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We propose a technique to extend noninvasive electro-optic detection of relativistic electron beams to

bunch lengths of ’ 10 fs. This is made possible by detecting the frequency mixing that occurs between the

optical probe and the space charge fields of the beam, while simultaneously time resolving the resulting

mixed frequency signal. The necessary formalism to describe this technique is developed and numerical

solutions for various possible experimental conditions are made. These solutions are then compared to

simulation results for consistency. Finally, the method to reconstruct the original bunch profile from the

proposed diagnostic is discussed and an example showing a 15 fs test beam reconstructed to within an

accuracy of 15% is given.
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I. INTRODUCTION

There has been considerable work over the past decade
on the development of a single shot, noninvasive, optical
technique to measure the longitudinal profile of an electron
bunch. This has proved to be a difficult task as bunch
lengths have dropped below 100 fs and in the case of laser
wakefield accelerators are sub-10 fs [1]. One technique that
has drawn significant attention has been electro-optic sam-
pling (EOS). EOS is a common technique used to measure
short pulse terahertz (THz) fields. Recently, this has been
adapted to the longitudinal profiling of accelerated charged
particle beams. EOS has been used to characterize beams
either directly, by measuring their self-fields [2–11], or
indirectly by measuring the THz fields generated from
transition radiation diagnostics [12,13]. In the case of the
former, the particle beam’s longitudinal profile can be
deduced from its self-fields due to the fact that for suffi-
ciently relativistic beams the temporal structure of the self-
fields matches the temporal structure of the beam [14]. The
technique is commonly described as being analogous to an
electro-optic modulator based on Pockels effect [15]. The
electric field of interest induces a time-varying birefrin-
gence within an electro-optic crystal that is being probed
optically. The field’s profile is then extracted from the
optical signal using ellipsometry methods, a few of which
will be discussed in the next section.

A. Current techniques

Schematics for three of the most widely used detection
schemes are contained in Berden et al. [7]. All these

schemes rely on polarization changes due to the Pockels
effect to extract the bunch profile. Frequency mixing, if
considered at all, is regarded as a parasitic and undesirable
effect [16]. In the technique proposed here, frequency
mixing is accounted for at every stage of the process and
is considered beneficial for bunch profile extraction.
The earliest detection method was the balanced photo-

diode detection scheme [2,15,17]. When the charged par-
ticle beam is present, a birefringence is induced within the
crystal. An ultrashort optical probe sees this induced bire-
fringence, which shows up as a change in the splitting ratio
recorded by the balanced photodiode. By changing the
delay of the probe pulse, the beam profile can be mapped
out. The disadvantage of this technique is that it requires
scanning of the probe and thus is not single shot.
Additionally, it requires that the probe is much shorter
than the bunch of interest. This technique can be adapted
to single shot applications by using a long probe pulse and
relying on the bandwidth of the balanced photodiode to
resolve the bunch profile. However, most balanced photo-
diodes have bandwidths in the 100’s of MHz and thus
only bunches greater than a few nanoseconds would be
appropriate.
The next advancement in EOS was the development of a

single shot technique that relies on spectral decoding
[3,7,8,16]. Here instead of an ultrashort pulse, a stretched
pulse is used as a probe and only the polarization state
corresponding to the 1�10 axis is examined. In this arrange-
ment, the fields from the charged particle bunch act to
modulate the intensity profile of the stretched probe.
Since the stretched probe is produced by placing a linear
chirp on an ultrashort pulse, each frequency within the
pulse corresponds to a point in time and thus the bunch
profile is imprinted on the spectrum of the beam. By
precisely knowing the chirp placed on the probe the bunch
profile can be extracted directly from the spectrum; how-
ever, frequency mixing modifies the spectrum and reduces
the accuracy of this technique.
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The latest refinement to EOS is temporal decoding
[6–8]. As with the previous technique, a stretched pulse
is used to probe the nonlinear crystal. The difference is that
the profile is now extracted by cross correlating an ultra-
short pulse with the probe pulse in a second harmonic
crystal. Cross correlation at a wide angle has the effect of
transferring the temporal structure of the probe into the
spatial structure of the second harmonic pulse. The second
harmonic is then recorded by a CCD and the bunch profile
is extracted. By not relying on the spectral content, tem-
poral decoding side steps the issue of frequency mixing,
but fails to take advantage of it.

The development of these decoding methods has lead to
experimentally measured electron bunches as short as 120
and 60 fs using the electro-optic crystals ZnTe and GaP,
respectively [7,10,11]. Unfortunately, this represents what
is the experimentally verified lower bound for these decod-
ing methods. A discussion of the reasons for this limitation
as well as nonlinear processes that will allow for the
measurement of even shorter bunches follows.

B. Limitations

For a material to exhibit the Pockels effect it must lack
inversion symmetry. Ionic crystals are therefore an obvious
choice and tend to have relatively high electro-optic coef-
ficients. However, these same structural properties lead to
the existence of a transverse optical phonon frequency in
the THz frequency range. The phonon frequency shows up
as a resonance in the dispersion relation [18–20]. This is
clearly seen in Figs. 1(a) and 1(b) for the refractive index
and electro-optic coefficient of ZnTe in the THz range,
respectively.

The resonance effect is immaterial when trying to mea-
sure electron bunches * 120 fs for ZnTe and * 60 fs for
GaP. This is due to the fact that, in the frequency domain, the
corresponding self-fields’ frequency components are con-
tained mostly to the region below the resonance. Thus, for
any given electro-optical material, a bunch length longer

than 1
�TO

can easily be extracted. Here �TO is the transverse

optical phonon frequency. However, for shorter beams this
is no longer the case. For these types of beams the resonance
has the effect of distorting the temporal profile of the self-
fields as they propagate through the crystal. Additionally,
certain frequencies can be suppressed by the slippage be-
tween the phase/group velocities of the self-fields and the
optical probe. These effects are often discussed in terms of
the so-called electro-optic response function, Gð!Þ, that
approximates the ratio of the reconstructed spectrum to
the actual spectrum [15,17]. An example of such a response
function plotted for various thicknesses of ZnTe is given in
Brunken et al. [17]. For various electro-optic materials, the
response function becomesmore favorable for thinner crys-
tals. It has been the focus ofmost ongoing research to obtain
thinner and thinner crystals to measure shorter bunches.
This leads to reduced signal and does not resolve the ulti-
mate issue, namely the resonance [12,15].
Fortunately, the picture described above is not complete

in its treatment of the mixing process that occurs between
the self-fields and the optical probe. The Pockels effect is
actually a low frequency limiting case of three-wave mix-
ing, and for the frequency components being considered
here it is no longer valid [22]. A more thorough considera-
tion of the interaction must include both sum and differ-
ence frequency generation [23]. The following sections
present a picture of the interaction using the formalism
of three-wave mixing. From this picture a new technique is
proposed that uses frequency mixing to extend beyond the
resonance frequency and is capable of measuring beams
that are < 1

�TO
[24].

II. FREQUENCY MIXING

EOS relies on the fact that the particle beam is suffi-
ciently relativistic that its self-fields’ profile matches its
longitudinal profile. In addition to the enhanced transverse
electric field, in the laboratory frame, a magnetic field
component is introduced. At these relativistic velocities,

FIG. 1. Plots showing the refractive index (a) and electro-optic coefficient r41 (b) of ZnTe at various frequencies [17,44].
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the combined transverse electric and magnetic self-fields
become indistinguishable from an infinite radially polar-
ized electromagnetic pulse [14]. Using this fact, EOS of
longitudinal profiles will be described not as a Pockels
effect, but more generally as the nonlinear mixing of an
electromagnetic pulse with an optical probe. The result is
the generation of fields at the sum and difference frequency
as discussed in [22,25–28].

Let us begin by looking at the nonlinear mixing of
the self-fields with a chirped laser probe within a

noncentrosymmetric, second order material. Here the de-
pletion of the self-fields and the probe fields is neglected.
As a consequence of this, the probe propagates through the
material according to its linear wave equations. Also, a
slowly varying envelope approximation, where the time
scale on which the envelope evolves is long compared to
the optical cycle, is used. The coordinate system is set up
such that the fields are traveling along the z axis and the
interface between vacuum and the nonlinear material is
located at z ¼ 0. The fields are then defined as follows:

Particle beam self-fields: E1ðz; tÞ ¼
Z 1

�1
A1ð!1Þe{kð!1Þze�{!1td!1p̂1

A1ð!1Þ ¼ 2

1þ nð!1Þ þ {�ð!1Þ
Z 1

�1
E1ð0; tÞe{!1tdt

(1)

Optical probe: E2ðz; tÞ ¼
Z 1

�1
A2ð!2 �!0Þe{kð!2Þze�{ð!2�!0Þtd!2p̂2

A2ð!2 �!0Þ ¼ 2

1þ nð!2Þ þ {�ð!2Þ
Z 1

�1
E2ð0; tÞe{ð!2�!0Þtdt

(2)

Sum frequency: E3ðz; tÞ ¼
Z 1

�1
A3ð!3 �!0Þe{kð!3Þze�{ð!3�!0Þtd!3p̂NL (3)

Difference frequency: E4ðz; tÞ ¼
Z 1

�1
A4ð!4 �!0Þe{kð!4Þze�{ð!4�!0Þtd!4p̂NL; (4)

where Aið!Þ is the slowly varying envelope, kð!Þ is the
wave vector, nð!Þ is the refractive index, �ð!Þ is
the absorption coefficient, p̂ is the unit vector describing
the polarization direction, and !0 is the optical carrier
frequency. The frequency dependent coefficient in

front of the field amplitude at z ¼ 0 comes from the
Fresnel equations and takes into account reflections
from the material interface. The sum and difference
frequencies at a distance ‘ within the nonlinear material
are

Sum frequency: A3ð‘;!3Þ ¼ {
!2

3

c2k03ð!3Þ
�ð2Þ
ijkð!3;!2; !1Þ e

{�kþ‘ � 1

{�kþ
e�k00ð!3Þ‘A1ð!1ÞA2ð!2 �!0Þ (5)

Difference frequency: A4ð‘;!4Þ ¼ {
!2

4

c2k04ð!4Þ
�ð2Þ
ijkð!4;!2;�!1Þ e

{�k�‘ � 1

{�k�
e�k00ð!4Þ‘A�

1ð!1ÞA2ð!2 �!0Þ; (6)

where kð!Þ ¼ k0ð!Þ þ {k00ð!Þ,�kþ ¼ k1ð!1Þ þ k2ð!2Þ � k3ð!2 þ!1Þ,�k� ¼ �k1ð!1Þ þ k2ð!2Þ � k3ð!2 �!1Þ, and
�ð2Þ
ijk is the second order nonlinear susceptibility. The above equations are taken from Ref. [29] and take into account the

effect of absorption on the nonlinear mixing process.
By making the substitution,

Sum frequency: !1 ¼ � and !2 ¼ !�� Difference frequency: !1 ¼ � and !2 ¼ !þ�;

and following the derivation outlined in Ref. [22], the total field generated from nonlinear wave mixing is

Emixð‘; tÞ ¼ E3ð‘; tÞ þ E4ð‘; tÞ ¼
Z 1

�1

Z 1

�1
!2

c2jk0ð!Þj e
{kð!Þ‘ Re½�ð2Þð!;�; !��Þ � p̂1 � p̂2�

� e{�kþð�;!Þ‘ � 1

{�kþð�; !Þ A1ð�Þe�{�ðtþ�ÞA2ð!���!0Þe�{ð!���!0Þtd�d!; (7)

where � is the separation in time between the self-fields and the probe.
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The above expression can be solved numerically; how-
ever, by first making a couple of approximations the solu-
tion can become less intensive. Let us begin by assuming
that dispersion is small over the optical frequencies of
interest and that ! � !0. The latter is consistent with the
slowly varying envelope approximation made above and
with the relatively narrow bandwidth probe pulses used
experimentally [22,29,30]. From these assumptions the
following approximations can be made:

kð!Þ � kð!0Þ þ
�
dk

d!

�
!0

ð!�!0Þ

¼ kð!0Þ þ
ngð!0Þ

c
ð!�!0Þ; (8)

�kþ ¼ �kð!Þ þ kð�Þ þ kð!��Þ

� kð�Þ � ngð!0Þ
c

�; (9)

and

Re ½�ð2Þ
ijkð!;�;!��Þ��Re½�ð2Þ

ijkð!0;�;!0��Þ�; (10)

where ng is the group index of the material. Applying these

approximations and accounting for both positive and nega-
tive values of !0, Eq. (7) becomes

Emixðt; ‘Þ � {
Z 1

�1
!2

0

c2jk0ð!0Þj
Re½�ð2Þ

ijkð!0;�; !0 ��Þ� e
{½kð�Þ�ngð!0Þ�=c�‘ � 1

{½kð�Þ � ngð!0Þ�=c�A1ð�Þe�{�ðtþ�Þ

�
Z 1

�1
½A2ð!���!0Þe{kð!0Þ‘e{ngð!0Þ‘=cð!�!0Þe{!0t þ A2ð!��þ!0Þe{kð�!0Þ‘e{ngð!0Þ‘=cð!þ!0Þe�{!0t�

� e�{ð!���!0Þtd!d�: (11)

The integral over ! can be solved analytically by assuming a Gaussian probe pulse with a chirp. Namely,

E2ð0; tÞ ¼ E0e
�t2=2�2

e{�t
2
e{!0t;

where �2 is the variance and � is the linear chirp parameter [31].
For such a probe pulse, the integral becomes

Z 1

�1
½A2ð!���!0Þe{kð!0Þ‘e{ngð!0Þ‘=cð!�!0Þe{!0t þ A�

2ð!���!0Þe{kð�!0Þ‘e{ngð!0Þ‘=cð!þ!0Þe�{!0t�e�{ð!��Þtd!

¼ E0e
�½t�ngð!0Þ‘=c�2=2�2

e{ngð!0Þ�‘=cðe{½t�ngð!0Þ‘=c�2�e{kð!0Þ‘e{!½t�ngð!0Þ‘�=c þ e�{½t�ngð!0Þ‘=c�2�e�{kð!0Þ‘e�{!½t�ngð!0Þ‘=c�Þ:

Here, A2ð!��þ!0Þ ¼ A�
2ð!���!2Þ is used. Plugging this into Eq. (10) yields

Emixðt0 � �; ‘Þ � {
!2

0

c2jk0ð!0Þj
E0e

�½t0���ngð!0Þ‘=c�2=2�2ðe{½t0���ngð!0Þ‘=c�2�e{kð!0Þ‘e{!½t0���ngð!0Þ‘=c�

þ e�{½t0���ngð!0Þ‘=c�2�e�{kð!0Þ‘e�{!½t0���ngð!0Þ‘=c�Þ

�
Z 1

�1
Re½�ð2Þ

ijkð!0;�; !0 ��Þ�e{ngð!0Þ�‘=c e
{½kð�Þ�ngð!0Þ�=c�‘ � 1

{½kð�Þ � ngð!0Þ�=c�A1ð�Þe�{�t0d�; (12)

where the substitution t0 ¼ tþ � has been made. The
above general solution can be applied to any noncentro-
symmetric nonlinear material with arbitrary orientation.

III. BANDWIDTHMIXING CROSS-CORRELATION
FREQUENCY RESOLVED OPTICAL GATING

(BMX-FROG)

In this section, the proposed experimental apparatus
shown in Fig. 2 will be considered. This setup was first
introduced in [24]. A chirped optical pulse is split into
two parts. The first part is compressed into an ultrashort
pulse for use as an optical gate. The second part passes
through a set of cross polarizers sandwiching a nonlinear
crystal. For the case presented here, zinc telluride (ZnTe)

will be used, but any other crystal of the �43m crystal
class could be easily substituted. ZnTe was chosen due to
its wide availability and its lower TO frequency when
compared to GaP. The lower TO frequency aids in illus-
trating the above resonance mixing that occurs. The first
polarizer is set up such that the optical probe’s polariza-
tion is perpendicular to the direction of particle beam’s
self-fields within the ZnTe. The ZnTe is cut such that its
110 axis is aligned to the direction of propagation and its
�110 and 001 axes are aligned to the self-field’s direction
and the probe’s polarization, respectively. This type of
geometry has the effect of extinguishing the probe while
allowing the mixed field to pass freely through the second
polarizer.
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The signal is decoded by a cross-correlation frequency
resolved optical gate (X-FROG). The use of a FROG to
decode the EO signal has been proposed previously by
Bolton et al. [32,33]. In these works a polarization-gated
(PG) FROG was suggested. A PG FROG works by cross
correlating the signal with itself in a third-order nonlinear
material. The issue with using a PG-FROG is that it re-
quires a significantly large signal (�mJ) to generate an
output. Such a requirement could lead to undesirable multi-
photon processes and damage of the EO crystal. Also, the
retrieval algorithm is difficult to implement and does not
reliably converge for complex pulse profiles. An X-FROG
is used here instead since it has a more robust retrieval
algorithm and is compatible with small signals (<nJ).
These characteristics are due to the reliance on a lower

order �ð2Þ effect (2nd harmonic generation) instead of a

�ð3Þ effect (cross-phase modulation), as well as an external
gate that can have its intensity increased to amplify the
X-FROG output [34].

Since this setup combines the bandwidth mixing of
the chirped probe and self-fields with an X-FROG, we
refer to it as a bandwidth mixing cross-correlation

frequency resolved optical gate (BMX-FROG). The
BMX-FROG works by cross correlating the mixed field
with the gate pulse within a second harmonic crystal.
The second harmonic signal is then placed through an
imaging spectrometer that produces an image of time
versus frequency. From this image, both amplitude and
phase information for each frequency component in the
pulse is retrieved. By coupling the information provided
by frequency mixing with amplitude and phase infor-
mation, this technique is capable of reconstructing the
profile for bunches below the lower bound set by the
TO resonance that currently limits other EO detection
techniques.
To model this, the reduced equation given in Eq. (12)

was solved numerically. The code uses the dispersion and
second order susceptibility relationships discussed in
Refs. [35,36]. A comparison between the experimental
data for the refractive index and extinction coefficient
and the equations used for the numerical solution is shown
in Fig. 3 [37]. The experimental data was manually
extracted from tables in Ref. [38]. The equations them-
selves are reproduced below:

FIG. 2. BMX-FROG setup used to measure ultrashort charged particle bunches.

FIG. 3. Comparison between experiment data and fits for the refractive index (a) and extinction coefficient (b) for ZnTe. The
experimental data was extracted from Ref. [38].
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nð!Þ ¼ Re½
ffiffiffiffiffiffiffiffiffiffi
�ð!Þ

p
� �ð!Þ ¼ Im½

ffiffiffiffiffiffiffiffiffiffi
�ð!Þ

p
�

�ð!Þ ¼ 1þ !2
THz

�2
THz � {�THz!=!2

� �!2=!2
�

þ !2
opt

�2
opt � {�opt!=!2

� �!2=!2
�

�ð2Þð!Þ ¼ 2de

�
1þ C0

1�!2=!02 � {�!=!02

�
;

(13)

where !2
THz ¼ 0:0729, !2

opt ¼ 7396, �2
THz ¼ 0:0361,

�2
opt ¼ 1225, �THz ¼ 0:0039!�, �opt ¼ 0:1!�, !2

� ¼
1:78� 1014, de ¼ 73 pm=V, C0 ¼ �0:07, !0 ¼
2	5:3 THz, and � ¼ 0:017!0.

After solving for the mixed field, a Gabor transform is
applied. The Gabor transform produces a two-dimensional
function of time and frequency that is equivalent to the
output of the BMX-FROG. The results of this numerical
model for various parameters are given in the following
section.

IV. NUMERICAL RESULTS AND DISCUSSION

To initially illustrate the capabilities of this technique, the
mixing of the self-fields from a short bunch with two differ-
ent types of probes is examined. The results for a chirped
versus a transform limited 500 fs probe are given in Fig. 4.
These were produced by mixing the self-fields of a 15 fs
bunch with the probe within a 50 
m thick ZnTe crystal.
The gate pulse for the X-FROG is taken to be a transform
limited 100 fs pulse. For the case of the chirped probe, a
laser bandwidth of 20 THz was assumed while the trans-
form limited probe has a bandwidth of�1 THz. All quoted
values are given as their full width at half-maximum value.

Comparing the probes, it is seen that they are centered at
�0:5 ps and show significant bandwidth broadening. At
times trailing the main feature, both have a modulated

‘‘tail’’ that signifies the distortion of the self-fields’ profile.
This is a direct result of the crystal’s resonance. Frequency
components above and below the resonance move at differ-
ent phase velocities leading to a distortion of the self-fields’
pulse profile. The primary difference between the two is the
linear slope that exists on the chirped pulse which is con-
sistent with the linear chirp that defines the probe.
The reason for such similarities, despite the difference in

overall bandwidth, is that the instantaneous bandwidth at
any given time is equal to that of the corresponding trans-
form limited pulse, �1 THz. As long as the signal of
interest is short compared to the probe, then the bandwidth
of the resulting mixed field will be approximately that of
the self-fields, regardless of the type of probe used. Put
another way, there is no advantage, theoretically, in using
one type of probe versus another. However, experimentally,
there is an advantage in using a chirped versus a transform
limited probe. This is due to how each type of probe is
formed. The chirped pulse is produced by taking an ultra-
short pulse and putting it through a grating based optical
stretcher, where the pulse length is controlled by changing
the grating separation. The transform limited probe pulse is
produced by passing an ultrashort pulse through a grating-
mask system. Here the pulse length is controlled by the
mask, which removes frequency components to reduce the
overall bandwidth and thus pulse length. The problem with
this technique is that the masking process also removes
energy from the pulse. Therefore, the peak intensity is less
for the transform limited pulse compared to the chirped
pulse of the same length. This is detrimental since the
mixed field signal is proportional to the probe’s field
strength.
Having established the effects of a chirp probe on the

diagnostic, the output of this technique for various bunch
lengths is examined. Figure 5 shows the numerical results
for bunch lengths of 5, 15, 50, 100, and 200 fs. Based on
these results it has been found that for bunches greater than

FIG. 4. Comparison between using a chirped (left) and transform limited (right) 500 fs probe pulse to measure a 15 fs bunch through
a 50 
m crystal. Their total bandwidths are 20 and �1 THz, respectively. Each image is shown using a 100 times filter to emphasize
frequency mixing. The unfiltered image is inserted by overlaying it on the saturated portion of the filtered image (central region).
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FIG. 5. Simulation results for various bunch lengths measured using a 50 
m crystal with a chirped probe. Each image is plotted
using its own normalized false color scale.

FIG. 6. Simulation results showing the effect of various crystal length on the signal from a 15 fs bunch.
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�100 fs the temporal profile is faithfully reproduced by
integrating the resulting signal over frequency. This is
consistent with other techniques [2,3,8]. As the bunch
length becomes shorter, the frequency components that
define its shape exist on both the low and high frequency
sides of the transverse phonon resonance. This leads to a
distortion of the self-field’s profile as the high frequency
components move at a different phase velocity than the low
frequency components. However, these higher frequency
components can be distinguished by the fact that when they
mix with the chirped probe they produce frequency com-
ponents that extend beyond the bandwidth of the probe
pulse. By increasing the sensitivity by a factor of 100 and
allowing the low frequency components to saturate the
mixing can easily be seen. From these images, it has
been found that to first order the bunch length can be
extracted by taking the bandwidth of the mixed field and
calculating the resulting transform limited pulse. A more
faithful bunch profile requires a phase retrieval of the
X-FROG image and an inversion of the mixing formalism.
This process will be discussed later.

In addition to investigating the output of various bunch
lengths, a study of the effects of different crystal thick-
nesses has been performed. The results for 25, 50, 100,
200, and 500 
m thick crystals are shown in Fig. 6. With
respect to the low frequency components, it can be seen
that they spread out in time as the crystal thickness is

increased. This effect is well documented in the literature
especially in Ref. [15]. For the high frequency compo-
nents, it is observed that there are two regions in time
where the mixed field is being generated. As the thickness
is increased they separate. This is an effect of the dephas-
ing that occurs between the high frequency components of
the self-fields and the optical probe. However, the band-
width is maintained allowing for first order retrieval of the
bunch length even when using thick crystals.
While the results given above provide unique insight in

the measurement of ultrashort electron beams, it is impor-
tant to know the consequences of the approximations made
in generating Eq. (12) on these results. To examine this, a
comparison between the numerical calculation and inte-
gration of the exact Maxwell equations is made in the
following section.

V. COMPARISON TO SIMULATIONS

To self-consistently model the interaction between the
self-fields associated with the electron bunch and a dielec-
tric the code TURBOWAVE was used [39]. This was made
possible through the recent integration of a nonlinear op-
tics module within the code [35]. Generally, the approach
taken was to model the entire interaction within the time
domain by associating a set of anharmonic oscillators
with each grid cell. Each oscillator contributes to a

FIG. 7. Comparison between numerical results (top) and results from TURBOWAVE (bottom).
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polarization current that acts as an additional source term
in the usual Maxwell field solver. The Maxwell solver
couples back to the oscillators through the electric field,
which appears as a source term in the anharmonic os-
cillator equation. The standard relationships given in
Ref. [30] were used to connect the dispersion relations
and second order susceptibility in the frequency domain
discussed above to the time domain. The simulation box
was set up such that all frequencies up to the electronic
resonances were resolved. To ensure a valid comparison,
a 500 fs optical probe centered at 800 nm was used.
Also, a 15 fs electron beam with an energy of 250 MeV
was used to ensure that the beam was more than suffi-
ciently relativistic. To generate the X-FROG images, the
same Gabor transform developed in the numerical cal-
culations was used. A comparison between the results of
the numerical calculations and TURBOWAVE are given in
Fig. 7 for various crystal thicknesses. An unchirped
probe was used in the 100 
m case as a double check
of the statement made above.

It is apparent after examining the results from the
numerical solution with those from TURBOWAVE that
they are in good agreement. Upon close inspection there
are a couple of minor differences. The first is the posi-
tive slope that appears on the frequencies extending
beyond the resonance. The lack of this characteristic in
the numerical results is a direct consequence of group
velocity dispersion (GVD) not being included. GVD is
no longer accounted for in the numerical model when
the first order expansion of kð!Þ about !0 was taken.
However, solving Eq. (7) directly would correct for this.
The second difference is the additional bandwidth ob-
served in the TURBOWAVE results. This is due to the fact
that the assumption ! � !0 begins to break down for
frequencies well above the resonance. These are ulti-
mately minor effects and do not adversely effect the
physics that is the focus of this work.

VI. MIXED FIELD RECONSTRUCTION

As mentioned previously, a phase retrieval of the
X-FROG image is needed in order to extract a more

faithful bunch profile. This is required since FROG images
are intensity contours and as such phase information is lost.
Once the field is extracted from the X-FROG, the nonlinear
mixing formalism must be inverted for the original field
profile of the electron beam to be reconstructed. With a
sufficient knowledge of the materials dispersion relation-
ships, which are well documented for most common EO
materials, this process is relatively straightforward com-
pared to the phase retrieval problem [40]. Equation (12) is
simply inverted and the pulse profile is extracted. In order
to extract the mixed field, we have developed a phase
retrieval algorithm based on the discussions in Trebino
[34]. A schematic illustrating the basic algorithm is given
in Fig. 8.
The algorithm begins with an initial guess for the re-

trieved field. This is typically a noise field. The test field is
then cross correlated with a well-known reference field,
namely the gate pulse. A fast Fourier transform (FFT) is
then applied and is modified by the X-FROG image. The
resulting field is then transformed back into the time space
by an inverse FFT. The final step is to transform the signal
field that depends on t and � into a field that depends only
on t. This new field becomes the test field for the next
iteration of the phase retrieval algorithm.
We rely on two different techniques to make this trans-

formation. The first is the basis of the ‘‘vanilla’’ FROG
algorithm [34]. In this case the signal field is simply
integrated over all �. However, this technique will even-
tually stagnate. In order to allow the algorithm to reach a
more accurate reproduction, a nonlinear conjugate gradient
method is used [41]. The code then actively switches
between these two techniques as the current one begins
to stagnate. This is done until a predefined error or number
of iterations is reached. This technique has allowed us to
reliably perform phase retrievals with errors of <10�9

[42,43]. An example of a retrieved field using this tech-
nique is shown in Fig. 9. The case used is of the mixed field
produced by a 15 fs bunch passing through a 50 
m piece
of ZnTe. As before, a transform limited probe is used.
At this point, we have the amplitude and phase infor-

mation for each frequency component of the mixed field as
it exits the ZnTe crystal. This information is then used to

FIG. 8. Schematic of X-FROG retrieval algorithm. IFROG is the experimental FROG image from which the field is being extracted.
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retrieve the original bunch profile. This is done by inverting
Eq. (12) and plugging the retrieved mixed field into it. An
example of a retrieved bunch profile is given in Fig. 10.
Here the retrieved mixed field shown in Fig. 9 was used.
The original 15 fs bunch profile is included as a reference.
Also, both profiles are normalized to aid in direct
comparison.

The retrieved bunch profile has a FWHM of 17 fs. This
corresponds to an error of 15% produced by the retrieval

process. This error is a function of the resonance behavior
exhibited by the second order susceptibility. This effect is
also the cause of the modulated wings on the edges of the
retrieved bunch profile. For shorter bunches, where the
frequency contributions of this region are lessened, this
effect should be diminished; however, other issues due to
the large bandwidth of the mixed field may come into play.

VII. CONCLUSION

Using a three-wave mixing formalism, it can be shown
that significant frequency shifts are introduced onto the
optical probe of a EO detection scheme for ultrashort
beams ( & 100 fs). The BMX-FROG is a device that de-
tects this frequency mixing while simultaneously time
resolving the optical probe. Utilizing this enhanced infor-
mation, the original bunch profile can thus be fully
reconstructed.
Numerical calculations based on the mixing formalism

were made and are in good agreement with fully explicit
nonlinear optics simulations. It was then shown that the
bunch profile for a test 15 fs beam can be reconstructed to
within an accuracy of 15%. Given a reliable source of
ultrashort relativistic electrons, an experimental verifica-
tion of this technique could be undertaken. In the course,
this could prove to be a robust noninvasive beam charac-
terization technique.
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S. Simrock et al., TESLA Report No. 11 (2003),
pp. 1–24.

[18] N.W. Ashcroft and N.D. Mermin, Solid State Physics
(Holt, Rinehart and Winston, New York, 1976).

[19] C. Kittel, Introduction to Solid State Physics (Wiley, New
York, 1996), 7th ed.

[20] More exotic electro-optic materials with higher electro-
optic coefficients do exist, however they have multiple
resonances and their dispersion relations are extremely
complex [21].

[21] Y. Takahashi, H. Adachi, T. Taniuchi, M. Takagi, Y.
Hosokawa, S. Onzuka, S. Brahadeeswaran, M.
Yoshimura, Y. Mori, H. Masuhara et al., J. Photochem.
Photobiol., A 183, 247 (2006).

[22] G. Gallot and D. Grischkowsky, J. Opt. Soc. Am. B 16,
1204 (1999).

[23] Recent experimental work by Jamison et al. has shown
the frequency mixing that occurs when the self-fields
of an 50 MeV 650 fs FWHM electron beam mixes
with a quasimonochromatic Ti:sapphire laser pulse
[28].

[24] M.H. Helle, D. F. Gordon, D. Kaganovich, E. V. Keuren,
and A. Ting, AIP Conf. Proc. 1299, 561 (2010).

[25] S. P. Jamison, A.M. MacLeod, G. Berden, D. A.
Jaroszynski, and W.A. Gillespie, Opt. Lett. 31, 1753
(2006).

[26] F. J. P. Wijnen, G. Berden, and R. T. Jongma, Opt. Express
18, 26517 (2010).

[27] Z. Chen, Y. Gao, and M. F. DeCamp, Appl. Phys. Lett. 99,
011106 (2011).

[28] S. P. Jamison, G. Berden, P. J. Phillips, W.A. Gillespie,
and A.M. MacLeod, Appl. Phys. Lett. 96, 231114 (2010).

[29] Y. R. Shen, The Principles of Nonlinear Optics (J. Wiley,
New York, 1984).

[30] R.W. Boyd, Nonlinear Optics (Academic Press,
Amsterdam, 2008), 3rd ed.

[31] W. Koechner, Solid-state Laser Engineering (Springer,
New York, 2006), Vol. 1, 6th ed.

[32] P. R. Bolton, J. E. Clendenin, D.H. Dowell, P. Krejcik, and
J. Rifkin, Nucl. Instrum. Methods Phys. Res., Sect. A 507,
220 (2003).

[33] P. R. Bolton, Int. J. Mod. Phys. B 21, 527 (2007).
[34] R. Trebino, Frequency-Resolved Optical Gating: The

Measurement of Ultrashort Laser Pulses (Kluwer
Academic Publishers, Norwell, MA, 2000).

[35] D. F. Gordon, M.H. Helle, D. Kaganovich, and A. Ting,
AIP Conf. Proc. 1299, 67 (2010).

[36] G. Gallot, J. Zhang, R.W. McGowan, T.-I. Jeon, and D.
Grischkowsky, Appl. Phys. Lett. 74, 3450 (1999).

[37] Differences between the model and the numerical solution
arise in the UV range, however these frequencies are
beyond those considered in this work. Also, apparent
discrepancies in the extinction coefficient are visually
emphasized due to the vertical log scale. The discrepan-
cies become appreciable only for low values that do not
contribute.

[38] CRC Handbook of Chemistry and Physics, edited by
W.M. Haynes and D. R. Lide (Chapman and Hall/
CRCnetBASE, Boca Raton, FL, 2009), Vol. 90.

[39] D. F. Gordon, IEEE Trans. Plasma Sci. 35, 1486 (2007).
[40] Issues with inversion of the mixing formalism may arise

due to the combination of material absorption and the
finite dynamic range of experiments. This may need to be
addressed at that time.

[41] J. Nocedal and S. Wright, Numerical Optimization
(Springer, New York, 1999).

[42] Noise on the signal could prove to be an experimental
issue due to the factor of 100 difference between the main
feature and frequency mixing wings. However, we believe
this could be compensated for by using a holographic
notch filter or placing a mask in the imaging spectrometer.

[43] Error measurements are made by calculating the sum of
least squares between the X-FROG image and the re-
trieved image. This error measure differs from that de-
scribed in Trebino [34], thus care should be taken when
making direct comparisons between our technique and
others.

[44] H. D. Riccius and R. Turner, J. Phys. Chem. Solids 29, 15
(1968).

EXTENDING ELECTRO-OPTIC DETECTION TO . . . Phys. Rev. ST Accel. Beams 15, 052801 (2012)

052801-11

http://dx.doi.org/10.1016/j.nima.2005.10.090
http://dx.doi.org/10.1016/j.nima.2005.10.090
http://dx.doi.org/10.1063/1.3266919
http://dx.doi.org/10.1103/PhysRevLett.99.164801
http://dx.doi.org/10.1103/PhysRevLett.99.164801
http://dx.doi.org/10.1103/PhysRevSTAB.12.032802
http://dx.doi.org/10.1103/PhysRevSTAB.12.032802
http://dx.doi.org/10.1103/PhysRevLett.96.014801
http://dx.doi.org/10.1103/PhysRevLett.104.084802
http://dx.doi.org/10.1103/PhysRevSTAB.11.072802
http://dx.doi.org/10.1103/PhysRevSTAB.11.072802
http://dx.doi.org/10.1016/j.jphotochem.2006.03.027
http://dx.doi.org/10.1016/j.jphotochem.2006.03.027
http://dx.doi.org/10.1364/JOSAB.16.001204
http://dx.doi.org/10.1364/JOSAB.16.001204
http://dx.doi.org/10.1063/1.3520386
http://dx.doi.org/10.1364/OL.31.001753
http://dx.doi.org/10.1364/OL.31.001753
http://dx.doi.org/10.1364/OE.18.026517
http://dx.doi.org/10.1364/OE.18.026517
http://dx.doi.org/10.1063/1.3607486
http://dx.doi.org/10.1063/1.3607486
http://dx.doi.org/10.1063/1.3449132
http://dx.doi.org/10.1016/S0168-9002(03)00876-3
http://dx.doi.org/10.1016/S0168-9002(03)00876-3
http://dx.doi.org/10.1142/S0217979207042331
http://dx.doi.org/10.1063/1.3520411
http://dx.doi.org/10.1063/1.124124
http://dx.doi.org/10.1109/TPS.2007.905949
http://dx.doi.org/10.1016/0022-3697(68)90250-3
http://dx.doi.org/10.1016/0022-3697(68)90250-3

