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This paper uses the advanced light source (ALS) storage-ring lattice as an example to illustrate the

strategies and techniques that we developed for lattice design and optimization. First, the theoretical

minimum emittance (TME) theory is applied to optimize the ALS storage-ring lattice for its future

upgrades. The study confirms the results found in earlier study using both global scan of all stable settings

and multiobjective genetic algorithms (MOGA) techniques. It is shown that, using TME, the ALS natural

emittance can be reduced to an even smaller value by introducing additional quadrupoles to the straight,

which is unknown in previous studies. Then, the nonlinear properties of the lattice are optimized using

MOGA. Instead of the conventionally used dynamic aperture area, the total diffusion rate of the lattice is

used as an objective in the optimization, which leads to a superior performance in nonlinear beam

dynamics. Finally, to find a best overall working lattice for ALS future upgrades, the linear and nonlinear

properties of the lattice are optimized simultaneously using MOGA. Compared to the widely used

dynamic aperture tune scan technique, MOGA not only allows us to rapidly find a best working point in a

wide searching range, but also provides us trade-offs among the optimization objectives, such as the low

emittance, small beta function, and large dynamic aperture. These trade-offs give us a guideline to choose

a candidate lattice for ALS future upgrades. The strategies and techniques presented in this paper are not

limited to the ALS, and can be adopted to other facilities.
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I. INTRODUCTION

The advanced light source (ALS) at Lawrence Berkeley
National Laboratory is one of the earliest 3rd generation
light sources. Since the commissioning in 1993 [1], a series
of upgrades have been successfully completed, including the
installation of superconducting bend magnets (Superbends)
in 2001 [2] and implementation of top-off injection in 2007
[3]. To keep the ALS competitive in the future, it was
recognized a few years ago that further upgrades to lower
the storage-ring emittance will be necessary [4,5].

The ALS low-emittance upgrade project began in 2009.
When this upgrade is finished, the horizontal emittance
will be reduced by three factors from current 6.3 nm rad to
about 2 nm rad. Figure 1 shows optics functions of one
ALS sector before and after the upgrade. The entire ALS
storage ring consists of 12 sectors, and each sector is a
triple bend achromat with a mirror symmetric structure
consisting of 3 families of quadrupoles (‘‘QF,’’ ‘‘QD,’’ and
‘‘QFA’’). Figure 1(a) shows the optics functions of the
current lattice; 1(b) shows the optics functions of the
upgraded lattice. From the plots, we can see the major
quantitative changes of the optics functions are the
horizontal beta and dispersion functions which are in-

creased in the straights. This upgrade project (so-called
baseline upgrade) is under way and will improve the
brightness of many beam lines by several factors after
the completion [6].
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FIG. 1. Layout of one sector of ALS lattice and its associated
optics functions for (a) current lattice, (b) baseline upgrade, (c)
ultimate upgrade.
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It was quickly realized that the baseline upgrade lattice
does not provide ‘‘ultimate’’ insertion device brightness
due to the phase space mismatch of the electron and photon
beams and also the large dispersion functions in the center
of straights. If we could reduce the horizontal beta and
dispersion functions to small values at the center of
straight, i.e., upgrade the lattice to the one shown in Fig. 1
(c) (ultimate upgrade), the insertion device brightness
could be improved by another 2 or 3 factors.

This paper presents strategies and techniques that we
developed to optimize the linear and nonlinear properties
of the ALS storage-ring lattice for its future potential
upgrades. In Sec. II, we first discuss the optimal beta
function at the center of straight to maximize insertion
device brightness. In Sec. III, we apply the theoretical
minimum emittance (TME) theory [7,8] to search for
small-emittance and low-beta lattices. The study confirms
the results found in earlier study using both global scan of
all stable settings (GLASS) [9] and multiobjective genetic
algorithms (MOGA) [10] techniques. We show that, using
TME, we can reduce the ALS emittance to an even smaller
value by introducing additional quads to the straight, which
is unknown in previous studies. In Sec. IV, the MOGA is
applied to optimize dynamic aperture of ALS upgrade
lattices. Instead of the conventionally used dynamic aper-
ture area, we used total diffusion rate as an objective to
optimize the lattice. It is illustrated that this optimization
can lead to a superior performance in nonlinear beam
dynamics. To find a best overall working lattice for ALS
future upgrades, in Sec. V, we optimize the linear and
nonlinear properties of the lattice simultaneously using
MOGA. Compared to the widely used dynamic aperture
tune scan (DATS) technique, MOGA not only allows us to
rapidly find a best overall solution in a wide searching
range, but also provides us trade-offs among the lower
emittance, small beta function and larger dynamic aper-
ture. Finally, we conclude the paper in Sec. VI.

II. OPTIMAL BETA FUNCTION

High brightness of insertion device (ID) is one of the
most desirable properties of the synchrotron radiation light
source, and a great deal of effort is devoted to optimizing it.
An approximate formula for the brightness of undulator
radiation is given by

B ¼ F

4�2�x�x0�y�y0
¼ F

4�2"effx "effy

; (1)

where F is the photon flux; �x;y and �x0;y0 are the effective

rms photon beam size and divergence, which are given by
the convolution of the electron beam and diffraction-
limited photon beam sizes and divergences; "effx;y �
�x;y�x0;y0 are the effective photon beam emittances.

Assuming the electron beam and photon beam have
Gaussian distributions, �x;y and �x0;y0 are given by
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where �x;y are the electron beam size and divergence

including the dispersion effect; and �r;r0 are the

diffraction-limited photon beam size and divergence. �x;y
and �E are the electron beam emittance and energy spread,
�x;y and �x;y are Twiss functions, and �x;y and �0

x;y are

dispersion functions. L is the undulator length and � is the
radiation wavelength.
At the center of the ID straight, usually �x;y ¼ 1=�x;y,

�0
x;y ¼ 0, and the effective photon beam emittances are

given by
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To maximize the undulator brightness, we need to mini-
mize "effx;y, which has been discussed in papers [11–13].
However, in these papers, the contributions of the
diffraction-limited photon beam size and divergence �r;r0

are neglected. This is a good approximation for a third
generation hard x-ray light source. However, for a soft x-
ray light source, such as the ALS, where the diffraction-
limited photon beam size and divergence are comparable to
the electron beam size and divergence, we need to take into
account these contributions in "effx;y.

Taking a further step to minimize Eq. (3), it is obvious
that first we need to minimize the electron beam emittance
�x;y. Then, another question arises: what are the optimal

�x;y functions at the location of undulator? To answer this

question, we need to minimize "effx;y as a function of �x;y,

which yields the optimal beta value given by

�opt
x;y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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4�2
þ 2L

�
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E�
2
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s
: (4)

Here, we assume that the beta function is independent of
the emittance and the second order term of �

2L�
2
E�

2
x;y in

Eq. (3) is negligible. We can see that this optimal beta
function depends on the length of the undulator, wave-
length of the radiation photon, energy spread, and
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dispersion functions of the electron beam. For dispersion
free lattice, �x;y ¼ 0, the optimal beta function is reduced

to the well-known value �
opt
x;y ¼ L=2�.

It should be noted that Eqs. (1)–(4) are based upon the
assumption of Gaussian distributions of the electron and
photon beams. However, this assumption may be too
crude, and the undulator brightness given by Eq. (1) is
not accurate. A more rigorous calculation can be carried
out using numerical synchrotron radiation codes, such as
SDDSBRIGHTNESS/URGENT [14] and SPECTRA [15]. Using

these codes, we can scan the undulator radiation bright-
ness for different �x values, and determine the optimal
beta function more accurately. The results are shown in
Fig. 2. Three types of ALS lattice (current, baseline, and
ultimate upgrade) are studied. We can see that the opti-

mal beta values �opt
x given by the peak location of the

brightness curve are different from the values given by
Eq. (4).

In conclusion of this section, to achieve a high bright-
ness of insertion device, we need not only minimize the
emittance of the beam, but also optimize the beta func-
tions at the center of straights. Especially, when the
electron beam emittance is small and its beam size is
comparable to the diffraction-limited photon beam size,
the optimization of the beta function can significantly
improve the brightness of insertion device. Generally
speaking, a low-beta value is desirable since the phase
spaces of the electron and photon beams have a better
match, which results in a small effective photon beam
size and divergence. From Fig. 2, we can see that the

optimal beta value is about 1 meter for ALS ultimate
upgrade lattice. It should be noted that there is no single
optimal beta value for all types of ALS lattices because it
depends on the dispersion function which is different for
different type lattices. However, for current and baseline
type lattices, the brightness has a weak dependence on
the beta value around the peak region (1–10 meters) as
shown in Fig. 2. Therefore, 1 meter is a good choice for
all types of lattices. In the following sections, we are
going to use the beta function of 1 meter as an objective
to optimize ALS lattices.

III. SMALL-EMITTANCE AND LOW-BETA
LATTICE DESIGN

A. Optimization techniques

From previous discussion, we know that to achieve high
brightness of insertion devices it is desirable to design a
storage ring with a small-emittance and low-beta function
(about 1 meter). At the ALS, two techniques, global scan
all stable setting (GLASS) [9] and MOGA [10], have been
successfully developed to search for small-emittance and
low-beta lattice for future upgrades. To use the technique
of GLASS, we first scan all possible quadrupole settings
and find all stable ones; then compute properties of all
stable settings and filter by properties those settings that
may be of interest. This technique is straightforward and
easily implemented for a simple lattice with a small num-
ber of quadrupole families (usually, less than 4). However,
for a lattice with a large number of variables, this technique
is unfeasible because the computing time exponentially
depends on the number of the variables. To address this
limitation, MOGA were successfully developed at the
ALS. MOGA is a method to generate optimal solutions
using a technique inspired by natural evolution. The opti-
mization begins by randomly creating a population of
possible settings, and then evolves them in subsequent
generations by mimicking natural evolution process such
as inheritance, mutation, selection, and crossover. In the
field of particle accelerator, genetic algorithms have been
successfully applied to optimize superconducting magnets
[16], injection transport lines [17], photoninjector [18],
storage-ring linear lattice [10], and dynamic aperture [19].
To search for an optimal lattice, the starting points of

both GLASS and MOGA are quadrupole strengths which
are either uniformly or randomly selected, then lattice
properties are calculated for each quadrupole setting, and
the one with optimal properties is selected. Based upon the
TME theory [7,8], we recently developed a different ap-
proach to search for small-emittance and low-beta lattices.
Instead of the quadrupole strengths, the starting point of
this method is the lattice properties; once optimal lattice
properties are found, the quadrupole strengths are deter-
mined by lattice matching. In this section, we present the
details of this method and apply it to optimize ALS
storage-ring lattice.
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B. Horizontal natural emittance

It is well known that the horizontal natural emittance of
a storage ring is given by

�x ¼ Cq�
2 hH ðsÞ=j�ðsÞj3i

Jxh1=�ðsÞ2i
; (5)

where Cq ¼ 3:832� 10�13 m; � ¼ E=mc2 is the Lorentz

factor of the electron beam; Jx is the horizontal partition
factor; �ðsÞ is the bending radius; s represents the longi-
tudinal position along the ring; and the brackets ‘‘h i’’ mean
averaging over the storage ring; the H ðsÞ function is
given by

H ðsÞ ¼ �x�
2
x þ 2	x�x�

0
x þ �x�

02
x ; (6)

where �x, 	x, and �x are Twiss functions of the beam; and
�x and �0

x are dispersion functions.
For an isomagnetic storage ring which has identical

bending magnets, Eq. (5) can be simplified to

�x ¼
Cq

Jx

�2

�

1

N

XhH ðsÞidipole; (7)

where N is the number of dipoles in the ring,
P

means
summations of all the dipoles, and hH ðsÞidipole is the

average H function over the dipole. For a sector bend, it
is given by [20]
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where �0, 	0, �0, �0, and �0
0 are Twiss and dispersion

functions of the beam at the entrance of the dipole; l is the
length of the dipole; and k is the focusing function of the
dipole. For a rectangular bend, the design orbit of electron
beam is not normal to the edges of the magnet, and thus it
contains an extra focusing/defocusing effect at the edges.
We need to replace 	0 and �0

0 in Eq. (8) by [20]

	1 ¼ 	0 � �0

�
tan
; �0

1 ¼ �0
0 þ

�0

�
tan
; (9)

where 
 is the angle of the design orbit with respect to the
edges of the dipole.

C. ALS lattice design

Since the basic ALS sector has a mirror symmetric triple
bend structure (Fig. 1), the two outer bends have the same
average H functions. Thus, the horizontal emittance of
the ALS storage ring is given by

�xð�0;	0;�0;�
0
0;kqfaÞ¼

Cq�
2

�Jx

�
2

3
hH ioþ1

3
hH ii

�
; (10)

where the subscripts o and i are used to identify the outer
and inner bends. Given the Twiss and dispersion parame-
ters �0, 	0, �0, and �0

0 at the entrance of the outer bend,

and the strength kqfa of the quadrupole QFA between outer

and inner bends, hH io and hH ii can be easily evaluated
using Eq. (8). Thus, the horizontal emittance �x is the
function of 5 parameters �0, 	0, �0, �

0
0, and kqfa.

Because of the constraint of the mirror symmetric struc-
ture, the Twiss parameter 	ic and the dispersion function
�0
ic should be equal to zero at the center of the inner bend,

i.e., 	ic ¼ 0 and �0
ic ¼ 0. Applying the constraint �0

ic ¼ 0,

we can solve the quadrupole QFA strength kqfa as func-

tions of �0 and �0
0. Applying the constraint 	ic ¼ 0, we

can also solve 	0 as a function of �0. However, to avoid
solving 	0, we use the beta function �ic at the center of the
inner bend as the free variable instead of �0, and express
�0 and 	0 as functions of �ic, �0, and �0

0. Thus, the five

parameter emittance �xð�0; 	0; �0; �
0
0; kqfaÞ function re-

duces to the three parameter function �xð�ic; �0; �
0
0Þ.

The emittance �x vs the beta function �0 for given
dispersion functions �0 and �0

0 at the entrance of outer

bends is shown in Fig. 3. For each pair of dispersion
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functions ð�0; �
0
0Þ, we could find a local minimum emit-

tance. For dispersion free ALS lattice, i.e., ð�0; �
0
0Þ ¼

ð0; 0Þ, the theoretical minimum emittance we can achieve
is about 6 nm rad. Relaxing the constraint of the dispersion
function, the emittance can be reduced. The local mini-
mum emittance as functions of dispersion function pair
ð�0; �

0
0Þ is shown in Fig. 4. We can see the global minimum

emittance we can achieve is about 1.3 nm rad when
ð�0; �

0
0Þ ¼ ð1:7 cm;�0:065Þ.

Having the desired values of the ring emittance and its
associated Twiss parameters and dispersion functions at
the entrance of the outer dipole, the strength of quadru-
poles QF and QD in the straight are determined using a
lattice matching technique with the constraints 	 ¼ 0 and
�0 ¼ 0 at the center of the straight. After obtaining all the
quadrupole strengths, the stability of the ring is checked,
and Twiss and dispersion functions at the center of the
straight are calculated. The horizontal emittances vs beta
functions at the center of the straight are shown in Fig. 5.
For comparison, the solutions optimized using a genetic
algorithm are also shown in the plot. A good agreement
between them is observed. The TME method gives all the
possible solutions, while the genetic algorithms only give
the optimal ones. It is obvious that, for a given emittance,
there are two distinct solution regions: one has a large beta
function giving the lattice used for the baseline upgrade
[Fig. 1(b)], and the other has a low-beta function which can
be used for ALS ultimate upgrade [Fig. 1(c)].

It is worth pointing out that from Fig. 4 we can see that
the theoretical minimum emittance we can achieve for the
ALS lattice is about 1.3 nm rad. However, from Fig. 5, we
see that the minimum emittance is about 1.7 nm rad. This is

because some solutions shown in Fig. 4 do not exist when
determining the quadrupole strengths of QF and QD using
the lattice matching technique. If additional quadrupole
families are added to the straight we may restore the lost
solutions.

IV. DYNAMIC APERTURE OPTIMIZATION

Optimization of dynamic aperture is a challenging as-
pect of storage-ring lattice design. A large dynamic aper-
ture is required for efficient injection and long beam
lifetime. Several methods have been successfully applied
by lattice designers to optimize the dynamic aperture of the
storage ring. The resonance driving term minimization is
one of these methods. In this method the nonlinear
Hamiltonian of particle motion is written as a series of
driving terms of different orders in field gradients [21]. In
general, each sextupole and quadrupole contributes to a
driving term as a complex number in the overall summa-
tions. By properly choosing the sextupole strength, these
driving terms can be minimized, thus nonlinear effects are
reduced. To successfully use this method, the designer
must carefully choose weight factors for many resonance
driving terms, based upon experiences or even by guessing.
Another widely used method is the brute force sextupole

scan technique [19]. This technique scans all the sextupole
settings, and keeps the setting with the largest dynamic
aperture. Although this method is straightforward and
easily implemented, it is only good for a ring with a small
number of sextupoles since the computing time of this
method exponentially depends on the sextupole number.
The third method is genetic optimization, which can

address the limitation of the sextupole scan method [19].
In this section, we will apply this technique to optimize the
dynamic aperture of ALS ultimate upgrade lattice. Instead
of the commonly used dynamic aperture area, we have

FIG. 5. Lattice solutions optimized using two different tech-
niques, the TME method represented by dots and the genetic
algorithms represented by circles.FIG. 4. Local minimum horizontal emittance �x as functions of

dispersion functions �0 and �0
0. The labels for contour lines

represent their respective emittance in nm rad. The locations of
the minimum emittance for the dispersion free lattice and the
global minimum emittance are indicated in the plot.
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used the total diffusion rate as an objective in the
optimization.

A. Objectives

To optimize the dynamic aperture of a storage-ring
lattice using either brute force scan or genetic algorithms
(GA), first we need to properly choose quality factors, i.e.,
the optimization objectives. The most commonly used
objective by ring designers is the dynamic aperture area.
The evaluation of this objective relies heavily upon the
numerical particle tracking technique. Particles with differ-
ent initial coordinates in x-y configuration space are
tracked for multiple turns. If the particles survive, the
initial coordinates of the particles are recorded. In the
end, we could have the initial coordinates of all stable
particles. The area which encompasses these initial coor-
dinates, known as the dynamic aperture area, is often used
as a quality factor to compare the nonlinear performance of
the lattice. It is generally believed that the larger the
aperture area the better the dynamic properties the lattice
has. However, the dynamic aperture area could not reveal
the detailed nonlinear behavior of particles, and the reso-
nance structures of ring lattice.

Frequency map analysis (FMA) [22] can address these
limitations. This technique has been introduced to study
dynamics of particle accelerator for more than 15 years.
Briefly speaking, FMA constructs a map between x-y
configuration space and �x-�y tune space by tracking

particles with different initial coordinates for a period
time. For each test particle, the discrete trajectories are
recorded at an observation location. Using the numerical
analysis of fundamental frequencies algorithm [23], we can
precisely calculate the tunes of this particle. As a stability
index, the diffusion rate of particle trajectory is defined as
follows:

d ¼ log

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x;1 � �x;2Þ2 þ ð�y;1 � �y;2Þ2

N

s 1
A; (11)

where �x;1 and �y;1 represent the horizontal and vertical

tunes calculated for the first N turns tracking data; �x;2 and

�y;2 represent the horizontal and vertical tunes calculated

for the followingN turns. Because of the logarithmic scale,
the diffusion rate defined in Eq. (11) is always negative. A
large negative number indicates that the diffusion is small
and the particle trajectory is stable, while a small negative
number indicates the diffusion is large and the particle
motion is irregular.

Incorporating the diffusion rate calculation to the dy-
namic aperture evaluation, we can obtain a powerful tool to
study the nonlinear dynamic performance of a storage ring.
For each test particle in x-y configuration space, not only
its survival status is recorded, but also its diffusion rate is
calculated. The total diffusion rate is then given by the
summation of all the particle diffusion rates. The idea of

using total diffusion rate as an objective to optimize dy-
namic aperture of a lattice is not new [6,24–26]. However,
we successfully implemented it in the genetic optimiza-
tion. Instead of maximizing dynamic aperture area, if it is
possible to minimize the total diffusion rate, the optimized
lattice will have excellent dynamic performance. Next, we
are going to illustrate the dynamic aperture optimization
using genetic algorithms (GA) with total diffusion rate as
an objective.

B. Optimization

There are many different ways to implement genetic
algorithms [27]. The nondominated sorting genetic
algorithm II (NSGA-II) is considered as the most effective
one. The detailed discussion of this algorithm is out of the
scope of this paper, and can be found in paper [28]. Here,
we only focus on their application to optimize the dynamic
aperture of storage-ring lattices. The lattice we are going to
optimize is the one shown in Fig. 1(c). The variables used
for the optimization are sextupole strengths. At the current
stage, the ALS storage-ring lattice has two chromatic
sextupole families (‘‘SF’’ and ‘‘SD’’) in arcs. However,
when the baseline upgrade is finished, an additional four
harmonic sextupoles (‘‘SHF,’’ ‘‘SHD,’’ ‘‘SHF1,’’ and
‘‘SHD1’’) will be installed in straight sections of each
sector [5]. The arrangement of these chromatic and har-
monic sextupole is shown in Fig. 1. The strengths of
chromatic sextupoles are determined by the chromaticity
fitting. Thus, in this optimization problem, there are four
free parameters, i.e., the strengths of the harmonic
sextupoles.
To compare the optimization performance, both the

dynamic aperture area and total diffusion rate are used as
optimization objectives. An accelerator modeling code,
such as GOEMON[29] and ELEGANT[30], can be used for
particle tracking and objective evaluations.
Figure 6 shows solutions at different generations in the

objective spaces for the optimizations using (a) dynamic
aperture area as objective and (b) total diffusion rate as
objective. In either case, the objectives are calculated for
both on- and off-momentum (dp=p ¼ 0:5%) particles. The
particles are tracked through the lattice with quadrupole
strength and roll errors. The magnitudes of these errors are
0.03% and 0.5 mrad, respectively. For the dynamic aperture
area calculations, the 21-line search method [30] is used
and particle is tracked for 512 turns; the boundary of the
aperture is clipped to avoid island before calculating the
aperture area. For the total diffusion rate calculation, the
particles are launched over nonuniform 21 by 21 grids in
x-y space and tracked for 512 turns (the nonuniform grids
in x-y space lead to an equal spacing in action space). For
the surviving particles, the diffusion rates are calculated
according to Eq. (11). If the particles are lost, the diffusion
rates are assigned to a value which is slightly larger than
the largest diffusion rate for surviving particles. In this
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problem, the number �3 is used. Then, the total diffusion
rate is then given by the summation of all the diffusion
rates over the 21 by 21 grids. Figure 6 shows that the
solutions converge after 100 generations, and optimal so-
lution fronts are obtained for either case.

The dynamic apertures and diffusion rates of example
lattices from the solution fronts are shown in Fig. 7 for
(a) optimization using aperture area as objective and
(b) optimization using total diffusion rate as objective.
The diffusion rates of particle motions are represented by
color in the figure. The blue color indicates that the particle
orbit is regular, while the red color indicates irregular. We
can see that these two optimal lattices have almost the
same aperture area. However, the lattice optimized using
total diffusion rate as objectives has a superior dynamic
performance, because in Fig. 7(b) there is less red color
and some resonance structures disappear.

V. SIMULTANEOUS LINEAR AND NONLINEAR
LATTICE OPTIMIZATION

From Secs. III and IV, we can see that the lattice opti-
mization proceeds in two stages. The first stage is to design
a linear lattice to meet some property requirements, such as
small-emittance and low-beta functions, by changing the
quadrupole settings. The second stage is to optimize the
nonlinear properties of this lattice by changing the sextu-
pole settings. These two stages are well separated.
However, without a consideration of the suppression of
nonlinear effects at the first stage, the subsequent optimi-
zation in the second stage might not succeed. In this case,
the linear solution found in the first stage needs to be
revisited by changing the working tunes to ensure the
best overall optimization. Such a strategy, known as
DATS, has been widely used to find a best working
point in many facilities [31,32]. There are also many
successful examples of using the first stage to mitigate
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strong nonlinear effects by canceling geometric driving
terms, which are achieved by properly setting the phase
advance over sections of lattice [33–36].

In this section, we explore optimizing the linear and
nonlinear properties of lattice simultaneously using
NSGA-II. The lattice we are going to optimize is the
same as the one in Sec. IV. It has 12 superperiods with
three quadrupole (QF, QD, and QFA), two chromatic sex-
tupole (SF and SD), and four harmonic sextupole (SHF,
SHD, SHF1, and SHD1) families. The three quadrupole
strengths are used as parameters for the linear property
optimizations, and four harmonic sextupoles are used for
nonlinear property optimizations, and two chromatic sex-
tupoles are used for chromaticity fittings. The objectives
we want to optimize are two linear properties (horizontal
beta function �x at the center of straight and horizontal
natural emittance �x), and one nonlinear property (the

dynamic aperture area). The constraints are to ensure the
stability of the lattice, positive damping, and reasonable
maximum Twiss and dispersion functions, and vertical
phase advance.
The optimal solutions in the objective spaces are shown

in Fig. 8(a). For this optimization problem, 20 000 popu-
lations and 400 generations are used, and it takes about
70 hours with 64 CPUs to reach these solution fronts. In the
figure, we can clearly see that there are trade-offs between
small-emittance (�x), large dynamic aperture and small
horizontal beta function (�x). In the previous section, the
lattice we try to optimize has the horizontal emittance of
about 1.6 nm rad. Figure 8(a) shows that the dynamic
aperture we can achieve for this lattice is about 2�
10�5 m2. If we allow emittance increase to 2.5 nm rad,
the dynamic aperture is almost doubled. Figure 8(b) shows
the solutions in the tune space. It can be seen that, for the
lattices with the emittance less than 2 nm rad, the work
tunes �x and �y are between 21–22 and 7.5–8, and the

dynamic aperture areas are about 2� 10�5 m2, while for
the lattice with the emittance of about 2.5 nm rad, the
working tunes are between 20–21 and 7–7.5, and the
dynamic aperture areas are about 3:5� 10�5 m2. These
optimal solution fronts provide us guidance to choose a
candidate lattice for ALS future upgrade.

VI. CONCLUSIONS

We have successfully developed systematic strategies
and techniques to design and optimize the ALS storage-
ring lattice for its potential future upgrades. First, the TME
theory is applied to optimize small-emittance and low-beta
lattices. The study provides us a different perspective on
the lattice design, and confirms results found in earlier
study using both global scan of all stable settings
(GLASS) and MOGA techniques. Then, the dynamic ap-
erture of the lattice is optimized using MOGA with total
diffusion rate as an optimization objective. It is illustrated
that this optimization can lead to a superior nonlinear
dynamic performance. The linear and nonlinear properties
of the lattice are also optimized simultaneously, and trade-
offs are found among the low emittance, the small beta
function and the large dynamic aperture. These trade-offs
can provide us a guideline to choose a candidate lattice for
ALS future upgrades.
The ultimate ALS small emittance and low-beta lattice

presented in this paper may have a dynamic aperture too
small to allow traditional off-axis injection. To address this
problem, a novel pulsed multipole injection scheme has
been proposed at the ALS [37]. Alternatively, an alternat-
ing high and low beta lattice, which has a large �x function
at the injection straight, could be used for ALS future
upgrades. So far, we have successfully applied MOGA to
design and optimize this lattice. The feasibility of using the
above two approaches to lower the ALS emittance is still
under investigation.

FIG. 8. Linear and nonlinear optimizations of ALS lattice
using NSGA-II (a) solution front in the objective spaces, i.e.,
the horizontal emittance �x (x axis), dynamic aperture area (y
axis), and horizontal beta function �x (color coded);
(b) solutions in the tune space �x and �y, the horizontal emit-

tance (left) and dynamic aperture area (right) are colored.
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