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Energy extraction efficiency of a free electron laser (FEL) can be greatly increased using a tapered

undulator and self-seeding. However, the extraction rate is limited by various effects that eventually lead

to saturation of the peak intensity and power. To better understand these effects, we develop a model

extending the Kroll-Morton-Rosenbluth, one-dimensional theory to include the physics of diffraction,

optical guiding, and radially resolved particle trapping. The predictions of the model agree well with that

of the GENESIS single-frequency numerical simulations. In particular, we discuss the evolution of the

electron-radiation interaction along the tapered undulator and show that the decreasing of refractive

guiding is the major cause of the efficiency reduction, particle detrapping, and then saturation of the

radiation power. With this understanding, we develop a multidimensional optimization scheme based on

GENESIS simulations to increase the energy extraction efficiency via an improved taper profile and

variation in electron beam radius. We present optimization results for hard x-ray tapered FELs, and the

dependence of the maximum extractable radiation power on various parameters of the initial electron

beam, radiation field, and the undulator system. We also study the effect of the sideband growth in a

tapered FEL. Such growth induces increased particle detrapping and thus decreased refractive guiding that

together strongly limit the overall energy extraction efficiency.

DOI: 10.1103/PhysRevSTAB.15.050704 PACS numbers: 41.60.Cr, 41.60.Ap

I. INTRODUCTION

Recent results on single pulse coherent diffraction
imaging of proteins [1] and viruses [2] using an x-ray free
electron laser (FEL) show that the resolution can be
improved by both increasing the number of the coherent
photons and simultaneously reducing the pulse duration to
about 10 femtoseconds (fs) or less, thus requiring a peak
power of one terawatt (TW) or larger compared to the present
values of 20 to 50 GWavailable at saturation from the self-
amplified spontaneous emission (SASE) mode. Theoretical
work done at DESY [3] and SLAC [4] shows that oneway to
increase the peak radiation power of a SASE x-ray FEL to
the TW level is to use a tapered undulator, following a
concept initially proposed byKroll, Morton, and Rosenbluth
(KMR) [5], together with the self-seeding option [6].

The SLAC work shows the existence of a saturation
effect that limits the efficiency of energy transfer from
the electrons to the radiation to values below those pre-
dicted by the one-dimensional (1D) KMR theory [7,8]. The

work is based on numerical simulations, using the three-

dimensional (3D), time-dependent codes GENESIS [9] and

GINGER [10]. Studies suggest that the saturation effect is

due to some combination of diffraction, refraction, radial

dependence of the radiation field, and time-dependent,

slippage effects.
Better understanding of the limits and capabilities of a

self-seeded tapered FEL requires an in-depth study of the
3D effects, in particular diffraction and refraction, absent
from the 1D KMR analysis. While GENESIS and GINGER

have been benchmarked against many experimental re-
sults and give a reliable evaluation of an FEL perform-
ance, they require moderately long computing time,
limiting the possibility of multidimensional, parametric
optimization of FEL performance when 3D and time-
dependent effects are important. To this end, we have
developed a model of a tapered FEL, using the 1D KMR
theory and the optical fiber approximation to describe 3D
effects and optical guiding [11–13]. While the model
contains some approximations, it allows us to explore
the full potential of a high-peak-power FEL not only by
tapering the undulator parameters in longitudinal dimen-
sion but also by optimizing the transverse effects. The
results from the model are compared with those from
GENESIS single-frequency numerical simulations to estab-

lish the limits of its validity. We then propose a multi-
dimensional optimization scheme, including the change
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with z of both the undulator field and the electron beam
radial profile. The time-dependent effects not included
in the model are also investigated with the GENESIS

time-dependent numerical simulations.
KMR use the Hamiltonian approach to derive the equa-

tions that describe the electrons’ synchrotron oscillations in
the bucket associated with the ponderomotive potential in
terms of the wiggler magnetic field, wiggler period, and
radiation field [5]. The introduction of the synchronous phase
�r is used to formulate both the deceleration rate and the
electron trapping fraction Ft. However, the theory is one
dimensional, and it assumes constant radiation beam size
rs, electron beam radius rb, and uniform transverse distribu-
tion of the radiation field and electron density. In fact, as
shown by the numerical simulations, at the end of the ex-
ponential gain regime, the radiation beam in a tapered FEL
can expand substantially in the radial direction. Thus, a pure
1D model cannot in general accurately predict the behavior
of the electron and radiation beams in the tapered region.

By contrast, the optical guiding approach considers
many important transverse effects. As shown in
Refs. [11,12], coherent interaction between the radiation
and electrons can optically guide and focus the light.
Because of its microbunching, the electron beam has an
effective complex index of refraction n,

n ¼ 1þ!2
p0

!2
s

r2b0
r2b

aw
2jasj ½JJ�

�
e�i�

�

�
; (1)

where!p is the electron plasma frequency,!s ¼ ksc is the

radiation frequency, with �s ¼ 2�=ks the radiation wave-
length and c the speed of light, rb is the electron beam
radius, aw ¼ jejBw=kwmc2 and as ¼ jejAs=mc2 are the
normalized vector potentials of the helical undulator and

on-axis radiation field (an additional 21=2 factor in denomi-
nator for a linearly polarized undulator). Further symbols
include e for the elementary charge, mc2 the rest mass
energy of electron, Bw the undulator field amplitude and
�w ¼ 2�=kw the undulator period, ½JJ� ¼ 1 for helical
undulator and ½JJ� ¼ J0ð�Þ � J1ð�Þ for linearly polarized
undulator with � ¼ aw

2=2ð1þ aw
2Þ, � the electron’s

Lorentz factor, and � the electron phase relative to the
ponderomotive potential. Quantities with subscript 0 indi-
cate the initial electron and radiation beam parameters. The
free space surrounding the electron beam, by contrast, has
a refraction index of 1.

After the exponential gain regime in a tapered FEL, the
imaginary part of n, ImðnÞmeasuring the gain, is generally
close to 0, while the real part, ReðnÞ describing the refrac-
tive guiding, dominates the FEL process. In this region,
jasj increases much less rapidly with z than is true in the
upstream exponential gain regime; there is also an increase
in rs. Moreover, the refractive guiding decreases with
increasing jasj, which in turn leads to slowing down or
even stopping of the jasj growth [13,14]. This phenomenon
can strongly reduce the radiation peak intensity growth rate

in z as compared to what would be predicted by a purely
1D approach that presumes a constant rs. The optical
guiding approach (e.g., [12]) includes the transverse effects
self-consistently and thus provides more precise predic-
tions for the behavior of the electron and radiation beams.
In Sec. II A, we include the transverse effects revealed

by the optical guiding approach in the framework of the 1D
KMR theory and formulate a physical model explicitly
with several principal assumptions, such as ray-equation,
monoenergy, resonant-phase, and Gaussian-profile ap-
proximations (see below for specifications). In the pre-
sented model, the electron and radiation beam profiles
remain approximately Gaussian, and particles travel
straight-line orbits at constant radius. Only trapped elec-
trons are presumed to contribute to the microbunching term
hexpð�i�Þi in Eq. (1) and, furthermore, with a value equal
to exp½�i�rðrÞ� at each radial position r. Accordingly as
we show in Sec. II A, the term hexpð�i�Þi can be calcu-
lated directly by averaging the product FtðrÞ exp½�i�rðrÞ�
over r, where FtðrÞ and �rðrÞ are the radially resolved
trapping fraction and synchronous phase. These assump-
tions result in a more explicit formulation than the tradi-
tional, nonradially resolved optical guiding approach, and
simultaneously a far more simple and more efficient com-
putational approach than the brute-force approach of tradi-
tional 3D numerical simulation.
In Sec. II B, we compare the predictions of the model

with those of the GENESIS single-frequency simulation for a
120-m, hard x-ray, tapered FEL and obtain good agree-
ment. Based on the model, in Sec. II C we present a general
physical picture of the FEL process in a tapered FEL, and
divide the tapered undulator region, beginning from the
initial saturation location to the end of the undulator, into
three successive regions according to the behavior of the
electron and radiation beams. We show that the unavoid-
able weakening of refractive guiding causes a decreasing
FtðzÞ, and finally leads to saturation of the radiation power.
To improve the overall energy extraction efficiency re-
quires sophisticated control of the decrease of refractive
guiding and particle detrapping along the undulator. For
this purpose, we propose a multidimensional optimization
scheme in Sec. III, and illustrate its applications to hard
x-ray tapered FELs. We discuss the difference between
the proposed optimization scheme and GINGER code’s
KMR-based self-design taper algorithm [15]. We also
compare the optimization results for a tapered FEL with
and without break sections. In addition, we qualitatively
summarize the dependence of the available maximum
radiation power on various parameters of the initial elec-
tron beam, radiation field, and the undulator system, with
only the effect of decreasing refractive guiding taken into
account. In Sec. IV, we introduce another important phe-
nomenon that leads to premature saturation of the radiation
power in a tapered FEL, i.e., the sidebands excited by the
SASE components that originate from the shot noise on the
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electron beam. We show that sideband growth in a tapered
FEL eventually causes rapid particle detrapping and de-
creased refractive guiding that together significantly re-
duce the overall energy extraction efficiency. Our
conclusions are given in Sec. V.

To aid the reader and to keep the flow of the text clear,
we first specify several terminologies and assumptions that
appear frequently in this paper.

Initial saturation point.—This location is the end of the
exponential gain regime in a single-pass high-gain FEL
with a constant-parameter undulator. At this location,
Psat � �Pbeam, and the fractional average energy loss and
energy spread of the electron beam are of the same order as
the FEL parameter �.

Tapered FEL.—While empirically the best taper start
point is usually slightly before the initial saturation loca-
tion, to simplify the analytical study, it is assumed that
the undulator following a self-seeding monochromator is
tapered from the initial saturation location. Both the un-
dulator field aw and undulator period �w can be varied.
However, it is more economical and operationally simpler
to vary only aw than to also change �w for an actual
undulator. Thus, in this paper, our tapers have a varied
aw but constant �w.

Ray-equation approximation.—It is assumed that the
electrons’ trajectories are straight lines and parallel to the
undulator axis; i.e., we neglect radial betatron motion.

Monoenergy approximation.—It is assumed that those
electrons trapped in the ponderomotive bucket have a
radially independent, resonant energy �rmc2 [�r is defined
by Eq. (10) below]; i.e., we neglect the energy spread of the
trapped electrons, which, from a wide range of simulations,
is found to remain small and to be of the same order as the
FEL parameter �.

Resonant-phase approximation.—It is assumed that the
trapped electrons are uniformly distributed in ponderomo-
tive phase at each radial position r, and that their contri-
bution to the microbunching term is exp½�i�rðrÞ�. By
contrast, the contribution of the detrapped particles to the
microbunching term is presumed to be zero.

Gaussian-profile approximation.—It is assumed that
both the radiation and electron beam transverse profiles
approximately follow Gaussian distributions throughout
the undulator; i.e., we neglect higher order modes in the
radiation field that can develop when rs starts to signifi-
cantly exceed rb.

II. PHYSICAL MODEL OFATAPERED FEL

A. Formulation

Generally, before and up to the initial saturation loca-
tion, the fundamental transverse Gaussian mode dominates
the radiation field. We find this behavior applies also in the
tapered region of the undulator [4]. Under the standard
eikonal approximation, the normalized vector potential of
the radiation field as is

asðr; zÞ ¼ as0ðzÞei�ðr;zÞeð�r2Þ=½r2s ðzÞ�; (2)

where as0 and � are the slowly varying on-axis amplitude
and phase of the radiation field, respectively. Accordingly,
the radiation power P (in unit of watts) is given, after
integrating over the radial coordinate, by

PðzÞ ¼ �r2sðzÞa2s0
4Z0

�
ksmc2

e

�
2
; (3)

with Z0 � 376:7 � being the impedance of free space.
Similarly, we presume the initial electron beam profile
obeys Gaussian distribution,

f0ðrÞ ¼ Ne

�r2b0
er

2=r2
b0 ; (4)

where Ne ¼
R
f0ðrÞ2�rdr is the initial electron

population.
Both as0 and rs will vary with z in a tapered FEL

[12,13]. From energy conservation, the changes in as0ðzÞ
and rsðzÞ in a small longitudinal distance �z follow

a2s0ðzþ�zÞr2sðzþ�zÞ � a2s0ðzÞr2sðzÞ

¼ !2
p0

!2
s

r2b0FtðzÞ½h�ðzÞi � h�ðzþ �zÞi�; (5)

where we make the assumption that the variation of
Ft is much slower than that of as0, which is usually valid
in the tapered region of the undulator. We take �rsðzÞ ¼
rsðzþ�zÞ � rsðzÞ, �as0ðzÞ ¼ as0ðzþ�zÞ � as0ðzÞ with
j�rsj � rs and j�as0j � as0, and set h�ðzÞi ¼ �rðzÞ
under themonoenergy approximation. Then we can rewrite
Eq. (5) as

2a2s0ðz1Þrsðz1Þ�rsðzÞ þ 2r2sðzÞas0ðzÞ�as0ðzÞ

� �!2
p0

!2
s

r2b0FtðzÞ�0
rðzÞ�z; (6)

where the prime refers to the z derivative. In Eq. (6), the
first and second terms on the left-hand side are proportional
to the radiation power increment due to radial expansion
and growth in on-axis field, respectively. In the following
discussion, we denote them as �ErðradÞ and �EaðradÞ.
Similarly we represent the term on the right-hand side as
�Eðe�Þ.
Under aforementioned ray-equation, monoenergy, and

Gaussian-profile approximations, the evolution of rs fol-
lows the envelope equation [12],

r00s þ K2rs ¼ 0; (7)

where the optical focusing parameter K2 can be written in
terms of the refractive guiding ‘‘fiber parameter’’ V2 ¼
ðn2 � 1Þks2rb2 with on-axis jasj, the average of sine and

cosine of �, and GðzÞ ¼ ð1� fÞ=ð1þ fÞ2 with the filling
factor fðzÞ ¼ ðrb=rsÞ2 [12],
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K2 ¼ 4

k2s

�
�1þ V2Gþ 1

4
V4G2 hsin�i2

hcos�i2

þ 1

4
ksr

2
s

dðV2G=hcos�iÞ
dz

hsin�i
�
r�4
s : (8)

As mentioned, after the initial saturation in a tapered
FEL, ReðnÞ � 1 and ImðnÞ � 1. Thus, in this region, V2

can be written as [11,13]

V2ðzÞ�2½ReðnÞ�1�k2sr2b�
!2

p0r
2
b0

c2
aw
as0

½JJ�hcos�i
�r

: (9)

In Eqs. (8) and (9), hsin�i and hcos�i are approximated
by a radial average over only the trapped electrons [see
Eqs. (16) and (17)]. In Eq. (9), we also make the mono-
energy approximation and assume that all the trapped
electrons lie exactly at the resonant energy �rmc2, with
�r in the form [5]

�2
rðzÞ ¼ ks

2kwðzÞ ½1þ a2wðzÞ�: (10)

In order to close all the above equations, it is necessary
to determine both the trapping fraction and the average
ponderomotive phase as the electron beam propagates
through the tapered region of the undulator. We note that
the ponderomotive potential is proportional to jasj [5].
With our assumption of Gaussian profile for the radiation
field [see Eq. (2)], the ponderomotive potential becomes
smaller at larger r, and thus a smaller fraction of electrons
will be trapped in the outer edges of the electron beam. As
a result, the transverse distribution of the trapped electrons
will deviate some from a Gaussian profile.

To determine the radial distribution of the trapped elec-
trons, we follow Ref. [5] to formulate the r-dependent
synchronous phase �r in the form

sin½�rðr; zÞ� ¼ ��rðzÞ�0
rðzÞ

awðzÞksjasðr; zÞj : (11)

Adopting the aforementioned resonant-phase approxi-
mation, a given electron stays trapped if and only if its
ponderomotive phase is within the closed orbit portion of
the (r, z)-dependent bucket, and will detrap instantly once
its phase falls outside this (generally shrinking) border.
Thus, the local trapping fraction is given by

Ftðr; zÞ ¼ �2ðr; zÞ ��1ðr; zÞ
2�

; (12)

where�1 and�2 are the minimum and maximum� of the
ponderomotive bucket,

�2ðr; zÞ ¼ ���rðr; zÞ;
cos�1ðr; zÞ þ�1ðr; zÞ sin�rðr; zÞ

¼ cos�2ðr; zÞ þ�2ðr; zÞ sin�rðr; zÞ:
(13)

Note that Ftðr; zÞ ¼ 0 when �rðr; zÞ ¼ �=2.

From combining Eqs. (2), (11), and (12), one can see
there is a maximum r beyond which there can be no
trapped electrons, whose value is given by

rmaxðzÞ ¼ rsðzÞf� ln½sin�rðr ¼ 0; zÞ�g1=2

¼ rsðzÞ
�
� ln

� ��ðzÞ�0ðzÞ
awðzÞksas0ðzÞ

��
1=2

: (14)

Locally, the number of the trapped electrons is
Ftðr; zÞf0ðrÞ, the overall electron trapping fraction FtðzÞ
is then obtained by averaging Ftðr; zÞ over all r from
0 to rmax,

FtðzÞ ¼ 1

Ne

Z rmax

0
Ftðr; zÞf0ðrÞ2�rdr: (15)

Similarly, hcos�i and hsin�i for the trapped electrons are
given by

hcos�iðzÞ¼ 1

Ne

Z rmax

0
cos�rðr;zÞFtðr;zÞf0ðrÞ2�rdr; (16)

hsin�iðzÞ¼ 1

Ne

Z rmax

0
sin�rðr;zÞFtðr;zÞf0ðrÞ2�rdr: (17)

As mentioned above, we assume the undulator taper
begins from the initial saturation location. Thus, starting
from the electron and radiation beam parameters at initial
saturation, especially (as0;sat, rs;sat, �r;sat, Ft;sat), one can

iterate Eqs. (2) through (17) to evolve these parameters in z
along the undulator for a specific taper profile, without
requiring the 6D phase space details of the electron and
radiation beam distribution from a numerical simulation
code.
At initial saturation, according to the relation Psat �

�Pbeam, the saturation length is estimated by [16]

Lsat � �w

4�
ffiffiffi
3

p
�
ln

�
9Psat

Pin

�
; (18)

with Pin being the input radiation power. For the case of
self-seeding, this length would be measured from the point
where the electron beam rejoins the monochromatized
radiation beam in the undulator. The normalized vector
potential of the radiation field as0;sat in a helical undulator

can be evaluated by [14]

as0;sat � 2ð1þ a2w0Þ�2

aw0½JJ� ; (19)

adopting the assumption of rs;sat ¼ rb0; an additional 21=2

factor in the denominator is necessary when considering
a linearly polarized undulator. Since the undulator
parameters are assumed to be constant before initial
saturation, we have �r;sat ¼ �0, �0

r;sat ¼ 0, �r;sat ¼ 0,
and Ft;sat ¼ 1.
Our model has one other ad hoc assumption that we use

for the undulator region just past initial saturationwhere in
actual numerical simulation it is difficult to differentiate
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particles which will or will not eventually be trapped in the
ponderomotive bucket (e.g., see Fig. 4 below). Namely, for
a distance two Rayleigh lengths long where the Rayleigh
length is defined by zr � ksrs;sat

2=2 � ksrb
2=2, we pre-

sume Ft remains exactly equal to one and in effect we
delay applying Eqs. (11) through (17). In this region, the
electron energy loss and radiation gain are calculated from
the taper alone given Ft ¼ 1. We justify this assumption
only empirically in that it appears to work well for both
hard and soft x-ray FEL cases.

It is worth mentioning that the presented model is
based on several principal assumptions, such as ray-
equation, monoenergy, resonant-phase, and Gaussian-
profile approximations, rather than being derived strictly
from Maxwell equations. It well describes the evolution of
the radiation field within rmax, which is given by Eq. (14)
and more or less 3rb0, while not considering the radiation
propagating outside this region. The principal ray-equation
approximation implies that the model applies only to the
cases where the betatron wavelength is much longer than
the synchrotron wavelength of the trapped electrons, an
approximation that is well satisfied for the current LCLS-II
design [4].

B. Verification of the physical model

To verify the accuracy of the above physical model, we
compare its predictions with the results from GENESIS

simulations for an 120-m tapered FEL with LCLS-II like
radiation seed, electron beam, and undulator parameters
[4]. The main parameters are shown in Table I. With a
preset quadratic taper started from a somewhat arbitrarily
chosen location of z0 ¼ 12 m, we scan the taper ratio
� ¼ 1� awðLwÞ=awðz0Þ with Lw being the undulator

length and the electron beam radius rb (constant through-
out the undulator) by use of the GENESIS single-frequency
simulations, with the results shown in Fig. 1. The minimum
scanned rb is 12 �m, determined by the available maxi-
mum field strength of LCLS-II quadrupole magnets. The
parameter-scanning results show that the output radiation
power depends upon both the taper profile and transverse
focusing. Generally, achieving high radiation power re-
quires strong transverse focusing, especially in a case
with a relatively large taper ratio.
From these GENESIS simulations, we obtain a maximum

power of 2.2 TW for an optimal case in which � ¼ 0:12
and rb ¼ 15 �m; for convenience, we name it as
‘‘Case A.’’ Figure 2 presents the Case A evolution of the
radiation power within r ¼ 3rb0, radius rs and on-axis jasj
by fitting a Gaussian to the radiation field data, and the
electron trapping fraction Ft in solid lines.
We note that the rms relative energy spread 	�=� of the

trapped electrons remains close to � ¼ 0:0011, a value
much less than the fractional energy reduction of the
trapped electrons over the undulator ��=�0 � 0:1. We
also note that the betatron oscillation period, L
 �
��rb

2="x;n � 60 m, is 5 times greater than the synchrotron

oscillation period [5] Ls��w½ð1þaw
2Þ=jas0j=aw�1=2=2�

12m. As a result, themonoenergy and ray-equation approx-
imations used in the model are approximately satisfied for
Case A.
To begin our physical model calculations for Case A,

we use Eqs. (18) and (19) to obtain Lsat ¼ 16:1 m and
as0;sat � 6:4� 10�6, which agree fairly well with the

GENESIS simulation results, Lsat � 20 m and as0;sat �
5:1� 10�6. We then advance Eqs. (2) through (17) adopt-
ing a z-step size of �w ¼ 3:2 cm (while keeping constant
�r ¼ 0 and Ft ¼ 1 in the first two Rayleigh lengths after
initial saturation) and generate the evolution of (P, as, rs,
Ft) along the undulator. The model’s predictions are plot-
ted as dashed lines in Fig. 2. Considering the assumptions
used in the formulation, the agreement between the model
and the GENESIS single-frequency simulation is reasonably
good.

TABLE I. Main parameters for a hard x-ray tapered FEL with
linearly polarized undulator.

Parameters Value Unit

E-beam energy 13.64 GeV

E-beam current 4000 Ampere

Normalized emittances "x;n="y;n 0:3=0:3 �m rad

Energy spread 1.3 MeV

E-beam pulse length (FWHM) 10 fs

Normalized undulator parameter aw0 2.3832

Undulator period �w 32 mm

Undulator length Lw 120 m

Radiation wavelength �s 1.5 Angstrom

Peak radiation input power Pin 5 MW

r
b
 (µm)

ξ

14 16 18 20 22 24 26

0.05

0.1

0.15

0.2

0.25

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

FIG. 1. Contour plot of the output radiation power for an 120-
m, hard x-ray, tapered FEL with respect to the taper ratio � and
electron beam radius rb, obtained by GENESIS single-frequency
simulations. The taper starts at z0 ¼ 12 m. The scale of the color
bar is in TW.
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The success of the model is also reflected in the trans-
verse distribution of the trapped electron number and
radiation field, as shown in Fig. 3. Most importantly, the
figure also shows that the variation with radius of the
trapped electron number and their average ponderomotive
phase h�i ¼ h�þ�i (� is the electron phase relative to a
plane wave) obtained from GENESIS shows the same be-
havior as that revealed by our model, i.e., electrons at
larger r have greater �r and detrap more rapidly.

C. Saturation mechanism in a tapered FEL

Based on the verification of the presented physical
model, we give a more general description for the evolution
of the electron-radiation interaction in a tapered FEL,
and show that the decreasing of refractive guiding and
trapping fraction is the major cause of the saturation of
the radiation intensity and power in a tapered FEL.
According to the behavior of the electron and radiation
beams, we divide the tapered undulator region, from the
initial saturation location to the end, into three successive
regions.

1. Particle trapping development region

With our aforementioned assumptions, this region starts
from the initial saturation location and lasts about two
Rayleigh lengths.
At the beginning of this region, because we have as-

sumed that the upstream gain guiding leads to rs � rb, the
factor G in Eq. (8) is close to 0. Although the refractive
guiding ‘‘fiber parameter’’ V2 is considerably larger than 1
(e.g.,�10 for Case A), withG � 0 the�1 term dominates
the expression for K2 [see Eq. (8)], leading to strong
diffraction of the radiation and an increase in rs. From
Eq. (6), the increase in rs corresponds to a large �ErðradÞ,
and therefore a large portion of the energy extracted from
the electron beam contributes to the radiation expansion in
the radial direction. However, as rs increases, G also
increases. By the end of this region, G has grown large
enough that the V2G term in Eq. (8) becomes comparable
to or even larger than 1, and the optical focusing effects
now become strong. At this point the rs growth becomes
much slower and as the radiation power increases, as0 will
also begin to increase strongly.
From Eqs. (10) and (11), we have

as0ðzÞ sin½�rðr ¼ 0; zÞ� ¼ ja0wj
2kw

: (20)

To vary aw smoothly, one usually gradually increases
ja0wj from 0 after the taper start point. Corresponding
to the increased ja0wj and more or less constant as0,
the ponderomotive bucket evolves with the on-axis �r

increasing from 0 to a positive value and with Ft

decreasing markedly. Accordingly, the electrons gradually
bunch themselves to match the changed ponderomotive
bucket, during which evident detrapping occurs. In order
to avoid large on-axis �r and significant detrapping, it
usually calls for a gentle taper with small ja0wj in this
region.
Taking Case A as an example, we show in Fig. 4 the

evolution of the electron beam distribution in the first
two Rayleigh lengths after initial saturation. At the end
of this region, the trapped electrons have a visible
reduction in energy and are also well separated in energy
from the detrapped ones; the measured Ft decreases by
about 17%.
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FIG. 2. Evolution with z of the radiation power within r ¼
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(solid lines) and the physical model (dashed lines).
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2. Radiation intensity growth region

This region follows the particle trapping development
region and ends where as0 reaches a maximum value.
Since G has been close to 1, the ð�1þV2GÞ�ð�1þV2Þ
term in the expression for K2 dominates provided that the
on-axis �r is small enough, e.g. �rðr ¼ 0Þ< 0:4.

At the beginning of this region, V2 is well above 1. Thus,
the optical focusing is relatively strong, leading to slower
increase in rs compared to the upstream region. According
to Eq. (5), a greater proportion of the energy extracted from
the electron beam will contribute to the growth in as0,
resulting in a higher as0 growth rate. Meanwhile, from
Eq. (9), the increase in as0 causes a reduction in V2, and
hence a decrease in K2, i.e., reduced optical focusing. As a
result, with the increasing as0, rs now increases more
rapidly, and the as0 growth gradually slows down, in
general eventually reaching an asymptotic value [14].

At the location where �ErðradÞ ¼ �Eðe�Þ, as0 reaches
its maximum and decreases thereafter. We denote this
location as z ¼ La;max. A somewhat empirical criterion

for the as0 saturation is V2 � 1 [11,14] with K2 � 0,
which results in the maximum as0 in the form

as0;max �
!2

p0r
2
b0

c2
aw0½JJ�

�0

hcos�i; (21)

where we have used the relation awðLa;maxÞ=�rðLa;maxÞ �
aw0=�0 in the case of a2w � 1. Note that the as0 at the

beginning of this region is close to as0;sat. Thus, the length
of this radiation intensity growth region can be estimated
by Lrigr � ðas0;max � as0;satÞ=ha0s0i, with ha0s0i being the

average as0 growth rate in this region.
From Eqs. (19) and (21), the values of as0;sat and as0;max

are mainly determined by the parameters of the initial
electron beam, radiation field, and the undulator system.
In addition, as0;max is also related to the taper profile by the

Ft and hcos�i at z ¼ La;max. Generally speaking, a gentle

taper with small ja0wj will lead to a large Ft and hcos�i and
thus a large value of as0;max at z ¼ La;max. However, such a

taper will also lead to a small �0
r and ha0s0i and, hence, a

long Lrigr. Figure 5 shows the evolutions of the power, as0,

rs, and Ft for the demonstrative tapered FEL in Sec. II B
with rb ¼ 15 �m and with three quadratic tapers of differ-
ent taper ratio. One sees that, when tapering a finite-length
undulator with too small an ja0wj (the � ¼ 0:02 case), as0
does not reach the predicted as0;max even at the end of the

undulator. On the other hand, if the undulator taper em-
ploys too large a value for ja0wj (the � ¼ 0:016 case), as0
reaches a small value of as0;max within a short undulator

length and then begins to decrease. This reduction also
causes rapid detrapping. The radiation power reaches satu-
ration when total detrapping occurs. Both cases produce
low radiation power. As a result, a moderate taper is
required to achieve both a relatively large as0;max and a

high radiation power (the � ¼ 0:12 case).

3. Radiation power growth region

In a tapered FEL with a long enough undulator that as0
reaches its maximum before the exit of the undulator, i.e.,
Lw > La;max, there will be a region following the radiation
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FIG. 5. Evolution with z of the power (within 3rb), on-axis jasj
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15 �m and with quadratic tapers of taper ratio � ¼ 0:02 (blue
lines), 0.12 (red lines), and 0.16 (black lines). The results are
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FIG. 4. The electron beam distribution in the phase space of
(�, �) at the initial saturation location (top), and a distance of
zr ¼ 4:7 m (middle) and 2zr ¼ 9:4 m (bottom) after initial
saturation for Case A, obtained by GENESIS single-frequency
simulation.
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intensity growth region, where the on-axis intensity does
not increase but the total radiation power still grows; we
name this region the radiation power growth region. Note
that in the case with Lw � La;max, there will not be such a

region.
In this power growth region, the refractive guiding is

rather weak with V2 < 1. The �1 term in the expression
for K2 dominates again. Radiation diffraction is now im-
portant again, leading to a more rapid increase in rs than is
true in the upstream region. This leads to �ErðradÞ larger
than �Eðe�Þ and to a decreasing as0 (in some cases, the
as0 decrease rate can be small). In spite of the reduction in
as0, the radiation power will continue to increase as long as
there exist electrons trapped in the ponderomotive bucket.
However, associated with the weakened refractive guiding,
the energy extraction becomes less and less efficient, in-
dependent of the actual taper profile. In the following, we
will show that, in an idealized tapered FEL with arbitrarily
long undulator and with three kinds of taper profiles, the
radiation power will reach saturation due to either the
combination of a decreasing deceleration rate together
with detrapping (Cases 1 and 2) or total detrapping
(Case 3).

Case 1.—For the typical taper obtained using the KMR-
based self-design taper algorithm in which a design parti-
cle at a preset radius remains at a constant �r, Ft remains
relatively constant along the undulator. In this case, as0
decreases slowly with z in this radiation power growth
region. From Eqs. (10) and (20), this design style comes
with a slowly decreasing j�0

rj and ja0wj with z; it also
implies that one is not necessarily concerned with mini-
mizing the total undulator length. However, there is always
a small amount of detrapping (especially when betatron
motion effects are included) so that eventually the product
of Ftj�0

rj in the expression for�Eðe�Þ becomes very small
and the output power essentially saturates.

Case 2.—For a taper with smaller ja0wj compared to that
of a constant-�r taper, the overall trapping fraction is
generally higher at any given z but the energy extraction
rate is slower. Thus, this in general is not an attractive
option. Detrapping will still occur to some extent so that
one expects an eventual saturation in radiation power,
albeit at a much greater undulator length.

Case 3.—A taper with larger ja0wj (e.g., a parabolic taper
with z) and thus larger on-axis �r compared to a
constant-�r taper produces a larger�Eðe�Þ and relatively
slower decrease in as0 within a short distance from the
beginning of this region. However, this is accompanied by
a more rapid detrapping in this power growth region. For a
monotonically increasing ja0wj, �rðr ¼ 0Þ eventually in-
creases to �=2, total detrapping takes place, and the radia-
tion power reaches saturation in the smallest undulator
length among three cases. However, for the optimization
of the radiation power at a given z (i.e., for a fixed-length
undulator), such a taper may often be more aggressive than

a constant-�r taper, especially in the latter part of the
undulator.
Since the optical focusing and, hence, the evolution of

the radiation beam are related to both the longitudinal
dynamics (through j�0

rj and�r) and the transverse dimen-
sion parameters (throughG), it is worthwhile to consider if
allowing a controlled variation in the electron beam radius
can be helpful in improving the overall energy extraction
efficiency. We turn to this question in the next section.

III. MULTIDIMENSIONAL OPTIMIZATION
OFATAPERED FEL

A. Multidimensional optimization scheme

For a physically realistic scenario, we need to optimize
the FEL radiation power within a finite undulator length.
From the analytical studies in Sec. II, optical guiding
physics limits the on-axis radiation intensity and the over-
all energy extraction efficiency. Generally, to maximize the
overall energy extraction efficiency usually requires a
moderate taper within a long enough undulator length, let
us say Lw 	 Lsat þ 4zr, which results in a relatively
large as0;max before and close to the exit of the undulator.

In addition, it is interesting to see if it is possible to
enhance the refractive guiding in the tapered region of
the undulator by optimizing the electron beam radius.
Our physical model can be used to investigate the possible
consequences.
Let us consider a gradually decreased rb in the latter part

of a tapered undulator. Compared to the case with the same
taper profile but a constant rb, the factor G and, hence, the
optical focusing parameter K2 will be slightly larger, lead-
ing to increased optical focusing and to smaller rs as well
as smaller �ErðradÞ. For a given taper profile, Eq. (6)
predicts a larger as0, resulting in smaller �rðr ¼ 0Þ and
higher Ftðr ¼ 0Þ [see Eqs. (11) and (12)]. On the other
hand, a smaller rs leads to a smaller rmax [see Eq. (14)],
causing a higher �rðrÞ and smaller FtðrÞ for electrons at
large r. Thus, the detrapping of the electrons at large r will
be more rapid, while the electrons around the axis will
detrap less rapidly. The stronger on-axis optical guiding on
one hand will tend to lead to a more rapidly growing as0;
on the other hand, a smaller rs will increase diffractive
effects. If one squeezes rb to too small a value such that the
diffraction effect dominates, the energy extracted from the
electron beam will contribute to rapid radial expansion of
the radiation rather than growth in as0. Thus, one expects
there is an optimal value for a decreased rb. We note that,
since G has been close to 1 in the latter part of the tapered
undulator (e.g., rs � 2–3rb for Case A), the expected
change in G and overall optical guiding due to rb variation
is rather small. Thus, we expect only a relatively small
improvement from an rb variation compared with what
is attainable from optimizing the taper profile in z at
fixed rb.
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To illustrate the optimization scheme specifically, we
formulate the taper profile as [17]

awðzÞ ¼ awðz0Þ � ½1� c� ðz� z0Þd�; (22)

where z0 indicates the taper start point, d is the taper profile
order, and c is the scale coefficient which is related to the
taper ratio � by c ¼ �=ðLw � z0Þd.

From Eq. (20), we can obtain

as0ðzÞ sin½�rðr ¼ 0; zÞ� ¼ awðz0Þ
2kw

dðz� z0Þd�1

ðLw � z0Þd
�: (23)

Achieving an increasing as0ðzÞ requires d greater than 1.
Empirically we find that it is best to start the taper
slightly before initial saturation and use a moderate
taper profile order with d � 2. The taper ratio � is closely
related to the energy reduction of the trapped electrons and,
hence, to the gain of the radiation field. The optimal� for the
maximum radiation power varies with the undulator length
and various initial electron and radiation beam parameters.

Our particular formulation of a variation in electron
beam radius is as follows. We introduce a three-segment
rb variation by linearly changing the quadrupole field
strength with z,

KqðzÞ¼

8>>><
>>>:
Kqðz1Þ; with 0<z� z1

Kqðz1Þ�½1�f�ðz�z1Þ�; with z1<z� z2;

Kqðz2Þ�½1�g�ðz�z2Þ�; with z2<z�Lw;

(24)

where KqðzÞ is the quadrupole field strength; z1 indicates

the first Kq-variation start point, which is usually around

the initial saturation location; z2 indicates the second
Kq-variation start point, which is usually around the loca-

tion z ¼ La;max; f and g are related to Kqðz1Þ, Kqðz2Þ, and
KqðLwÞ by Kqðz2Þ ¼ Kqðz1Þ � ½1� f� ðz2 � z1Þ� and

KqðLwÞ ¼ Kqðz2Þ � ½1� g� ðLw � z2Þ�; f can be either

positive or negative, while g is usually negative. In the
thin-lens approximation, the average beta function 
aver /
1=KqðzÞ for periodic transverse focusing lattice cells.

According to the relation rb ¼ ð2"n
aver=�Þ1=2, a linearly
decreasing Kq approximately corresponds to rb increasing

with square root of z, and vice versa.

B. Applications of the multidimensional optimization

With the above specification for functional dependences
of the aw taper and transverse focusing, we obtain
the maximum radiation power for a tapered FEL with
specific electron beam, radiation seed, and undulator
properties by performing multidimensional scans with
GENESIS single-frequency simulations over the following

eight parameters: z0, d, �, z1, z2, Kqðz1Þ, Kqðz2Þ, and

KqðLwÞ. In the following, we present the optimization re-

sults for hard x-ray tapered FELs with and without break
sections.

1. A 200-m, hard x-ray, tapered FEL without
break sections

We first examine the case of a hard x-ray, tapered FEL
with the same radiation seed, electron beam, and undu-
lator parameters as those listed in Table I except that the
undulator length is now 200 m. For a situation with fixed
electron beam radius, we found maximum output with
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FIG. 6. GENESIS single-frequency simulations for the evolution of the radiation power, on-axis jasj, rs, Ft, and bunching factor in a
200-m, hard x-ray, tapered FEL with constant rb, and with taper profiles obtained from GINGER code’s KMR-based self-design taper
algorithm (blue lines) and multidimensional optimization (green lines).
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an optimal taper profile with z0 ¼ 11:5 m, d ¼ 2:04, � ¼
0:19, and optimal rb of 17:5 �m. With these parameters,
Fig. 6 (green lines) shows the evolution of radiation
power, on-axis jasj, rs, Ft, and bunching factor. The
variation of the bunching factor is similar to that of Ft

in the deep-tapered region of the undulator. For compari-
son, we also present a GENESIS run that employs an aw
taper profile obtained with GINGER code’s KMR-based
self-design taper algorithm [15] with �r ¼ 0:4 at r �
rb (blue lines).

Compared to the proposed multidimensional optimiza-
tion scheme, the constant-�r self-design algorithm results
in slightly more rapid taper in the radiation intensity
growth region, a bit smaller value of as0;max, and then a

less rapid taper in the radiation power growth region.
Taken as a whole, the self-design algorithm generates a
taper with a bit smaller taper ratio � (0.17 vs 0.19), a
somewhat greater trapping fraction, but less radiation
power (3.9 vs 4.4 TW) at the end of the undulator.

In Fig. 7 we compare the multidimensional optimiza-
tion results with an optimal rb variation (red lines) and
with a constant rb of 17:5 �m (green lines, same results
as plotted in Fig. 6). The optimal rb variation results in a
higher Ft, larger on-axis jasj, and smaller rs at the exit
of the undulator, and eventually increases the predicted
output radiation power by a factor of 11% (4.9 vs
4.4 TW).

2. A 200-m, hard x-ray, tapered FEL with break sections

Currently, most FEL facilities [18–21] in operation or
under construction with total undulator lengths up to a few
hundred meters are composed of individual undulator seg-
ments separated by break sections used for transverse

focusing, orbit correction, and diagnostics. As an example,
the LCLS-II upgrade project [4,21] adopts a 1-m break
section after each 3.4-m undulator segment, to accommo-
date quadrupoles, diagnostics, and phase shifters.
To investigate the impact of the nonzero-length break

sections upon the radiation output, we perform multidi-
mensional optimization for a 200-m tapered FEL with
break sections of 1 m per 4.4 m, and with the other
parameters the same as those listed in Table I. The
optimization results are shown in Fig. 8 as black solid
lines and compared with that for a 200-m tapered FEL
without break sections (red lines, same results as plotted
in Fig. 7). In the case with break sections, the maximum
radiation power is 2.65 TW, only 54% of that achieved in
the case without break sections. The reduction in the
predicted available power is partially due to the 23%
decrement of the magnetic length, which leads to a
smaller value for the optimal taper ratio (0.12 vs 0.19).
Another important cause is the vacuum diffraction of
radiation in break sections, which causes a further in-
crease in rs and decrease in as0. These changes cascade
into a further increase of on-axis �r and decrease in Ft,
and hence even less efficiency in energy extraction com-
pared to the case without break sections.

3. Dependence of the available maximum radiation power
on various parameters

From a wide range of multidimensional optimizations
based upon GENESIS single-frequency simulations, we can
qualitatively summarize the dependence of the available
maximum radiation power in a tapered, x-ray FEL on
various parameters of the initial electron beam, radiation
field, and the undulator system as follows.
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a. Initial electron beam parameters

The maximum radiation power varies approximately
quadratically with the initial beam current, and linearly
with the initial beam energy. In addition, the smaller the
emittance and energy spread of the electron beam, the
larger the maximum extractable radiation power.

b. Input radiation field parameters

The impact of the initial radiation field parameters,
such as the radiation input power and the initial spot
size, upon the maximum extractable radiation power
is relatively small, especially when the seed power
exceeds a specific value (e.g., 1 MW for the parameters
of Table I).

c. Undulator system parameters

For the same values of radiation seed and electron beam
parameters, a helical undulator produces higher radiation
power than the linearly polarized undulator, by a factor
of about 1=½JJ�2; an undulator with shorter focusing/
diagnostic break sections produces higher radiation power;
a longer undulator can be optimized for higher maximum
radiation power and performs best with a taper with
smaller ja0wj relative to what is true for shorter undulators.
Note that these relations are obtained with optimization

based only on time-steady, single-frequency, 3D simula-
tions. We will show in the next section that, when one
includes time-dependent, multifrequency effects such as
sideband growth, the radiation power will reach saturation
in a shorter undulator length and at a much smaller value.
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IV. IMPACT OF SIDEBAND GROWTH ON THE
OPTIMIZATION OFATAPERED FEL

In this section, we discuss the impact of time-dependent,
multifrequency effects on the optimization of a tapered
FEL. Sideband growth [5,22] generally occurs after
initial saturation and can be excited by the SASE compo-
nents that grow in the exponential gain regime and
originate from the shot noise on the electron beam. From
the viewpoint of energy conservation, the sideband power
accumulates along the undulator associated with the slowly
varying jasj in the tapered region, generally reducing the
energy gain of the primary wave and causing a more rapid
detrapping due to the resultant decrease of longitudinal
coherence, particularly with respect to the eikonal phase.
Eventually, these sideband-induced effects lead to satura-
tion of the radiation power at a much earlier point in z than
would be true in their absence.

To illustrate the impact of the sidebands upon the
radiation output, we perform GENESIS time-dependent
simulation for a 200-m, hard x-ray, tapered FEL
without break sections. Figure 9 compares the results
from time-dependent simulation (blue dashed lines)
with that from a single-frequency run (red solid lines); the
taper, electron beam, and radiation seed parameters are the
same as used in Fig. 7. It is clear that time-dependent effects
lead to significant detrapping by around 100 m, and the
average radiation power and on-axis jasj reach saturation
much earlier in z and, most importantly, at much smaller
values than is true for the single-frequency run. The output
spectra (not shown here) display well-developed upper and
lower sideband peaks offset from the central resonant
wavelength.

The simulation results shown in Fig. 9 indicate that time-
dependent, sideband effects, introduce important limita-
tions. A systematic theoretical and simulation analysis of
these effects is under way and results will be presented in a
forthcoming paper.

V. CONCLUSION

In this paper, we have built an explicit physical model of
a tapered FEL by extending the 1D KMR theory of Ref. [5]
to include certain 3D effects, e.g., refraction, diffraction,
and the radial dependence of both the radiation field and
the electron trapping fraction. While the model contains
some approximations, it has good success in predicting the
behavior with z of the electron and radiation beams, for the
case of a hard x-ray with LCLS-II like parameters. Based
on the model, we give a general description of the evolu-
tion of the electron-radiation interaction beginning from
the initial saturation location to the end of a tapered
undulator, and illustrate that the decreasing of refractive
guiding is the major cause of the reduction of energy
extraction efficiency, particle detrapping, and finally satu-
ration of the radiation power. This framework provides

guidance for maximizing the overall energy extraction
efficiency in a tapered FEL.
We then propose and apply multidimensional optimiza-

tion via GENESIS single-frequency simulations to find a
taper profile that maximizes the output radiation power.
We also find that a reasonable variation of the transverse
focusing and thus electron beam cross section can, to some
extent, further enhance energy extraction efficiency. When
we extend our studies to include time-dependent, multi-
frequency phenomena, we find that sideband growth in a
tapered x-ray FEL leads to strong detrapping effects and,
contrary to single-frequency results, to saturation of the
radiation power in a shorter undulator length and at a much
smaller value. The physical model and analysis in this
paper can provide a good foundation for future studies.
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