetime calculations normally follow the flat-
beam equation of Brück [42], with modifications by
Piwinski [43]. For round beam calculations we will begin
here with the more general formula (i.e. not limited to flat
beams) due to Piwinski [43,44]. With the Touschek effect
the number of particles in a bunch decays with time t as

Nb ¼ Nb0

1þ t=T
; (5.9)

with Nb0 the initial bunch population, and T the Touschek
lifetime. Note that the decay is not exponential. The life-
time is given by [43]

1

T
¼ r2ecNb

8
ffiffiffiffi
�

p
�2�4�z���x�y

h�HF ð�mÞi; (5.10)

with

F ð�mÞ ¼
Z 1

�2
m

d�

�3=2
e��BþI0ð�B�Þ

�
�

�2
m

� 1� 1

2
ln

�
�

�2
m

��
;

(5.11)

B� ¼ 1

2�2�2

���������x�
2
x

�x ~�
2
x

� �y

�y

��������; (5.12)

where �H is defined in Eq. (5.5), and again h i indicates
averaging around the ring. In this formula the only assump-
tions are that there is no vertical dispersion and that the
energies are nonrelativistic in the beam rest frame
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FIG. 12. Steady-state emittances as a function of bunch current
in PEP-X with round beams (k ¼ 1).

FIG. 13. Emittance �x ¼ �y vs energy for a round beam at
nominal bunch current (black) and at zero current (red).

TABLE V. Steady-state beam parameters with 200 mA in
PEP-X and x-y coupling parameter � ¼ 1: nominal (zero-
current) horizontal �x0 and vertical �y0 emittances; steady-state

horizontal �x and vertical �y emittances; relative energy spread

��, bunch length �z; and Touschek lifetime T .

�x0 [pm] �y0 [pm] �x [pm] �y [pm] �� [10�3] �z [mm] T [hrs]

5.5 5.5 11.5 11.5 1.25 3.12 3.5
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(�2�2
x=�

2
x, �

2�2
y=�

2
y 
 1); there is no requirement that the

beam be flat. Parameters are average velocity over the
speed of light �, modified Bessel function of the first
kind I0, relative momentum acceptance �m (half aperture),
and beam sizes �x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�x�xþ2
x�

2
�

p
and ~�x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�x�xþ�xH x�
2
�

p
.

We have calculated the momentum aperture as a function
of location in PEP-X, including machine errors described in
Sec. IVB, in the following manner. In tracking, at a given
position s, a beam particle is given an initial relative
positive momentum kick �m, and it undergoes betatron
and synchrotron oscillations. The largest value of �m for
which the particle survives defines the positive momentum
aperture at position s. Then the same is done for a negative
momentum kick. The results are displayed in Fig. 14. This
local momentum acceptance is used in Touschek lifetime
calculation for PEP-X and the result is 3.5 hours. Note that
the calculation without errors yields 11 hours.

Finally, to study the sensitivity of Touschek lifetime to
momentum acceptance, we computed T vs the global
momentum acceptance parameter, �m (see Fig. 15,
blue symbols). The dashed curve gives the fit: T ¼
0:088ð�m=0:01Þ5 hrs. We see that if we want a reasonable
lifetime, we cannot allow �m to be significantly worse
than�0:02.

VI. IMPEDANCE AND INSTABILITIES

For the baseline design of PEP-X [19], an impedance
budget was accumulated and calculations were performed
on longitudinal and transverse instability thresholds and on
growth rates. In the present report we again perform such
calculations but go into less detail. We justify this by the
fact that the present bunch current is a factor of 7.5 smaller
than the previous one, and consequently instabilities are
not such an important issue. We here briefly address three
instabilities: (i) the single-bunch microwave instability
excited by coherent synchrotron radiation (CSR), (ii) the
single-bunch transverse mode coupling instability due to
the resistance in the walls, and (iii) the multibunch trans-
verse instability driven by the wall resistance.

A. Microwave instability due to CSR

For the baseline design of PEP-X an impedance budget
and single-bunch wake representing the entire ring was
generated. These were used to estimate the threshold of
the microwave instability, which was found to be com-
fortably above the earlier design current of 1.5 A. Here we
estimate the microwave threshold due only to one con-
tributor to the impedance, shielded CSR. In the model
used for the calculations the beam is assumed to be
moving in a circle of radius 	 (in the plane y ¼ 0)
between two parallel plates at locations y ¼ �h. In nor-
malized units the threshold current Sth is given as a
function of shielding parameter � by [45]

Sth ¼ 0:50þ 0:12�; (6.1)

with

S ¼ eNb	
1=3

2�
s����
4=3
z

; � ¼ �z	
1=2

h3=2
: (6.2)

with Nb being the number of electrons per bunch and 
s

being the synchrotron tune.
The PEP-X vacuum chamber in the arcs is elliptical with

axes ðbx; byÞ ¼ ð20:0; 12:5Þ mm and bending radius 	 ¼
100:8 m; we let h ¼ 12:5 mm in the calculations. With
these assumptions we find that for PEP-X the shielding is
significant: with� ¼ 22:7, the threshold bunch population
Nth

b ¼ 4:9� 1010, and the threshold current Ith ¼ 3:6 A—
high above the design current. (Note that, even if we were
to increase the aperture so that there is no shielding, Sth ¼
0:50 and the threshold would be 0.58 A, significantly above
the design current.)

B. Transverse single-bunch instability

In most light sources with regions of small-aperture
vacuum chambers, the resistive wall is the dominant con-
tribution to the transverse single-bunch instability. The
kick factor (the average kick experienced over a bunch)
for a Gaussian bunch passing through a round, resistive
beam pipe is given by
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FIG. 15. Touschek lifetime T vs (global) momentum accep-
tance parameter, �m (blue symbols). The dashed curve gives the
fit: T ¼ 0:088ð�m=0:01Þ5 hrs.

0 500 1000 1500 2000

-0.02

-0.01

0.00

0.01

0.02

s [m]

FIG. 14. The momentum acceptance, �m, for PEP-X with ma-
chine errors. This function is used in finding the Touschek lifetime.
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�y ¼ ð0:723Þ c

�3=2b3

ffiffiffiffiffiffiffiffiffiffiffi
Z0

�z�c

s
; (6.3)

with b the radius of the pipe, Z0 ¼ 377 �, �z the bunch
length, and �c the conductivity of the beam pipe. The
single-bunch threshold current is given by [46]

Ithb � 0:7
4�c
sðE=eÞ

C
1P

i
‘i�y;i�y;i

; (6.4)

with C the circumference of the ring. The multibunch
threshold is Ith ¼ MIthb , with M the number of bunches.

Equation (6.4) allows for several region types in the ring,
each of total length ‘, beta function �y, and kick factor �y.

The five region types of PEP-X and their beam pipes are
described in Table VI. For the threshold calculation we use
the information in the table, letting the vertical half aper-
ture be b; the conductivities of Al (Cu) is taken to be
3:5ð5:9Þ � 107 ��1 m�1. We see that the undulator and
wiggler sections dominate because of their small vertical
apertures. We find the threshold current is I ¼ 1:8 A,
comfortably above the nominal current.

C. Multibunch transverse instability

The resistive wall impedance is often the dominant
contributor to the transverse coupled bunch instability in
storage rings. Assuming only this source of impedance, the
growth rate of the instability can be estimated as [47]

� ¼ cðI=IAÞ
4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1� ½
y�Þ

q h�Ai; (6.5)

where

h�Ai ¼ 4ffiffiffiffiffiffiffiffiffi
�Z0

p X
i

‘i�y;i

b3i
ffiffiffiffiffiffiffiffi
�c;i

p ; (6.6)

½
y� being the fractional part of the vertical tune. Here the

beam pipe is again assumed to be round with radius b.
For the growth rate calculation we again use the infor-

mation in Table VI, letting the vertical half aperture be b.
Again the undulator and wiggler sections dominate due to
the small vertical aperture. We find that the total growth
rate � ¼ 1:4 ms�1, equivalent to a growth time of 99 turns,
which should be not too difficult to control with feedback.

V. CONCLUSION

In this paper, we have most significantly developed a
systematic method based on 4th-order geometric achro-
mats to design an USRwhere the sextupole magnets are the
dominant sources of the nonlinearity. One may choose a
different achromat for the design of the lattice; however,
our methodology is still applicable. In fact, we know that
there are many similar solutions of 4th-order achromats.
Since they are not quite relevant to the design of PEP-X,
we chose not to present them in this paper.
To make a 4th-order geometric achromat, we chose to

eliminate all three tune shift terms in the Lie generator f4.
In general, this choice may not be suitable for other latti-
ces. Our method can be easily modified to have any values
of those three terms. This will allow us to have full control
of the size and orientation of the beam footprint in the tune
space of the transverse dimensions.
Our design of the PEP-X USR utilizes the existing PEP-

II tunnel, its high power and low emittance injector, and
much of the PEP-II rf system. Perhaps most importantly,
the design does not rely on new technology developments
and is therefore essentially ready to be built.
Looking forward, there are many interesting topics that

can be studied to improve our design. Among them, the
most urgent one is to search an efficient and robust method
to obtain round beams in electron storage rings.
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TABLE VII. The Lie factor f4 for two families of sextupoles in the PEP-X achromat.

Coefficients [m�1] Analytical Numerical

ðaxaþx Þ2 �8:6457� 105 �8:6453� 105

ðayaþy Þ2 �1:8251� 106 �1:8264� 106

ðaxaþx Þðayaþy Þ þ2:6396� 106 þ2:6405� 106

ðaxÞ2ðaþy Þ2 ð�1:2405� 0:000 42iÞ � 106 ð�1:2389� 0:000 36iÞ � 106

ðaþx Þ2ðayÞ2 ð�1:2405þ 0:000 42iÞ � 106 ð�1:2389þ 0:000 36iÞ � 106

TABLE VI. PEP-X beam pipe chamber types, giving total
length, cross-sectional shape, half-height in x and y, type of
metal coating, and average beta function. Note that straights are
divided into regular (r) and injection (i) types.

Type Length [m] Shape (bx, by) [mm]Metalh�yi [m]

Arcs 1318 Elliptical (20.0, 12.5) Al 7.0

Straights r 510 Round (48.0, 48.0) Al 15.6

Straights i 123 Round (48.0, 48.0) Al 60.0

Undulators 158 Elliptical (20.0, 3.0) Cu 2.8

Wigglers 90 Rectangular (22.5, 4.0) Cu 12.0
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APPENDIX A: MULTIFAMILIES
OF SEXTUPOLES IN ARC

Naturally, we would like to extend the calculation to
multiple families of sextupoles in the achromat. While we
can use Eq. (3.17) to compute the contribution within any

family, the new kind of contribution we need to calculate is
the crossing pairs between any two families. For the PEP-X
case, we compute 64 brackets and then add them up. The
expression is rather complicated but the property of the
cancellation is magically retained as shown:

f4 ¼ �1
8S1S2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x1�x2

p ð2�x1�x2½3ð1þ
ffiffiffi
2

p Þ cosðc x1 � c x2Þ þ 3 sinðc x1 � c x2Þ þ ð ffiffiffi
2

p � 1Þ cos3ðc x1 � c x2Þ
þ sin3ðc x1 � c x2Þ�ðaxaþx Þ2 þ 2�y1�y2½4ð1þ

ffiffiffi
2

p Þ cosðc x1 � c x2Þ þ ð ffiffiffi
2

p � 1Þ cosðc x1 � c x2 þ 2c y1 � 2c y2Þ
� ð ffiffiffi

2
p þ 1Þ cosðc x1 � c x2 � 2c y1 þ 2c y2Þ þ 4 sinðc x1 � c x2Þ þ sinðc x1 � c x2 þ 2c y1 � 2c y2Þ

þ sinðc x1 � c x2 � 2c y1 þ 2c y2Þ�ðayaþy Þ2 � 8fð�x1�y2 þ �y1�x2Þ½ð1þ
ffiffiffi
2

p Þ cosðc x1 � c x2Þ þ sinðc x1 � c x2Þ�
þ 8�y1�y2½ð

ffiffiffi
2

p � 1Þ cosðc x1 � c x2 þ 2c y1 � 2c y2Þ þ ð ffiffiffi
2

p þ 1Þ cosðc x1 � c x2 � 2c y1 þ 2c y2Þ
þ 2 cosðc x1 � c x2Þ sin2ðc y1 � c y2Þ�gðaxaþx Þðayaþy Þ þ 2f�x1�y2½cosðc x1 � c x2Þ
þ ð�1þ i

ffiffiffi
2

p Þ sinðc x1 � c x2Þ�e�2iðc x1�c y2Þ þ �y1�x2½cosðc x1 � c x2Þ � ð1þ i
ffiffiffi
2

p Þ sinðc x1 � c x2Þ�e2iðc y1�c x2Þ

þ 4�y1�y2½ð1þ
ffiffiffi
2

p Þ cosðc y1 � c y2Þ þ sinðc y1 � c y2Þ�e�iðc x1þc x2�c y1�c y2ÞgðaxÞ2ðaþy Þ2
þ 2f�x1�y2½cosðc x1 � c x2Þ � ð1þ i

ffiffiffi
2

p Þ sinðc x1 � c x2Þ�e2iðc x1�c y2Þ

þ �y1�x2½cosðc x1 � c x2Þ � ð1� i
ffiffiffi
2

p Þ sinðc x1 � c x2Þ�e�2iðc y1�c x2Þ þ 4�y1�y2½ð1þ
ffiffiffi
2

p Þ cosðc y1 � c y2Þ
þ sinðc y1 � c y2Þ�eiðc x1þc x2�c y1�c y2Þgðaþx Þ2ðayÞ2Þ: (A1)

Here we have used the same notation as for the single
family and the subscript 1 or 2 indicating the family
number. Clearly, this formula along with Eq. (3.17) ensures
that there will be no new type of resonance driving terms
that would be added to f4 when more families of sextu-
poles are added in the achromat. Moreover, the same
conclusion can be made for the thick sextupole families
since a family of thick sextupoles can be considered as a set
of families of thin sextupoles.

To give a concrete example, we use again the arc of PEP-
X and add a second family of eight sextupoles with a total
integrated strength S ¼ 100:0 m�2 located where the op-
tical beta functions �x ¼ 4:207 m and �y ¼ 3:172 m and

the phase advances�x ¼ 5:8622 rad and�y ¼ 3:1416 rad

relative to the beginning of the cell. All nonvanishing terms
for the two families in the achromat are calculated using
Eqs. (3.17) and (A1) and tabulated in Table VII. Once
again, we have excellent agreement between the two differ-
ent approaches.
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