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The notion of brightness is efficiently conveyed in geometric optics as density of rays in phase space.

Wigner has introduced his famous distribution in quantum mechanics as a quasiprobability density of a

quantum system in phase space. Naturally, the same formalism can be used to represent light including all

the wave phenomena as originally done by Walther and for synchrotron radiation by Kim. It provides a

natural framework for radiation propagation and optics matching by transferring the familiar ‘‘baggage’’

of accelerator physics (� function, emittance, phase-space transforms, etc.) to synchrotron radiation. More

specifically, the use of Wigner distribution formalism allows a rigorous description of partially coherent

non-Gaussian sources, which is generally the case for synchrotron radiation from an undulator with a high

degree of transverse coherence. This paper reviews many of the properties of the Wigner distribution

starting from quantum mechanics and provides examples of how its use enables physically insightful

description of partially coherent synchrotron radiation in phase space. The concepts of diffraction limit

and coherence are given an exact correspondence to their quantum mechanical counterparts. In particular,

it is shown that the undulator radiation on resonance by a single electron is not diffraction limited though

fully coherent. An extension of how to account for practically important cases of electron beams with

nearly diffraction limited emittances is presented along with a discussion of appropriate figures of merit

suitable for comparing future light sources.
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I. INTRODUCTION

The concept of phase space plays an important role in
accelerator physics. Useful tools such as Twiss parameters,
emittance, and phase space propagation have been in long
use in the accelerator community. The extension of the
classical phase-space concept to synchrotron radiation is
straightforward for geometric optics, applicable for inco-
herent radiation. The Wigner distribution, or Wigner dis-
tribution function (WDF), was recognized to be a general
framework to represent quantum [1] and therefore wave
phenomena in phase space [2] and specifically synchrotron
radiation [3–5]. The approach allows light characterization
of arbitrary degree of coherence [6] and polarization [7]
in phase space, though its application by the accelerator
community has so far been mostly limited to the simplest
cases of Gaussian or Gauss-Schell beams [8,9], despite the
fact that the non-Gaussian nature of undulator radiation in
phase space has been long recognized [4,5,8,10]. The
Gaussian approximation provides a set of useful analytical
expressions for quick estimates of performance of x-ray
sources even though incorrect values for rms phase-space
dimensions are often used (for example, the undulator
radiation in the central cone is incorrectly assumed to
have a diffraction limited rms emittance of �=4�). A

more detailed approach to coherent or partially coherent
sources inevitably calls on physically rigorous wave de-
scription of the radiation without the Gaussian approxima-
tion, either through using cross-spectral density [11] or the
Wigner distribution [4,5]. Since neither undulator radiation
nor electron distribution in the phase needs to be Gaussian,
the general framework becomes essential to be able to
describe the performance of x-ray sources with improved
coherence. Dealing with non-Gaussian sources addition-
ally requires one to differentiate between the concepts of
the diffraction limit and the transverse coherence: e.g., a
source can be fully coherent but not diffraction limited
[12]. The distinction between these two important concepts
has been generally vague or lacking in the accelerator
literature. One such example is synchrotron radiation by
a single electron from the undulator on its resonance.
The Wigner distribution function provides a natural and

elegant description of the properties of light, and can serve
as a useful tool in accelerator and x-ray beam line design
including electron to x-ray beam matching and light propa-
gation, fully accounting for arbitrary polarization and co-
herence properties of radiation. The intuitive picture
provided by the WDF, being the phase-space density of
light or generalized brightness, is particularly appealing to
the accelerator community trained to view many aspects of
the beam dynamics in phase space. Not only can the WDF
be readily computed from the first principles, the first
measurement of x-ray Wigner distribution has been re-
ported in the literature [13]. The knowledge of the
Wigner distribution represents the entirety of what can be
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known about the radiation and its importance will only
increase with advent of more coherent x-ray sources.

One of the main goals of this paper is to provide a more
rigorous foundation for the Wigner distribution formalism
by reviewing many of its useful properties beginning with
their connection to quantum mechanical description of
states. This foundation then allows one to demonstrate
quite easily how the WDF can be used with much physical
insight to describe synchrotron radiation sources with an
arbitrary degree of coherence and polarization.

In what follows, the Wigner distribution properties are
first reviewed in Sec. II using the language of quantum
mechanics. Various examples illustrate the physical mean-
ing of the WDF for both pure and mixed quantum states,
which are the essential concepts for understanding the
coherence of light. The case of the synchrotron radiation
as discussed in Sec. III is then viewed as a natural extension
of the quantum mechanical treatment. The reader who is
familiar with the Wigner distribution properties can skip
Sec. II directly to Sec. III. Coherence and dispersion
properties (i.e., emittance) of light as conveniently con-
veyed by the WDF are emphasized. Special attention is
given to light polarization, being an important character-
istic of synchrotron radiation. Practical matters of comput-
ing the WDF are covered in Sec. IV, which outlines the
general procedure for obtaining the Wigner distribution
first for a single electron, and then extending the result to
include electron bunches using the energy recovery linac as
an example. Since neither synchrotron radiation nor elec-
tron beam in this case have Gaussian phase-space density,
some consideration is given to generalizing the concepts
of emittance and brightness to describe a non-Gaussian
source.

II. WIGNER DISTRIBUTION
IN QUANTUM MECHANICS

The Wigner distribution, initially introduced to account
for quantum phenomena in statistical mechanics [1],
provides a convenient description of a quantummechanical
system in phase space. The Wigner distribution itself does
not possess any new information not already contained in
quantum state itself, which is fully described (together with

its complete time evolution through Hamiltonian Ĥ ) ei-
ther by a pure state c or more generally for a mixed state
by its density matrix �̂ ¼ P

jpjjc jihc jj, with state

weights
P

jpj ¼ 1. The utility of the Wigner distribution

is in convenient and visual representation of the quantum
system (and by extension wave optics phenomena) in terms
of quasiprobability of having both phase-space quantities
(e.g., x; p). Such characterization, being very familiar to
accelerator physicists, is a natural framework of descrip-
tion for a unified phenomena of both classical and wave
nature reusing many of the concepts from the accelerator
field (emittance, � function, phase-space propagation,
brightness, etc.). Quasiprobability refers to the fact that,

while theWigner distribution is normalized to 1 and is used
to compute averages of various quantities as expected for a
probability density function, the function can take on local
negative values. This deviation from non-negativity is
essential for general quantum or wave phenomena where
position and momentum operators do not commute and the
uncertainty principle must hold contrary to the classical
description. It is important to note that this nonpositivity
does not preclude measurement of Wigner distribution
using tomography techniques [13,14].
The properties of the Wigner distribution have been

studied extensively in the context of quantum mechanics
[15,16], wave optics [6,7,17], and signal processing
[18–20]. To provide a suitable context for describing syn-
chrotron radiation, the properties of the WDF are reviewed
in this section. For simplicity, we limit our consideration
here to a 1D scalar wave function, c ðxÞ. Extension to
higher dimensions and polarization as required for syn-
chrotron radiation is detailed in Sec. III. Connection to
wave optics is pointed out when presenting various ex-
amples of the WDF, which is exactly analogous to the
brightness of light or its phase-space density modulo a
proper normalization by the total flux.

A. Pure quantum state

First, let us consider a pure quantum state c (the later
correspondence for light will be its scalar field E in fre-
quency domain). One insightful definition of the Wigner
distribution can be given in Dirac notation [21]:

Wðx; pÞ ¼
Z �

c

��������xþ x0

2

��
xþ x0

2

��������p
�

�
�
p

��������x� x0

2

��
x� x0

2

��������c

�
dx0: (1)

(The integration here and elsewhere in this paper is taken
over the entire range �1 to þ1 unless stated otherwise.)
The integrand is the quantum equivalent of a classical
phase-space trajectory as seen by reading Dirac brackets
from right to left: (1) the probability amplitude for a

particle in state c to have a position ðx� x0
2Þ; (2) the

amplitude for a particle with position ðx� x0
2Þ to have

momentum p; (3) the amplitude for a particle with mo-

mentum p to have position ðxþ x0
2Þ; and finally (4) the

amplitude for a particle with position ðxþ x0
2Þ to (still) be

in the state c . The integration over the entire space x0
therefore creates a superposition of all possible quantum
trajectories of state c (with momentum p and centered
around x), which interfere constructively and destructively,
providing a quasiprobability distribution in phase space.
Using a well-known identity (with h ¼ 2�@ the Planck
constant)

hxjpi ¼ 1ffiffiffi
h
p eipx=@;
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we rewrite

�
xþ x0

2

��������p
��

p

��������x� x0

2

�
¼ 1

h
eipx

0=@:

Equation (1) then assumes its most frequently quoted form,

Wðx; pÞ ¼ 1

h

Z
c �
�
xþ x0

2

�
c

�
x� x0

2

�
eipx

0=@dx0; (2)

where c �ðxþx0
2Þ�hc jxþx0

2i and c ðx�x0
2Þ�hx�x0

2 jc i.
In the same spirit, Eq. (1) can be rewritten in terms of

integration over the entire momentum space,

Wðx; pÞ ¼
Z �

c

��������pþ p0

2

��
pþ p0

2

��������x
�

�
�
x

��������p� p0

2

��
p� p0

2

��������c

�
dp0; (3)

leading to an equivalent definition of the Wigner distribu-
tion function now in terms of momentum representation of
the state �ðpÞ � hpjc i (by a later analogy for light its
angular or the far field representation E in frequency
domain):

Wðx;pÞ¼ 1

h

Z
��

�
pþp0

2

�
�

�
p�p0

2

�
e�ðip0x=@Þdp0: (4)

The momentum and position representations, c ðxÞ and
�ðpÞ, are related via the Fourier transform

�ðpÞ ¼ 1ffiffiffi
h
p

Z
c ðxÞe�ðipx=@Þdx;

c ðxÞ ¼ 1ffiffiffi
h
p

Z
�ðpÞeipx=@dp:

(5)

A summary of the main properties of the Wigner distri-
bution function is given below. Properties that are revisited
later for a more general case of mixed states are denoted by
an asterisk (*).

Property 1 (realness)

Wðx; pÞ 2 R: (6)

This property follows from the definition by noting that
W�ðx; pÞ ¼ Wðx; pÞ.

Property 2 (normalization and marginals*).—TheWDF
is normalized to 1 with its projections (or marginals)
corresponding to nonnegative probability densities in ei-
ther position or momentum

ZZ
Wðx; pÞdxdp ¼ 1;

Z
Wðx; pÞdp ¼ jc ðxÞj2;

Z
Wðx; pÞdx ¼ j�ðpÞj2: (7)

The proof is by substitution of the Wigner definition into
Eq. (7) and then using the identify

Z
eiab=@da ¼ h�ðbÞ: (8)

Property 3 (boundness)

jWðx; pÞj � 2

h
¼ 1

�@
: (9)

This property can be proven using the Cauchy-Schwarz
inequality on the definition of the Wigner function.
It is illustrative to consider when the WDF assumes � 2

h

extrema [16]. An arbitrary wave function c ðxÞ can be
written in terms of even c eð�xÞ ¼ c eðxÞ and odd
c oð�xÞ ¼ �c oðxÞ parts: c ðxÞ ¼ c eðxÞ þ c oðxÞ. Then,
the WDF at the origin becomes

Wð0;0Þ¼ 1

h

Z
c �
�
x0

2

�
c

�
�x0

2

�
dx0;¼ 2

h

Z
c �ðxÞc ð�xÞdx:

This can be written in terms of the wave function’s even
and odd parts:

Wð0; 0Þ ¼ 2

h

Z
ðjc eðxÞj2 � jc oðxÞj2Þdx: (10)

As can be seen from Eq. (10) and the wave function
normalization, Wð0; 0Þ ¼ 2

h if c ðxÞ is even and Wð0; 0Þ ¼
� 2

h if c ðxÞ is odd and vice versa. Thus, a pure quantum

state (or a pure EM mode for radiation by analogy) will
always have the same (maximum in absolute value) nor-
malized density at the origin of its phase space if the mode
is either even or odd. As will be shown later in Sec. IVC,
the so-called core emittance of a coherent even mode will
always be �=8� for monochromatic light with wavelength
� even though the rms emittance can be any value� �=4�
(going from quantum mechanics to light implies setting
h! �, see Sec. III). The undulator radiation from a single
electron at a given frequency near the resonance of odd
harmonics is very nearly symmetric and, therefore, this
property is directly relevant to this practical case.
Property 4 (expectation values).—The expectation value

of an operator Â can be found from its phase-space repre-
sentation function Aðx; pÞ according to

hÂi ¼
ZZ

Aðx; pÞWðx; pÞdxdp; (11)

where Wðx; pÞ acts as a phase-space probability density.

The function Aðx; pÞ and operator Â satisfy the following
relationships [15]:

Aðx; pÞ ¼
Z �

x� x0

2

��������Â
��������xþ x0

2

�
eipx

0=@dx0; (12)

hx1jÂjx2i ¼ 1

h

Z
A

�
x1 þ x2

2
; p

�
eipðx1�x2Þ=@dp: (13)

The pair of Eqs. (12) and (13) is referred to as the Wigner-
Weyl transformation [22]. Refer to [15] for proof.
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A practical significance of this property is that any linear
combination of functions of only position operators or only
momentum operators corresponds to the classical phase-
space representation given by Eq. (12) where one replaces
x̂! x and p̂! p. In particular, the nth moments of the
distribution are readily obtained using

hpni ¼
Z

pnWðx; pÞdxdp; hxni ¼
Z

xnWðx; pÞdxdp:

That is, the WDF or brightness acts as a classical phase-
space probability distribution when it comes to evaluating
moments of position and momentum (or position and angle
for light). Quantum mechanical correspondence to the
classical correlation expectation of position-momentum
is more involved due to the noncommuting nature of the
operators. Indeed, the operator x̂ p̂ is not Hermitian, i.e.,
ðx̂ p̂Þy ¼ p̂yx̂y ¼ p̂ x̂ � x̂ p̂ since ½x̂; p̂� ¼ i@ � 0. As a
result, the expectation value hx̂ p̂i is generally complex
and hx̂ p̂i � hp̂ x̂i. One solution is to write h12 ðx̂ p̂þp̂ x̂Þi ¼
hxpi ¼ hpxi, where the symmetric operator is now
Hermitian and its corresponding phase-space function is
found from Eq. (12) to be 1

2 ðx̂ p̂þp̂ x̂Þ ! xp. Therefore,

hxpi ¼ hpxi ¼
ZZ

xpWðx; pÞdxdp:

The above equations allow us to compute the � matrix
of the quantum (or light) phase-space distribution familiar
to accelerator physicists,

� ¼ hx2i hxpi
hpxi hp2i

 !
¼ �

� ��
�� 	

 !
¼ �T; (14)

with the usual meaning of emittance � ¼ ffiffiffiffiffiffiffiffiffiffi
det�
p

and Twiss
parameters satisfying detT ¼ 1. The Heisenberg uncer-
tainty principle can then be written as

� � h

4�
: (15)

Property 5 (time evolution).—For a time-independent

Hamiltonian Ĥ ¼ p̂2=2mþ Vðx̂Þ, the time evolution for
the Wigner distribution W is governed by

@W

@t
¼� p

m

@W

@x
þ 1

i@

�
V

�
xþ i@

2

@

@p

�
�V

�
x� i@

2

@

@p

��
W:

(16)

The proof is straightforward starting from time-dependent
Schrödinger equation. Refer to [16] for details. In particu-
lar, for a linear force FðxÞ ¼ F0 � kx with a potential
energy VðxÞ ¼ V0 � F0xþ 1

2 kx
2 (F0, k, and V0 are arbi-

trary constants), @ drops out from Eq. (16) and we recover
the classical Liouville’s evolution of the phase-space dis-
tribution,

@W

@t
þ p

m

@W

@x
þ F

@W

@p
¼ 0: (17)

This property further illustrates the connection to the
classical concept of phase space. In particular, classical
invariants and transformation rules directly carry over to
the quantum phase-space density in case of no or linear
forces. An equivalent result for linear transforms in optics
is found, for example, in [5].
Property 6 (state cross correlation*).—Cross correla-

tion of the wave function can be recovered from the WDF
of a pure state via a Fourier transform:

c ðx1Þc �ðx2Þ ¼
Z

W

�
x1 þ x2

2
; p

�
eiðx1�x2Þp=@dp;

�ðp1Þ��ðp2Þ ¼
Z

W

�
x;
p1 þ p2

2

�
e�½ixðp1�p2Þ=@�dx:

(18)

This property is proven by substituting the WDF defini-
tion and using the identity (8). Note the similarity toWeyl’s
relationship, Eq. (13).
It should be noted that the cross-correlation function of

Eq. (18) is just a density matrix of a pure state c in either
position or momentum basis:

c ðx1Þc �ðx2Þ¼ hx1jc ihc jx2i;
�ðp1Þ��ðp2Þ¼ hp1jc ihc jp2i:

(19)

This connection of the Wigner distribution to the density
matrix will continue for mixed states (and by analogy for
partially coherent radiation in optics) as discussed later.
Property 7 (state recovery*).—Property 6 allows one to

recover the wave function from the WDF modulo a com-
plex constant,

c ðxÞc �ð0Þ ¼
Z

W

�
x

2
; p

�
eixp=@dp;

�ðpÞ��ð0Þ ¼
Z

W

�
x;
p

2

�
e�ðixp=@Þdx:

(20)

Property 8 (integrated product).—For two WDFs corre-
sponding to pure states c and 
,

Wðc Þðx; pÞ ¼ 1

h

Z
c �
�
xþ x0

2

�
c

�
x� x0

2

�
eipx

0=@dx0;

Wð
Þðx; pÞ ¼ 1

h

Z

�
�
xþ x0

2

�



�
x� x0

2

�
eipx

0=@dx0;

the integrated (overlapping) product is related to scalar
state product according to

ZZ
Wðc Þðx; pÞWð
Þðx; pÞdxdp

¼ 1

h

��������
Z

c �ðxÞ
ðxÞdx
��������

2¼ 1

h
jhc j
ij2: (21)

The proof of this property again involves a substitution of
the WDF definition into Eq. (21), the use of identity (8),
and a change of integration variables.
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Property 9 (generalized integrated product).—To
account for Wigner distribution of a superposition of quan-
tum states, we introduce a generalized Wigner distribution
(now generally complex) using

Wðc 1;c 2Þðx; pÞ ¼
1

h

Z
c �1
�
xþ x0

2

�
c 2

�
x� x0

2

�
eipx

0=@dx0:

(22)

Note thatW�ðc 1;c 2Þ ¼ Wðc 2;c 1Þ. The standard Wigner distri-

bution Wðc Þ � Wðc ;c Þ is obtained by setting c 1ðxÞ ¼
c 2ðxÞ ¼ c ðxÞ in Eq. (22).
Then the integrated overlapping product of two gener-

alized WDFs becomes

ZZ
Wðc 1;c 2Þðx; pÞWð
1;
2Þðx; pÞdxdp

¼ 1

h
hc 1j
2ih
1jc 2i: (23)

It is common to think of a quantum state as being a
superposition of other (usually orthogonal) states. The
same principle applies to wave phenomena in optics.
Therefore, it is important to understand how the WDF
adds for a superposition of states (same as coherent super-
position of EM modes). This leads us to the next property.

Property 10 (superposition of states).—Consider a su-
perposition of states jc i¼Pn�nj�ni (either finite or infi-
nite sum). States �n need not be orthogonal, but all states
are assumed normalized: hc jc i ¼ 1 and h�nj�ni ¼ 1. The
Wigner distribution can then be written as

Wðc Þ ¼
X
n

X
m

��n�mWð�n;�mÞ: (24)

Note that the superposition of states generally leads to
appearance of cross terms Wð�n;�mÞ in the Wigner dis-

tribution. Realness of Wðc Þ is readily verified by noting

that the off-diagonal terms in Eq. (24) are complex con-
jugates of each other ð��n�mWð�n;�mÞÞ� ¼��m�nWð�m;�nÞ ¼
��m�nW

�
ð�n;�mÞ and therefore their sum must be real.

For example, consider a stationary Hamiltonian Ĥ
producing a complete orthogonal basis jni with corre-
sponding energy eigenvalues En:

Ĥ jni ¼ Enjni: (25)

Then, the time evolution of an arbitrary state characterized
by the initial vector jc 0i ¼ jc ðt ¼ 0Þi adopts the familiar
form

jc ðtÞi ¼X
n

anjnie�ðiEnt=@Þ; (26)

where the expansion coefficients are found in terms
of projections of the initial state on the eigenbasis
an ¼ hnjc 0i and must satisfy normalization requirementP

njanj2 ¼ 1.

The time evolution of the WDF for jc ðtÞi is given by

Wðc Þðx; p; tÞ ¼
X
n

X
m

a�nameiðEn�EmÞt=@Wðn;mÞðx; pÞ: (27)

Equation (27) can be also rewritten using (23) in terms of
integrated products of the Wigner functions,

Wðc Þðx;p;tÞ¼h
X
n

X
m

�ZZ
Wðc 0Þðx0;p0ÞWðm;nÞðx0;p0Þdx0dp0

�

�Wðn;mÞðx;pÞeiðEn�EmÞt=@: (28)

Note that the decomposition of the Wigner distribution for
a pure state into an orthonormal basis generally requires
the presence of nonvanishing interference cross terms. We
shall revisit this subject when considering incoherent ad-
dition of states.
Property 11 (Gaussian state).—A positive WDF can

only be realized for a wave function of the form

c ðxÞ ¼ e�ðax2þbxþcÞ; <fag> 0; (29)

leading to a joint Gaussian WDF in position and momen-
tum [16]. We also note in passing a well-known fact
that a Gaussian state yields the phase-space probability
density with the smallest rms spread (quantum emittance)
� ¼ h=4�.
Property 12 (convolution).—The distribution function

obtained by convolving two WDFs each corresponding to
an arbitrary pure state is everywhere positive. This prop-
erty is introduced in [23] and is mentioned here for com-
pleteness. One of its practical consequences is that negative
parts of the WDF tend to disappear after a certain amount
of smearing (e.g., as for incoherent addition of several pure
modes). It should be noted that the distribution function so
obtained is no longer the quasiprobability suitable for
finding the expectation values of the original state.

1. Example: Wave packet time evolution in 1D potential

Next, we consider several examples that illustrate the
concept of the Wigner distribution. The first example
shows the phase-space motion of an electron in 1D poten-
tial depicted in Fig. 1. The potential consists of a perfectly
reflecting barrier on the left and a simple harmonic oscil-
lator (SHO) potential on the right. In units of eV, the
potential is given by (the position x is in nm)

VðxÞ ¼
8><
>:
1; x � 0

0; 0< x � 2

10ðx� 2Þ2; x > 2:

(30)

The initial wave packet is described by a Gaussian

c ðx; t ¼ 0Þ / e�½ðx�x0Þ2=2�2
x� with x0 ¼ 3 and �x ¼ 0:3.

Figure 1 shows c ðx; t ¼ 0Þ and the first 40 energy eigen-
states c nðxÞ. The initial quantum state is then evolved
according to Eq. (26). The motion in the phase space of a
classical particle with an initial position x ¼ 3 and a zero
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velocity is shown in Fig. 2 along with expectation values
for position xav ¼ hxi and velocity vav ¼ hpi=m for the
quantum case. Points on the plot correspond to T=16 time
steps where T is the natural period of motion of the system,
equal to about 3.8 fs in this case. The apparent damping in
the quantum case corresponds to delocalization of the
initial Gaussian wave packet.

Figure 3 shows the Wigner distribution of the quantum
motion along with its classical counterpart (marked by �)
at the same times as depicted on Fig. 2. The Wigner
projections jhxjc ij2 and jhpjc ij2 are also shown. In addi-
tion, the rms emittance of the quantum phase-space distri-
bution is shown. As can be seen from Fig. 3, the emittance
of the initial wave packet is @=2, increasing when the wave
packet reaches the hard reflective potential boundary (and
more generally when discontinuities in the potential are
encountered). Here and in all subsequent plots of the

Wigner distribution, we use the same color map: blue
and red colors correspond to negative and positive values,
respectively, and the white corresponds to zero. It should
be noted that, despite increase in the phase-space area, the
mode obviously remains pure at all times. This analogy (or
rather a direct correspondence) is very important for wave
optics: for a general nondissipative light transport system,
the pure or coherent mode can change (generally increase)
its emittance, while still remaining fully coherent (in the
sense of its ability to form interference fringes with perfect
visibility or contrast).
Finally, we mention that the emittance growth with time

shown in Fig. 3 is not all quantum in its nature (e.g., a
swarm of classical trajectories would also experience
spreading out in phase space due to the oscillation period
dependence on the energy). For example, if the potential
instead had a perfectly reflective boundary right in the
middle of the quadratic potential, all classical trajectories
would have the same oscillation period regardless of their
energy and the quantum emittance would oscillate in time
with the period of motion.

2. Example: Eigenstates of a simple harmonic oscillator

Another example we consider is the WDF of energy
eigenstates for a SHO [24], which adopts the same math
as Hermite-Gaussian modes in optics (at a waist for a
single coordinate). This example is important because
one can decompose an arbitrary pure or coherent mode
into the Hermite-Gaussian basis (or any other complete
orthonormal basis) as frequently done in wave optics
analysis. We also note that the same decomposition for
partially coherent sources into Hermite-Gaussian modes is
generally not possible as will be emphasized later.

The well-known eigenstates of the Hamiltonian Ĥ ¼
� 1

2
d2

dx2
þ 1

2 x
2 are of the form

c nðxÞ¼��ð1=4Þffiffiffiffiffiffiffiffiffiffi
2nn!
p e�ðx2=2ÞHnðxÞ; withn¼0;1;2; . . . : (31)

Hn are Hermite polynomials. For this example we set the
usual constants @; m;!! 1 to minimize clutter in the
expressions. The Wigner distribution is then a radial
function in phase space with r2 ¼ x2 þ p2:

W ¼ ð�1Þ
n

�
e�r2Lnð2r2Þ: (32)

Here Ln are Laguerre polynomials. The first three states
along with WðrÞ are shown in Fig. 4. We make a couple of
observations regarding Eq. (32).
(i) The WDF is the maximum possible value at the

origin for even n and the minimum possible for odd n in
accordance with Eq. (10): Wð0Þ ¼ ð�1Þn=� or in the
regular units
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FIG. 2. Motion of a classical (left) and quantum (right) elec-
tron in phase space. In both cases the initial position is 3 nm with
no velocity. Points show time steps from 0 to T with steps of
T=16, where T ¼ 3:8 fs is the natural period of the motion.
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c ðx; t ¼ 0Þ and the first 40 energy eigenstates c nðxÞ offset by
their eigenvalues are shown.
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Wðx ¼ 0; p ¼ 0Þ ¼ ð�1Þ
n

@�
: (33)

(ii) The uncertainty in position and momentum or emit-
tance for mode n is 2nþ 1 times 1=2 in the natural units or
@=2 in regular units. In optics, the �=ðh=4�Þ quantity is
known as the M2 parameter, i.e.,

M2 ¼ �

h=4�
¼ 2nþ 1: (34)

In natural units used in this example we have

FIG. 3. Time evolution of the Wigner distribution. Solid curves show projections of the WDF, probability densities in position and
momentum (velocity), respectively. The electron’s classical counterpart is depicted by �.
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FIG. 4. First three states (left) of a simple harmonic oscillator
along with the radial Wigner distribution (right).
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hx2i ¼ hp2i ¼ � ¼ M2

2
: (35)

Thus, the ground Gaussian state has the smallest possible
uncertainty of 1=2 (or @=2), whereas each subsequent
excitation adds an additional node to the wave function
and the radial Wigner distribution, and increases the emit-
tance by 1 (or @). Again, the obvious should be stated: the
higher order Hermite-Gaussian modes remain pure (fully
coherent) despite M2 > 1.

B. Mixed quantum state

General quantum systems (and partially coherent radia-
tion sources by analogy) cannot be described as a super-
position of pure modes (which is itself a pure mode)
instead adopting a statistical language to describe an inco-
herent mixture of pure states characterized via the density
operator,

�̂ ¼X
j

pjjc jihc jj; (36)

with state probabilities pj adding up to one. When only one

coefficient pj ¼ 1 for some j is present, the formalism is

reduced to that of a pure state. Recall that an expectation

value of an operator Â is given in terms of a trace,

hÂi ¼X
j

pjhc jjÂjc ji ¼ Trð�̂ ÂÞ: (37)

Other standard properties are

Tr ð�̂Þ ¼ 1; (38)

Tr ð�̂2Þ � 1; (39)

where the equal sign in Eqs. (39) is for a pure state case and
less than 1 otherwise. Note that, even though the density
matrix evolves in time according to the von Neumann
equation, Trð�̂2Þ remains constant for all nondissipative
systems [25].

The definitions Eq. (2) and (4) are now replaced with

Wðx; pÞ ¼ 1

h

Z �
x� x0

2

���������̂
��������xþ x0

2

�
eipx

0=@dx0

¼ 1

h

Z �
p� p0

2

���������̂
��������pþ p0

2

�
e�ðip0x=@Þdp0: (40)

In other words, theWDF of a mixed state is a weighted sum
of the WDFs corresponding to individual pure states of the
density matrix

Wðx; pÞ ¼X
j

pjWðc jÞðx; pÞ: (41)

Since, the Wigner distribution is a quadratic (intensity-
like) function of the state, addition of individual WDFs
corresponds to an incoherent addition, which is to be
contrasted with coherent superposition of Eq. (24). This

language of ‘‘pure vs mixed state,’’ ‘‘incoherent addition vs
coherent superposition’’ carries over directly to optics and
allows characterization of partially coherent sources.
Next, we present a new property that relates the WDF to

modal purity and by analogy to coherence in optics. We
then revisit some of the properties introduced earlier ex-
tending them for the mixed state case. Most of the proper-
ties discussed previously, namely, properties 1 through 7
directly carry over for mixed state cases after the necessary
modifications to properties 2, 6, and 7.
Property 13 (measure of modal purity).—The integrated

WDF squared is a measure of modal purity

Tr ð�̂2Þ ¼ h
ZZ

W2ðx; pÞdxdp � 1: (42)

The equal sign in Eq. (42) is for a pure state. The proof of
this property follows directly from Eq. (41) and property 8.
Notice that the trace operation in quantummechanics plays
the role of integration over the phase space in classical
mechanics [25].
Property 14 (marginals).—Revisiting property 2 we can

write

Z
Wðx; pÞdp ¼ hxj�̂jxi ¼X

j

pjjc jðxÞj2;
Z

Wðx; pÞdx ¼ hpj�̂jpi ¼X
j

pjj�jðpÞj2:
(43)

Again, this property reinforces the notion of simply adding
the intensities (here probability densities) for mixed states
or modes.
Property 15 (density matrix).—This is a revisited

property 6. The density matrix is related to the Wigner
distribution via a Fourier transform

�ðx1;x2Þ� hx1j�̂jx2i¼
Z
W

�
x1þx2

2
;p

�
eiðx1�x2Þp=@dp;

%ðp1;p2Þ� hp1j�̂jp2i¼
Z
W

�
x;
p1þp2

2

�
e�½ixðp1�p2Þ=@�dx;

(44)

which is simply the inverse of the Wigner function defini-
tions

Wðx; pÞ ¼
Z

�

�
x� x0

2
; xþ x0

2

�
eipx

0=@dx0;

¼
Z

%

�
p� p0

2
; pþ p0

2

�
e�ðip0x=@Þdp0: (45)

In optics, one often chooses to work with cross-spectral
density, a direct analog of density matrix �. The Wigner
distribution is just its Fourier transform and therefore the
system can be fully and equivalently described by either
WDF or the density matrix (cross-spectral density in
optics).
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Property 16 (mode decomposition).—This is essentially
an extended property 7. Note that property 7 to invert the
wave function from its WDF is only applicable for a pure
state returning a meaningless ‘‘wave function’’ otherwise.
Since the density matrix is a positive-semidefinite
Hermitian operator with unit trace, it has an orthonormal
basis of eigenstates �n whose corresponding real eigen-
values �n � 0 and

P
n�n ¼ 1 [26]:

�̂ ¼ XN
n¼1

�nj�nih�nj; �n � 0;
X
n

�n ¼ 1: (46)

Therefore, from Eq. (45), the WDF can also be written as
an incoherent sum of orthogonal pure modes

Wðx; pÞ ¼ XN
n¼1

�nWð�nÞðx; pÞ: (47)

The knowledge of the Wigner function or the corre-
sponding density matrix �̂ allows finding the modes and
their weights via the standard eigenvector and eigenvalue
problem, i.e., as seen from multiplying both sides of
Eq. (46) by j�mi and using orthonormality condition
h�nj�mi ¼ �nm:

�̂j�mi ¼ �mj�mi: (48)

Any convenient complete orthonormal basis can be chosen
to represent the density matrix �̂ and its eigenstates �n

[27]. This theorem is widely known in optics [28]: any
partially coherent source can be represented by incoherent
superposition of certain mutually orthogonal coherent
modes.

Some additional comments about this property are in
order. The decomposition given by Eq. (47) is distinct from
Eq. (41) in that the decomposition yields orthogonal states,
which may bear little resemblance to the original prepara-
tion states of the density matrix (i.e., different mixtures
may correspond to the same density operator). For the case
of a mixed state with orthogonal preparation states,

Eq. (41), the decomposition (48) recovers the modes and
their weights exactly. Small negative eigenvalues �n usu-
ally indicate an experimental error in arriving at the density
matrix (or the Wigner distribution) and can serve as a
diagnostics or a self-consistency check [27]. Finally, as is
generally the case for pure states, the modes�n need not be
simple in the sense that they do not need to have a small
momentum-position uncertainty (i.e., M2 can be 	 1 but
the mode is pure or coherent). As an example, consider a
relatively complicated mode of Fig. 3 after one or more
oscillation periods, which, despite having a large disper-
sion, is still a pure (fully coherent) mode with Trð�̂2Þ ¼ 1.
The use of property 16 recovers just that mode, which itself
may have a very rich spectrum in some other basis.

1. Example: Superposition of two states

In this example we demonstrate the difference between a
coherent superposition and an incoherent mixture of two
Gaussian states. A numerical example of a mixed mode
decomposition further demonstrates the use of property 16.
First, let us consider another property useful in this

example.
Property 17 (quadratic phase).—The effect of multi-

plying an arbitrary wave function c ðxÞ by a pure phase

factor of the form ei½c0þc1xþð1=2Þc2x2� for arbitrary real co-
efficients c0, c1, and c2,

~c ðxÞ ¼ c ðxÞei½c0þc1xþð1=2Þc2x2�; (49)

leads to the WDF Wð ~c Þ related to the original Wðc Þ via the
linear momentum transformation [5],

Wð ~c Þðx;pÞ¼Wðc Þðx; ~pÞ; with ~p¼p�@ðc1þc2xÞ: (50)

In other words, multiplying the wave function by a linear
phase factor amounts to a shift in momentum, whereas the
quadratic phase shift adds a linear correlation (chirp) to the
momentum vs position.
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FIG. 5. The Wigner distribution for coherent (left) and incoherent (right) superposition of two quantum states with equal
weights. Solid curves show projections of the WDF, probability densities in position and velocity, respectively. The states are
of the form c ðxÞ / e��x2=2�2

xeiðm=@Þ½v0�xþð1=2Þðdv=dxÞ�x2�, where �x ¼ x� x0. The parameters fx0; �x; v0; dv=dxg are equal to
f3 nm; 0:3 nm; 0 nm=fs; 4 fs�1g and f2 nm; 0:5 nm; 3 nm=fs; 1:5 fs�1g for the two Gaussian states depicted.
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Figure 5 shows a superposition and an incoherent addi-
tion of two Gaussian wave packets. The example can also
be thought of in terms of combining two laser Gaussian
beams: either incoherently (random phase relationship
between the two lasers) or coherently. In this example,
the position is in nm and velocity is in nm=fs (an electron
is assumed). For optics, the vertical axis would correspond
to angle. Coherent superposition is for two Gaussian
wave packets with equal weights (the Gaussians are nearly
orthogonal as seen from the fact that their Wigner distri-
butions do not overlap and the property 8).

Consider a coherent superposition of two states jc i /
jc 1i þ jc 2i. Using property 10, the Wigner distribution
has 3 terms:

Wðc Þ / Wðc 1Þ þWðc 2Þ þWi; (51)

where the interference term Wi ¼ Wðc 1;c 2Þ þW�ðc 1;c 2Þ.
The interference term is responsible for oscillations seen

in Fig. 5, and it is easy to show that Wi for two orthogonal
states carries no energy:

ZZ
Wiðx; pÞdxdp ¼ 0; if hc 1jc 2i ¼ 0: (52)

On the other hand, a mixed state �̂ / jc 1ihc 1j þ jc 2ihc 2j
has only 2 terms from each individual states in its Wigner
distribution:

Wð�̂Þ / Wðc 1Þ þWðc 2Þ; (53)

without the interference term. This is the case of incoherent
addition of the two Gaussian laser beams: no interference
pattern between the two will be observed (solid line of the
WDF projection in Fig. 5 on the right) because the phase
relationship between the two lasers will be random on the
detector’s time scale.
Figure 6 demonstrates the orthogonal mode decomposi-

tion using property 16 for a mixed state with two Gaussians
of equal weights. As seen from Fig. 6, the recovered modes

FIG. 6. The Wigner distribution for a mixed state of two Gaussians of equal weight (left column) and corresponding orthogonal
mode decomposition (middle and right columns). The preparation states are of the form c ðxÞ / e��x2=2�2

xeiðm=2@Þðdv=dxÞ�x2 , where
�x ¼ x� x0. The parameters fx0; �x; dv=dxg are equal to f3 nm; 0:3 nm; 4 fs�1g for fixed and f1-2-3 nm; 0:4 nm; 1 fs�1g for
displaced Gaussians. The reconstructed WDF is recovered through Wð�̂Þ ¼ �1Wð�1Þ þ �2Wð�2Þ.
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generally reflect the shape of the mixed state and can have
large dispersion (emittance) if the mixed state itself has had
a large dispersion.

2. Example: Gauss-Schell model

Now we consider a quantum mechanical analog of what
is known as a Guass-Schell model in optics [29]. Using the
same natural units of SHO with @; m;!! 1, we rewrite
the Wigner distribution similar to Eq. (32) in a generalized
Gaussian form:

WðrÞ ¼ 1

M2�
e�ðr2=M2Þ; M2 � 1; (54)

where as previously r2 ¼ x2 þ p2. Setting M2 ! 1 recov-
ers a pure Gaussian ground state, whereas M2 > 1 corre-
sponds to a mixed state. As previously, Eq. (35) applies for
our choice of units:

hx2i ¼ hp2i ¼ � ¼ M2

2
:

Next, we use Eq. (44) to recover the density matrix (or the
cross-spectral density in optics):

�ðx1; x2Þ ¼ 1ffiffiffiffi
�
p

M
e�ð1=4Þ½M2ðx1�x2Þ2þM�2ðx1þx2Þ2�: (55)

A more common form of presenting the density matrix is
as a Schell-model source,

�ðx1; x2Þ �
ffiffiffiffiffiffiffiffiffiffi
Iðx1Þ

q ffiffiffiffiffiffiffiffiffiffi
Iðx2Þ

q

ðx1 � x2Þ; (56)

where the probability density

IðxÞ¼�ðx;xÞ¼ 1ffiffiffiffiffiffiffi
2�
p

�x

e�ðx2=2�2
xÞ; with�x¼ Mffiffiffi

2
p ; (57)

and the degree of spatial coherence


ðx1�x2Þ¼e�½ðx1�x2Þ2=2�2

�; with�
¼

ffiffiffi
2
p

Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4�1
p : (58)

The function 
ð�xÞ is bound 0 � j
ð�xÞj � 1 with
1 or 0 corresponding to a perfect or no phase correlation,
respectively. �
 is known as a coherence length in optics.

In particular, M2 ! 1 yields �
 ! 1 (a perfect phase

correlation everywhere or pure state) whereas M2 ! 1
gives �
 ! 0 (no phase correlation in the state).

The decomposition eigenproblem (48) can be rewritten
as

hxj�̂j�mi ¼ �mhxj�mi;Z
hxj�̂jx0ihx0j�midx0 ¼ �mhxj�mi;
Z

�ðx; x0Þ�mðx0Þdx0 ¼ �m�mðxÞ:
This Fredholm integral equation yields the following spec-
trum of eigenvalues and eigenfunctions for the density
matrix of Eq. (55) [29,30]:

�mðxÞ ¼ ��ð1=4Þffiffiffiffiffiffiffiffiffiffiffiffi
2mm!
p e�ðx2=2ÞHmðxÞ; (59)

�m ¼ �0q
m; with m ¼ 0; 1; 2; . . . ; (60)

where

�0 ¼ 2

M2 þ 1
; (61)

q ¼ M2 � 1

M2 þ 1
: (62)

Thus, the Gauss-Schell model adopts a particularly simple
mode decomposition, which are the pure states of a
simple harmonic oscillator or Hermite-Gaussian modes.
Additionally, it can be checked that

Tr ð�̂Þ ¼ X1
m¼0

�m ¼ 1; (63)

Tr ð�̂2Þ ¼ X1
m¼0

�2
m ¼ 1

M2
: (64)

Equation (64) can be a source of confusion in that one
may be tempted to equate M2 (phase-space area, or emit-
tance, or dispersion) directly to spectral purity Trð�̂2Þ for
an arbitrary (non-Gaussian) mixed state. This temptation
should be resisted since quantum mechanically the two
concepts, the phase-space uncertainty M2 and the mode
purity Trð�̂2Þ, are distinct as argued previously. For light,
the two parameters convey different aspects of the radia-
tion source: the ability to focus the beam to a small spot
(for M2) on one hand, and the ability to form interference
patters with high contrast or visibility on the other [for
Trð�̂2Þ]. In terms of the WDF or the brightness of light, the
modal purity or coherence is related to the W2ðx; pÞ inte-
gral, whereas the M2 is to the rms emittance of Wðx; pÞ
distribution. We shall see later that the synchrotron radia-
tion from an undulator source by a single electron is
far from a Gaussian and, therefore, such dual interpretation
of M2 needs to be rejected for highly coherent x rays
from undulators. Similarly, the use of the Gauss-Schell
model on a distinctly non-Gaussian phase-space distribu-
tion function has little merit.

III. WIGNER DISTRIBUTION FOR
SYNCHROTRON RADIATION

The connection of the Wigner distribution to describing
partially coherent sources is usually made through the
cross-spectral density function �ðr1; r2;!Þ [6] (being an
analog of quantum density matrix)

�ðr1; r2;!Þ ¼ Eðr1;!ÞE�ðr2;!Þ: (65)

Here Eðr1;!Þ is frequency representation of the electric
field, which is assumed for now to be a scalar function
(linearly polarized light) of 2D transverse coordinates r ¼
ðx; yÞ (the detector plane) and h
 
 
i means ensemble aver-
age (e.g., over electron bunches for synchrotron radiation).
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It should be noted that the synchrotron radiation so repre-
sented is classically computed even though the full quan-
tum mechanical treatment of radiation requires the second
quantization in the framework of quantum electrodynam-
ics. The most salient implication of using classical repre-
sentation vs quantized fields is that the field amplitude is
not a fixed quantity for a given number of photons in the
mode but rather described by a distribution. This stochastic
nature of the quantum mechanical treatment is, for ex-
ample, responsible for quantum fluctuations resulting in
energy spread of electron beam in a long undulator, which
can be accounted for by a semiclassical Fokker-Planck
diffusion equation. In what follows, we restrict our atten-
tion to classical treatment of the synchrotron radiations.

For Eq. (65) to fully describe coherence properties, the
source needs to be stationary in that all ensemble averages
do not vary with respect to time (or at least first and second
moments are time independent, which is a requirement for
so-called wide-sense stationary processes). The synchro-
tron radiation with its pulsed bunch structure is generally
nonstationary. However, as argued in [11], one can use the
cross-spectral density in the form of Eq. (65) if individual
synchrotron radiation pulses last much longer than their
coherence time (the time scale of short-term field fluctua-
tions, inversely related to the source bandwidth), or
�t 	 Nu!0 for an undulator source with Nu undulator
periods and resonant (radiation) frequency!0 and electron
bunches of �t duration. This condition is usually well
satisfied (though an extension of the formalism can be
made to describe nearly transform-limited sources in
time-frequency domains). One also typically defines the
spectral degree of coherence [31]:


ðr1; r2;!Þ ¼ �ðr1; r2;!Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðr1; r1;!Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðr2; r2;!Þ

p : (66)

The modulus of the spectral degree of coherence ranges
from 0 to 1 for incoherent to fully coherent sources,
0 � j
j � 1. For a fully coherent radiation, j
j ¼ 1
everywhere. This quantity is directly related to the fringe
visibility in interference experiments.

A fully equivalent characterization can of course be
made in time domain [32]. In what follows, we restrict
our treatment to frequency domain, being a more natural
choice for x rays. Therefore, the frequency dependence for
the functions will be understood while the symbol itself
will usually be omitted from the expressions, e.g., EðrÞ �
Eðr;!Þ.
The Wigner distribution for optics is then given by [2]

Wðr; �Þ ¼
�
1

�

�
2 Z

�

�
r� r0

2
; rþ r0

2

�
eikr

0
�d2r0; (67)

¼
�
1

�

�
2 Z

�

�
�� �0

2
; �þ �0

2

�
e�ikr
�0d2�0; (68)

where transverse position r and angle � ¼ ð�x; �yÞ form a

conjugate pair similar to position-momentum in quantum
mechanics (small angle approximation is used throughout).
Cross-spectral density in position and angular representa-
tions are defined according to

�ðr1; r2Þ ¼ hEðr1ÞE�ðr2Þi; (69)

� ð�1; �2Þ ¼ hEð�1ÞE�ð�2Þi; (70)

where the angular representation Eð�Þ of radiation (far
field) is related to its spatial representation EðrÞ via the
Fourier transform pair,

Eð�Þ ¼ 1

�

Z
EðrÞe�ikr
�d2r;

EðrÞ ¼ 1

�

Z
Eð�Þeikr
�d2�:

(71)

The radiation wave number k above is given by k ¼
2�=� ¼ !=c in terms of wavelength �, frequency !,
and the speed of light c.
The connection to quantum mechanics now becomes

obvious. Refer to Table I. The time coordinate of quantum
mechanics is now replaced with a propagation coordinate
and the light wavelength � takes the place of Planck’s
constant h. Geometric optics is recovered in the limit

TABLE I. Correspondence between quantum and optical formalisms.

Quantum mechanics Wave optics

State c ðxÞ EðrÞ Mode field

Planck constant h � Wavelength

Uncertainty principle � � h=4� �x;y � �=4� Diffraction limit

Conjugate pair x !FT
p r !FT

� Conjugate pair

Density matrix �ðx1; x2Þ �ðr1; r2Þ Cross-spectral density

Classical mechanics h! 0 �! 0 Geometric optics

Phase-space density Wðx; pÞ Wðr; �Þ Spectral brightness

Normalized to 1 Spectral flux Normalized to

Measure of state purity h
RR

W2dxdp �2

RR
W2d2rd2	RR
Wd2rd2



2 Measure of coherence
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�! 0 just as the classical behavior can be obtained
through h! 0. All the properties introduced in the pre-
vious section have their counterparts in optics. The mathe-
matical similarity between classical electrodynamics and
quantum mechanics that allows this connection is explored
in [33,34]. In particular, the paraxial Helmholtz equation in
optics has exactly the same form as the time-dependent
Schrodinger equation [35].

Also, the overall degree of coherence 
2
g, which is

directly equivalent to Trð�̂2Þ of density matrix �̂ in quan-
tum mechanics, can be expressed in terms of the Wigner
distribution function


2
g ¼ �2

RR
W2ðr; �Þd2rd2�

½RRWðr;�Þd2rd2��2 ; (72)

where the denominator, the total flux squared, plays a
normalization role so that 0 � 
2

g � 1.

A. Polarized light

Treatment of polarized light [36] is directly analogous to
WDF of spin- 12 quantum particle [37], which require a

2-component spinor to characterize a state. The reason
that a spin-1 particle (photon) can be described by a
2-component spinor (as opposed to 3) is well known in
that only�@ spin projections along the direction of propa-
gation (helicity) are realized for a massless particle.

The Wigner distribution now becomes a 2� 2 matrix
Wðr; �Þ (complex for off-diagonal elements) with compo-
nents defined according to

Wklðr;�Þ ¼
�
1

�

�
2 Z �

E�k
�
rþ r0

2

�
El

�
r� r0

2

��
eikr

0
�d2r0;

(73)

where k; l ¼ x; y. Generalizing the formalism of polarized
light [36,38], Wðr; �Þ can be represented as a scalar func-
tion on the Poincaré sphere using

Wðr; �;�Þ ¼ � 
 Sðr; �Þ; (74)

where generalized Stokes parameters are found from

Sjðr;�Þ ¼ Tr½�jWðr; �Þ�; with j ¼ 0; 1; 2; 3: (75)

Here �j are 2� 2 Pauli matrices with �0 being an identity

matrix, and� is a vector mapping Stokes parameters onto
the Poincaré sphere with polar 
 and azimuthal � angles

� ¼ 1

2

1ffiffiffi
3
p

sin
 cos�ffiffiffi
3
p

sin
 sin�ffiffiffi
3
p

cos


0
BBBBB@

1
CCCCCA: (76)

The generalized Stokes parameters, which now play a
role of a 4-component phase-space distribution, can we
written explicitly in terms of the WDF components,

S0ðr; �Þ ¼ Wxxðr; �Þ þWyyðr; �Þ;
S1ðr; �Þ ¼ Wxyðr;�Þ þWyxðr; �Þ;
S2ðr; �Þ ¼ i½Wxyðr;�Þ �Wyxðr; �Þ�;
S3ðr; �Þ ¼ Wxxðr;�Þ �Wyyðr; �Þ:

(77)

In what follows we may occasionally refer to the general-
ized Stokes parameters as simply Wigner distribution
functions. These four functions completely characterize
radiation of arbitrary degrees of coherence and polarization
in phase space. They can be propagated in linear optics
just like the scalar WDF. The usual Stokes parameters
are found from those in Eqs. (77) by integrating away
angles,

sjðrÞ ¼
Z

Sjðr; �Þd2�; with j ¼ 0; 1; 2; 3: (78)

Thus, the generalized Stokes parameters have their usual
meaning for polarized light (the exact ordering of the Stokes
components 1 through 3 may differ in literature): S0ðr;�Þ
represents total intensity in phase space, S1ðr; �Þ represents
þ45�=� 45� linearly polarized light (for positive/negative
values, respectively), S2ðr; �Þ corresponds to right-/left-
hand circular polarization, and S3ðr; �Þ to x=y-linear
polarization. We note that the exact sign correspondence
here applies only to intensity projections sjðrÞ since the

WDF (S0) is allowed to take on negative values while its
projections (marginals) are guaranteed to be positive. For
example, a Gaussian mode with x polarization will have
S0ðr;�Þ¼S3ðr;�Þ>0with other Stokes parameters being 0,
or for left-hand circular polarization S2ðr;�Þ¼�S0ðr;�Þ.
Whereas fully polarized light satisfies s0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s21þs22þs23
p

and partial polarization manifests itself as s0 >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1
þs2

2
þs2

3

p
,

the generalized Stokes parameter S0 can take on
local negative values and deviate from these expressions.
As shown in [36], the overall degree of coherence for

vectorial waves can be written as


2
g ¼ 2��2

RR
d2rd2�

R
4� d2�W2ðr; �;�Þ

½RR d2rd2�
R
4� d2�Wðr; �;�Þ�2 ; (79)

where d2� ¼ sin
d
d�, or equivalently in terms of gen-
eralized Stokes parameters


2
g ¼ 1

2
�2

RR
S2ðr; �Þd2rd2�

½RR S0ðr; �Þd2rd2��2
; (80)

and explicitly in terms of the WDF components as


2
g ¼ �2

RRðW2
xx þ 2WxyWyx þW2

yyÞd2rd2�
½RRðWxx þWyyÞd2rd2��2

: (81)

B. Wigner distribution projections

One of practical limitations of the Wigner distribution
is that generally one needs to employ four-dimensional
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arrays as a function of light frequency (and possibly time if
the temporal structure inside an individual synchrotron
pulse is important) times 4 for Stokes parameters to rep-
resent the radiation fully. In addition to large memory
requirements, one typically prefers to visualize two-
dimensional projections rather than the entire phase space,
much as it is done in accelerator physics for particle
tracking. Here, we mention some of the properties of
such projected WDFs, limiting our discussion to linearly
polarized light for simplicity. Important 2D projections of
the Wigner distribution are intensity Iðx; yÞ, the far field
(angular) intensity Ið�x; �yÞ, x-�x and y-�y phase-space

projections, Bxðx; �xÞ and Byðy; �yÞ:

Iðx; yÞ �
ZZ

Wðx; y; �x; �yÞd�xd�y; (82)

I ð�x; �yÞ �
ZZ

Wðx; y; �x; �yÞdxdy; (83)

B xðx; �xÞ �
ZZ

Wðx; y; �x; �yÞdyd�y; (84)

B yðy; �yÞ �
ZZ

Wðx; y; �x; �yÞdxd�x: (85)

Carrying out the integration and using the identityR
eikabda ¼ 2��ðbÞ=k, one obtains

Iðx; yÞ ¼ hE�ðx; yÞEðx; yÞi; (86)

B xðx; �xÞ ¼ 1

�

ZZ
�x

�
x� x0

2
; xþ x0

2

�
eikx

0�xdx0; (87)

B yðy; �yÞ ¼ 1

�

ZZ
�y

�
y� y0

2
; yþ y0

2

�
eiky

0�ydy0; (88)

I ð�x; �yÞ ¼ hE�ð�x; �yÞEð�x; �yÞi; (89)

where �xðx1; x2Þ �
RhEðx1; yÞE�ðx2; yÞidy and �yðy1;y2Þ�RhEðx;y1ÞE�ðx;y2Þidx.

If the radiation modes are separable, i.e., can be written
in the form Eðx; yÞ ¼ �xðxÞ�yðyÞ (for example, Hermite-

Gaussian modes), then all the properties discussed in
Sec. II for two-dimensional WDF in quantum mechanics
apply to the Wigner 2D projections after normalization
Wx;y ¼ Bx;y=F , where F ¼ RR

Iðx; yÞdxdy is the total

(spectral) flux. It includes the interpretation of the
�
RR

W2
x ðx; �xÞdxd�x and a similar expression for the y

plane to be a measure of coherence 
2
gx;y [the analog of

the Trð�̂2Þ in quantum mechanics]. On the other hand,
for nonseparable radiation fields (e.g., general radially
symmetric modes), the same interpretation of
�
RR

W2
x ðx; �xÞdxd�x ¼ 
2

gx cannot be made.

Nevertheless, for simple linear optics without coupling
of x; y planes (drifts and lenses), the WDF projections can

be propagated in the same way as the full four-dimensional
Wigner distribution. We also note that for a pure modewith
symmetric fields Eð�x;�yÞ ¼ Eðx; yÞ, which are of a
practical importance to synchrotron radiation, the on-axis
2D brightness takes on the possible maximum value,

maxfBx;yð0; 0Þg ¼ 2

�
F ; (90)

where F is the total spectral flux contained in the mode
(see property 3).

C. Light propagation

One of the strong appeals of the Wigner distribution
function is in its natural propagation for linear optics,
which is entirely similar to the classical phase-space evo-
lution. As a result, the formalism developed in the accel-
erator physics for classical phase-space distributions can
be directly carried over to (partially) coherent synchrotron
radiation. In analogy to property 5, the local values of
WDF stay constant on phase-space trajectories subject to
classical transformation in drifts and lenses along the
longitudinal position z:

W½rðz2Þ; �ðz2Þ� ¼ W½rðz1Þ; �ðz1Þ�; (91)

where

x

�x

y

�y

0
BBBBB@

1
CCCCCA

z2

¼Mðz1! z2Þ

x

�x

y

�y

0
BBBBB@

1
CCCCCA

z1

; with detM¼1: (92)

Similarly, for a decoupled in x; y-plane transport, the
2D projections of the WDF follow the classical transfor-
mation,

B x½xðz2Þ; �xðz2Þ� ¼ Bx½xðz1Þ; �xðz1Þ�; (93)

B y½yðz2Þ; �yðz2Þ� ¼ By½yðz1Þ; �yðy1Þ�: (94)

Drift or lens transformations lead to a rotated or sheered
WDF, and since the projections of the WDF are accessible
for measurement, this allows a reconstruction of the
Wigner distribution through tomography, similar to the
use of tomography in phase-space distribution reconstruc-
tion in accelerators.
The introduction of spatial filters (e.g., a pinhole or a

slit) naturally leads to diffraction phenomena and the
Wigner distribution gets altered in a nontrivial way.
Whereas the electric field after an aperture with transmis-
sion tðrÞ is simply EðrÞ ! EðrÞtðrÞ, theWigner distribution
is given by the convolution of the angular variables � of the
input Wigner function with that of the spatial filter [7]:
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Wðr; �Þ !
Z

Wðr; �ÞWtðr; �� �0Þd2�0; (95)

where

Wtðr; �Þ ¼
�
1

�

�
2 Z

t�
�
rþ r0

2

�
t

�
r� r0

2

�
eikr

0
�d2r0:

IV. NUMERICAL EVALUATION

In this section we discuss practical matters pertaining to
computing the Wigner distribution for undulator radiation.
As we shall see, as long as the effects of cosh dependence
of the undulator fields can be ignored, the synchrotron
radiation in phase space can be obtained by a convolution
of the WDF from a single electron with that of the entire
electron beam phase space [5]. This is a consequence of
the well-known fact that the electrons in a single bunch do
not interfere with each other unless there is a microbunch-
ing structure on the wavelength scale, in which case, the
computation of radiation fields proceeds differently. In
what follows, we limit our examples to the ‘‘electron
only interferes with itself’’ scenario, as applicable for
non-free-electron-laser (non-FEL) emission regimes.

A. Radiation field generation

Calculation of radiation fields is well established, e.g.,
see [39,40]. The frequency representation of the electric
field is given by

E ðr;!Þ ¼ ie!

4��0c

Z 1

R

�
�� n

�
1þ ic

!R

��
ei!ð�þR=cÞd�;

(96)

for an observer at r, the position vector from the observer to
the electron R ¼ r� re, with reð�Þ being the electron’s
trajectory as a function of time �, the velocity � ¼
c�1dre=d�, and the unit vector n ¼ R=R with R ¼ jRj.
The expression (96) is exact and is convenient for numeri-
cal evaluation in that once the trajectory reð�Þ is found, the
integral evaluation is direct. We assume transversality of
the field, i.e., E � ðEx; Ey; 0Þ. An expression with paraxial

approximation for the field can be obtained [41]; however,
it represents little advantage over the exact expression for
numerical work. A simulation tool has been developed that
solves for the electron trajectory in arbitrary field configu-
ration and evaluates the radiation integral, Eq. (96).

The undulator magnetic fields are taken of the usual
form

Bx ¼ B0x sinðkuzÞ coshðkuxÞ;
By ¼ B0y cosðkuzÞ coshðkuyÞ;
Bz ¼ B0x cosðkuzÞ sinhðkuxÞ � B0y sinðkuzÞ sinhðkuyÞ:

(97)

Here �u ¼ 2�=ku is the undulator period; B0x;y are the

maximum magnetic fields in both planes with B0x ¼ 0 for
a conventionally oriented planar undulator. The total un-
dulator length is taken to be Lu ¼ Nu�u, and the relation
to the undulator K parameter is via the usual Kx;y ¼
eB0x;y�u=2�mec. To ensure on-axis orbits with no net

deflection, the undulator fields are 1=4 and 3=4 of their
nominal values for the first and second period halves on
either undulator end.
For numerical evaluation of the Wigner distribution

function, the Fourier transform of Eqs. (87) and (88) is
replaced with its discrete analog. A detector is placed at an
arbitrary position z downstream of the undulator, and the
electric field is evaluated on a transverse grid of positions
rkl ¼ ðxk; yl; zÞ. The phase-space distribution is then typi-
cally backpropagated to the undulator center using the
usual transformation rules for a drift. It should be noted
that the discrete Fourier transform can suffer from aliasing
problems and, in order to avoid this problem, the maximum
angular extent of the radiation must be within �=k�x;y,

where �x;y is the grid size of the radiation field sampling.

To avoid very small grid sizes, it is convenient to use
property 17 to first remove the quadratic phase present in
the radiation pattern. This is equivalent to introduction of a
perfect thin lens, which is subsequently removed after the
WDF is evaluated.

B. Electron bunch effect

The effect of adding radiation from many electrons is
equivalent to an earlier considered example of superposi-
tion from two quantum states. For any two electrons in the
bunch, the electric field will differ by a phase factor ei!tj ,
where tj represents time of the electron inside the bunch. It

is easy to see that the interference term of Eq. (51) averages
out to 0 since it contains essentially random phase factors

e�i!ðtj�tkÞ inside the averaging brackets. In other words,
the uncertain phase relationship between the two electrons
on the optical scale leads to a density matrix case analogue
where the interference term drops out and the WDF is
simply an incoherent sum over all the electrons.
Therefore, if the Wigner distribution function of a

single electron does not change its shape, but simply
shifts in position and angle, as one would expect for an
undulator in which the trajectories remains linear with
small position and angle offsets, the overall radiation pat-
tern is just a convolution (summation) of the electron
distribution in phase space with the WDF of a single
electron. Additional effects arise for either segmented un-
dulator (with focusing between the segments), due to the
vertical focusing of a planar (horizontally deflecting)
undulator, or due to the effect of a larger off-axis field
which has cosh-like dependence in the vertical plane for
the planar undulator or in both planes for a helical
undulator.
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In other words, the most general form of the Wigner
distribution obtained from incoherent addition of radiation
from individual electrons is of the form

Wðr; �Þ ¼ Ne

Z
W0ðr; �;V eÞPðV eÞd4V e: (98)

Here Ne is the total number of electrons inside a bunch
described by the probability density function PðV eÞ such
as

R
PðV eÞd4V e ¼ 1 with V e representing 4 phase-

space variables of electrons: two transverse components
of position ðxe; yeÞ and angle ð�ex; �eyÞ. If, on the other

hand, the different electron trajectories simply lead to an
offset in position and angle of the WDF of a single
electron:

W0ðr; �; re; �eÞ ¼ W0ðr� re; �� �eÞ; (99)

the integral of Eq. (98) is then replaced with a convolution
integral

Wðr; �Þ ¼ Ne

ZZ
W0ðr� re; �� �eÞPðre; �eÞd2red2�e:

(100)

The effect of energy spread in electron beam can be
quite significant, and most generally it is accounted for by
extending the integration variable V e to also include the
energy. In particular, the effect of a small energy spread
�e � �	e=	e 
 1, where 	e is the normalized electron
energy (later denoted as simply 	), leads to [5,8]

Wðr; �Þ ¼ Ne

ZZ
W0ðr� re; �� �e;�eÞ

� Pðre; �e; �eÞd2red2�ed�e: (101)

Note that, for a small energy change �e � 1=Nu with a
large number of undulator periods Nu 	 1, the effect on
the radiation pattern at a given frequency !0 is identical to
that of the on-energy particle ��e ¼ 0 while tuning the
radiation frequency off the resonance by �!=!0 ¼ �2�e.

The evaluation of Eq. (101) can be quite involved in
terms of computational resources required even if being
straightforward in all other respects. However, if the elec-
tron distribution PðV eÞ is separable, i.e., PðV eÞ ¼
Pxðxe; �exÞPyðye; �eyÞP	ð�eÞ, then the 2D projection of

the WDF,Bxðx; �xÞ andByðy; �yÞ, can be easily computed.

It is instructive to consider the requirements for when
Eq. (99) is applicable in case of a planar undulator (hori-
zontally deflecting). As mentioned previously, two effects
can change the shape of the WDF depending on the (small)
electron trajectory offsets in position and angle in vertical
plane. One is the cosh dependence of the vertical field,
whereas the other is the natural undulator focusing.

The equation of motion for the average vertical position
yav when B0x ¼ 0 for the undulator, Eqs. (97), can be
written as [42]

d2yav
dz2

¼ �k2�y
yav; (102)

where the vertical focusing strength is given by k�y
¼

B0ye=
ffiffiffi
2
p

	mec, or in terms of the period of oscillations

due to focusing L�y
¼ 2�=k�y

¼ ffiffiffi
2
p

	�u=Ky, where Ky is

the undulator K value and 	 ¼ E=mec
2 is the normalized

energy of the electron. Typically, L�y
	 Lu, i.e., the slow

oscillation phase increment due to the focusing is
 2� in
undulators. Nevertheless, in order to be able to treat verti-
cally offset trajectories as simple copies of each other, we
require that the slow sine-like oscillations due to focusing
produce a change in the electron trajectory’s deviation over
the length of the undulator that is much smaller than the

natural cone of the radiation,
ffiffiffiffiffiffiffiffiffiffiffiffi
�=Lu

p
[8]. Integrating

Eq. (102) for a typical vertical size �y, the angle change

of the electron trajectory is of the order �yk
2
�y
Lu, which

leads to the following requirement:

�y 
 1

k2�y
Lu

ffiffiffiffiffiffi
�

Lu

s
: (103)

Similarly, the vertical dependence of the magnetic field
in the undulator By / coshðkuyÞ leads to the vertical tra-

jectories with an offset to effectively sample a larger Ky

value. Therefore, to enable the simpler treatment, we re-
quire that �Ky=Ky � ðkyyÞ2=2 produces a change in the

undulator wavelength � ¼ �u=2	
2ð1þ K2

y=2Þ which is

much smaller than the natural undulator bandwidth
��=�� 1=Nu. This leads to another requirement for the
electron beam size

�y 
 �u

2�

ffiffiffiffiffiffi
1

Nu

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ K2

K2

s
: (104)
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FIG. 7. An example of a vertical trajectory in a planar undu-
lator and the magnetic field as seen by the particle. The angular
offset is taken to be rather large to illustrate the effect of cosh-
like dependence of the field on vertical position.
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Electrons coming with a vertical angle into a planar un-
dulator generally sample a more complicated magnetic
field pattern, such as shown in Fig. 7. Therefore, the
following requirement can be imposed on the vertical
angular size �y0 :

Lu�y0 
 �u

2�

ffiffiffiffiffiffi
1

Nu

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ K2

K2

s
; (105)

�y0 
 1

2�N3=2
u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ K2

K2

s
: (106)

In summary, if the requirements (103), (104), and (106)
are satisfied, the simple convolution of a single electron
radiation pattern with that of the electron bunch phase-
space distribution, Eq. (100) and Eq. (101), can be used.
Otherwise, the more general integral, Eq. (98), needs to be
evaluated. We note that the potential complications dis-
cussed here apply only to the vertical plane for a planar
undulator with exact translational symmetry of fields in the
x direction.

C. Revisiting emittance definition

Rms emittance, Eq. (14), is widely used as a measure of
beam quality in accelerator physics. While this definition is
attractive due to the fact that it can be applied to a variety of
different distributions, the connection of the rms emittance
to phase-space density or brightness available in the beam
is generally distribution dependent. Whereas equilibrium
processes (e.g., radiation damping in storage rings, equi-
librium beam in a focusing channel under the influence of
space charge, etc.) lead to a Gaussian distribution in phase
space, beams in linear accelerators are rarely in equilib-
rium. As a result a meaningful characterization of the
phase space of electron beams or, as we shall see later,
the synchrotron radiation, needs a more flexible metric
than the rms emittance alone. Short of the complete knowl-
edge of the actual phase-space distribution, a useful way to
reduce and represent the information is to extend the con-
cept of the rms emittance to the so-called brightness curve
or rms emittance vs beam fraction [43]. As we shall see, a
wide class of practical phase-space distributions can be
effectively characterized by such a curve as the beam
fraction is varied from 0 to 100%. Three parameters, the
usual rms emittance [� ¼ �ð100%Þ with 100% denoting
that the entire beam is included in the emittance calcula-
tion], core emittance, �c, and core fraction fc can convey
the information not only about the second moments of the
beam distribution, but also the peak brightness and what
fraction of the beam effectively contributes to this bright-
ness. The situation is somewhat analogous to how the peak
height and the full width at half maximum complement the
rms width information for arbitrary (unimodal and finite
integrable in the second moment sense) profiles.

Below is one prescription for obtaining emittance vs
fraction curve. Here we only consider the case of a
two-dimensional phase space, x ¼ ðx; pÞT where x is the
transverse coordinate and p can represent (normalized)
transverse momentum or angle. The phase-space distribu-
tion function Pðx; pÞ is assumed to be normalized,RR

Pðx; pÞdxdp ¼ 1. One can apply the following

procedure.
(1) For an ellipse of a fixed area �a, choose Twiss

parameters T of the ellipse [cf. Eq. (14)] that maximize
the beam fraction contained therein:

fðaÞ ¼ max

�ZZ
DðaÞ

Pðx; pÞdxdp
�
; (107)

where DðaÞ ¼ fx: xTT�1x � ag.
(2) Obtain the rms emittance �ðaÞ for x 2 DðaÞ of

Eq. (107):

�ðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2iDhp2iD � hxp2iD

q
; (108)

where huiD ¼
RR

DðaÞ u
Pðx;pÞ
fðaÞ dxdp.

The parametric curve ½fðaÞ; �ðaÞ� is the emittance vs
fraction curve, �ðfÞ.
(3) Define the core emittance �c and the core fraction fc

according to

�c � d�ðfÞ
df

��������f!0
; (109)

fc: �ðfcÞ ¼ �c: (110)

We have assumed that each individual ellipseDðaÞ remains
centered around the origin as does the corresponding cen-
troid of the beam fraction. Generalization to when this is
not the case is straightforward by allowing the clipping
ellipse to shift. This procedure for obtaining emittance vs
fraction curve is meaningful for distributions which are
unimodal (i.e., with a single hump) and finite integrable
(in the second moment sense).
It is easy to show that the core emittance is directly

related to the peak phase-space density or brightness
P0 ¼ maxfPðx; pÞg:

�c ¼ 1

4�P0

: (111)

To see that, one simply needs to note that a small area
clipping ellipse in the limit a! 0 cuts out a uniform slice
containing the beam fraction �aP0 and having the rms
emittance of a=4. It is interesting to note that because of
the property 3, which states that a maximum Wigner
distribution is h=2 for any even pure state, and a corre-
sponding 2D equivalent in optics of �=2, the minimum
core emittance (the diffraction limit) is therefore

minð�cÞ ¼ �

8�
; (112)
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and it can only be larger for a symmetric mode when the
coherence 
2

g < 1. Thus, the core emittance (or peak

brightness) is a more general indicator of whether the
radiation is coherent than the rms emittance. This is be-
cause the rms emittance minimum is restricted only to a
Gaussian coherent mode, whereas the minimum core emit-
tance �=8� is realized for any symmetric coherent mode.

Figure 8 further illustrates the concept of the emittance
vs fraction by showing the curve for 3 different distribu-
tions: uniform, Gaussian, and elliptical. The correlation in
x and p is removed and the units for x and p are chosen so
that the distributions can be written as a radial function of

r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ p2

p
. Furthermore, to facilitate the comparison,

each distribution is normalized to have � ¼ �x ¼ �p ¼ 1

in these natural units. As seen, the core emittance conven-
iently captures the fact that the peak brightness of a
Gaussian is �2 larger than that of the uniform distribution
of the same rms width, as well as the fact that the core
fraction in the Gaussian is smaller (0.715 vs 1 for the
uniform).

Another example, Fig. 9, compares a Gaussian distribu-

tion PðrÞ ¼ 1
2� e

�ðr2=2Þ and PðrÞ ¼ p
2��1

e�ðr2=2�1Þ þ
1�p
2��2

e�ðr2=2�2Þ, with p ¼ 0:5, �1 ¼ 1
5 , and �2 ¼ 9

5 . The total

emittance in this case is � ¼ p�1 þ ð1� pÞ�2 ¼ 1. Once

again, the information about the peak brightness is lost
with the rms emittance quoted only, but is conveyed con-
veniently with the three parameters: f�; �c; fcg. A practical
measure of beam brightness available can be defined as
fc=�c, a subject that we explore further below.

D. Possible definitions of brightness

As a phase-space quasiprobability, the WDF is the gen-
eralized brightness (also known as microscopic brightness
[43]), Bðr; �Þ � Wðr; �Þ. It is convenient, however, to be
able to reduce the information to a single parameter, which,
for example, can facilitate comparison of various partially
coherent sources. Here we revisit several of the definitions
that can be useful for this purpose remembering that no
single reduced parameter or a figure of merit can suit all the
practical purposes.
(1) The following definition, which we denote as clas-

sical, can be written (modulo a prefactor that generally
depends on the actual distribution shape) as

B cl ¼ F
�x�y

: (113)

F is the overall (spectral) flux. In the definition above, we
have assumed that the 4D emittance can be represented as a
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product of two 2D emittances. This definition, which
always gives a positive quantity, is easy to compute and
can serve as a measure of brightness. One drawback is in
the use of rms emittance, which, as discussed previously
fails to capture the peak brightness available in the beam
and tends to exaggerate the importance of tails when non-
Gaussian distributions are encountered. A possible modi-
fication to the definition of Eq. (113) can be made to write
the effective brightness in terms of

B cl;alt ¼
F fcxfcy
�cx�cy

; (114)

where in place of rms emittances as a measure of effective
phase-space area we use the core emittance �cx;y while at

the same time reducing the participating flux by the prod-
uct of the core fractions in each plane fcx;y. All the neces-

sary quantities in Eq. (114) can be found from the WDF as
discussed previously.

These classical definitions, however, fail to capture the
concept of coherence. A mode with a large dispersion
(emittance) but perfectly coherent is indistinguishable
from its incoherent analog of the same emittance.

(2) As we have seen, the WDF contains the information
about the density matrix, which, to the overall flux factor
leads to the following natural definition for brightness
(denoted as average brightness):

B av ¼
RR

W2d2rd2�

F
: (115)

This definition is discussed in a classical context in [44],
though its genuine justification becomes clear from the
connection to quantum or wave phenomena. The bright-
ness of Eq. (115) is higher for more coherent radiation,
even though the dispersion or emittance no longer comes
into this definition. In particular, as pointed out previously,
a pure mode, no matter how dispersed it gets, would have
the same Bav provided the flux remains unchanged.

(3) Another definition is simply to quote the on-axis
peak brightness,

B 0 ¼ Wðr ¼ 0; � ¼ 0Þ: (116)

An obvious drawback of this definition is that the WDF
is not guaranteed to be positive. However, as previously
discussed, the on-axis WDF is always positive for sym-
metric (even) modes, which are usually of interest for
synchrotron radiation. Additionally, the peak brightness
due to the boundness property (property 3) can serve as a
measure of coherence because for any pure and symmetric
(even) mode B0 is guaranteed to be related to the total
(coherent) spectral flux according to

B 0;pure;ev ¼
�
2

�

�
2
F : (117)

As pointed out previously, the core emittance is inversely
related to the peak brightness.

Finally, for the purpose of the numerical examples
below, it will be convenient to consider 2D projections of
the WDF which are easy to visualize. The extension of the
above definitions to 2D is straightforward and the equiva-
lent meaning remains intact only when the mode is sepa-
rable in the x; y planes. In particular, Eq. (115) in 2D
becomes

B avx ¼
RR

B2
xdxd�x
F

; (118)

and Eqs. (116) and (117)

B 0x ¼ Bxðx ¼ 0; �x ¼ 0Þ; (119)

B 0x;pure;ev ¼ 2

�
F ; (120)

with equivalent expressions for the y plane. We are going
to use Eq. (118) even when the mode is not separable as a
measure of effective average brightness in one plane.

E. Numerical examples

Here we demonstrate numerical examples of using the
Wigner distribution function formalism for undulator ra-
diation. We start out with a zero emittance electron case.
For convenience, we scale the results to 100 mA average
current for otherwise perfect (pencil) electron beam.
Throughout all the examples, the electron energy is set to
5 GeV and the undulator period �u ¼ 2 cm.
Figure 10 illustrates the calculated angular flux and the

central cone for an undulator with Nu ¼ 250 periods. To
convert the computed from radiation fields quantities to the
standard units of photons/s 0.1% bandwidth for spectral
flux and corresponding angular (per mrad2 or mrad in one
plane projection) and areal densities (per mm2 or mm in
one plane projection), we note that the spectral flux density
is related to the computed fields jEðrÞj2 in frequency
domain according to

d2F
dAd!=!

¼ I

e

c�0
�@
jEðrÞj2; (121)

where I is the average beam current (non-FEL process is
assumed), and �0 is the vacuum permittivity.
Figure 10(a) checks the angular flux density (or the on-

axis radiation field) against the well-known expression for
the planar undulator [8]

d2F
d�d!=!

¼ I

e
�N2

u	
2FnðKÞ; (122)

with fine-structure constant �, and function FnðKÞ ¼
K2n2=ð1þ K2

2 Þ2½JJ� for the harmonic number n and the

undulator K where ½JJ� ¼ ½Jðn�1Þ=2ð�Þ � Jðnþ1Þ=2ð�Þ�2 in

terms of the Bessel functions and � ¼ nK2=ð4þ 2K2Þ.
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The area dA and solid angle d� elements are related via
dA ¼ R2d� with R being the distance to the source,
allowing to cross-check the angular flux, Eq. (122), in
terms of the computed fields via Eq. (121). Figure 10(b)
compares on-resonance spectral flux with the analytical
result

F 0

d!=!
¼ 1

2

I

e
��NuQnðKÞ; (123)

where QnðKÞ ¼ ð1þ K2=2ÞFnðKÞ=n. In what follows, we
denote the spectral flux by simply F 0 implicitly assuming
the usual 0.1% bandwidth scaling. To find the total flux, the
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FIG. 10. Comparison of calculated (dots) vs theoretical values (solid curves) for undulator radiation: (a) angular flux density,
(b) central cone flux, (c) on-axis 4D brightness, (d) on-axis 2D brightness. The first three odd harmonics are shown. The undulator is
planar with Nu ¼ 250. Refer to the text for other parameters.

FIG. 11. Wigner-Stokes density distribution functions computed for a helical undulator. The x-ray phase space is backpropagated to
the undulator center. Refer to the text for details.
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detector in simulations is placed 50 m away from the
undulator center and the electric field is computed on a
3 mm 1024� 1024 square grid.

To check that the code correctly computes on-axis (peak)
brightness for 4D and 2D WDF computed from the fields,
we use the Eq. (123) with Eqs. (117) and (120), which relate
the total flux to the peak brightness of any symmetric
coherent mode according to B0 ¼ ð2=�Þ2F 0 and B0x ¼
ð2=�ÞF 0. The results of this cross-check are shown in
Figs. 10(c) and 10(d).

1. Example: Helical undulator on resonance

While the planar undulator radiation on axis is fully
horizontally polarized, Fig. 11 shows theWDF for a helical
undulator at its first harmonic (Nu ¼ 250, Kx ¼ Ky ¼
0:696, @! ¼ 8 keV). The WDF is obtained from the
detector plane placed 50 m away from the undulator
center, and subsequent backpropagation of the radiation
phase space back to the center of the undulator. As dis-
cussed previously, the case of a (nearly) pure circularly
polarized wave leads to jS0j ¼ jS1j with other generalized
Stokes parameters being approximately zero as seen in
Fig. 11.

The �-like shape of the x-ray phase space is persistent
throughout all the examples. The explanation behind it is
simple—undulator, being an extended source, has radia-
tion emitted from its beginning and the end, which must
advance different distances to reach the observer, or when
(back)propagated to the undulator center. This results in
the �-like shape, with the two branches corresponding to
the undulator ends.

In the remainder of this section, we limit our numerical
examples to planar undulators investigating x-ray phase
space for radiation on and off resonance, the segmented
undulator with a quadrupole focusing in between, and a
25-m long undulator including electron emittance and
energy spread effects.

2. Example: Planar undulator on resonance

This example illustrates the x-ray phase space for radia-
tion at undulator resonance, Fig. 12, along with the emit-
tance vs fraction curve. It is seen thatM2 > 1 or emittance
is not the minimum possible for the fully coherent mode.
On the other hand, the core emittance is its possible mini-
mum as discussed previously. Also, note the value of the �
function or Rayleigh range is somewhat different than
Lu=2 or Lu=2� values commonly quoted in the literature.
Additionally, the full beam and its core have different �
function values. Therefore, a proper matching with the
electron beam depends on whether one maximizes the
peak brightness or minimizes the overall rms emittance
of light.

FIG. 12. (a) Wigner 2D distribution for a planar undulator with Nu ¼ 250 on resonance of the 1st harmonic at 8 keV photon energy
along with (b) the emittance of the light vs fraction curve. The WDF is backpropagated to the undulator center.
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FIG. 13. Trajectories inside a segmented undulator with a
quadrupole focusing. The undulator has two segments each
with Nu ¼ 100 periods. The separation between the two is
0.486 m. A single horizontally focusing quadrupole of length
0.3 m is located at the center with 3:5 T=m gradient.
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3. Example: Segmented undulator with quad focusing

Next, we consider a segmented undulator with a quad-
rupole focusing in between the two segments. Figure 13
shows trajectories for different horizontal offsets of elec-
trons going into the undulator. Figure 14 shows the flux at a
detector 30 m away from the center of the undulator and
the WDF backpropagated to the undulator center. It is seen
that in this case the electron interferes with itself and the
WDF clearly shows features present in a coherent super-
position of two modes.

4. Example: Radiation off undulator resonance

Here we consider the radiation off the undulator reso-
nance. This is not only of interest for practical cases of
detuning or selecting photon energy in a monochromator
but also when considering off-energy electrons (electron

beams with energy spread). This is because for undulators
with a large number of periods, the effect of tuning off
resonance is identical to keeping the radiation frequency
!0 the same but changing the electron energy according to
�!=!0 ¼ �2�	=	.
Figure 15 shows the effect of the radiation frequency

scanning around the resonance of the 1st harmonic on the
angular (spectral) flux density on axis and integrated flux.
Twice the spectral flux is available for radiation �!=!0 �
1=Nu below the resonance.
Figure 16 demonstrates the light phase space for

3 different values of the radiation frequency detuning
along with the radiation pattern (50 m from the undulator
center).
Figure 17 shows the emittance and � function of light

for scanning the radiation frequency around the resonance.
As shown previously, the core emittance is �=8� in all

FIG. 14. Radiation of the 1st harmonic on 8 keV energy resonance from the segmented undulator with quadrupole focusing of
Fig. 13. Different rows correspond to different trajectory offsets, xini, as shown. The left column is 2D WDF backpropagated to the
center of the undulator, which corresponds to the right column showing the radiation spectral flux density at the detector 30 m away
from the undulator center.
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cases, whereas the rms emittance is minimal (though with
M2 > 1) around the resonance.

Finally, Fig. 18 shows the effective 2D average brightness
Bavx¼

RR
W2

x ðx;�xÞdxd�x and 
2
gx¼�

RR
W2

x ðx;�xÞdxd�x

where the normalized WDF Wxðx; �xÞ ¼ Bxðx; �xÞ=F
with F ¼ RR

Bxðx; �xÞdxd�x. The deviation of 
2
gx from

1 is due to the fact that the radiation mode is not separable,
even though the radiation is fully transversely coherent in
this case and therefore the full 4D 
2

g ¼ 1. The peak 2D

brightness, which is not shown, simply follows the trend
of Fig. 15 since it is related to the flux according to
B0x ¼ F ð2=�Þ.

5. Example: Including emittance
and energy spread of electrons

Here we provide an example of including emittance and
energy spread to the calculated WDF. For simplicity, we
continue to limit ourselves to 2D projection of the Wigner
distribution function and treat electron phase-space proba-
bility distribution function as separable Pðre; �e; �eÞ ¼
Pxðxe; �exÞPyðye; �eyÞP�ð�eÞ. Figure 19 shows the horizon-
tal phase space at 5 GeVobtained from the simulations of
the photoinjector for 77 pC per bunch and 1.3 GHz repe-
tition rate (average current of 100 mA), including the
effects of the merger and the linear accelerator [45]. See
Fig. 19. The energy spread of the electron beam is ��e

¼
2� 10�4. To illustrate its effect, we consider a 25-m long
undulator with Nu ¼ 1250 periods. Table II summarizes
the parameters used in this example. As seen, the radiation
is computed slightly below the resonance where the flux is
roughly doubled.
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FIG. 15. Scanning around the 1st harmonic resonance of 8 keV for
Nu ¼ 250 period planar undulator: (a) angular flux on axis,
(b) integrated (central cone)flux.Redcircles denote analytical values.

FIG. 16. The WDF (top row) corresponding to Fig. 15 for different detuning off the resonance. The WDF is backpropagated to the
undulator center. Solid lines show position and angular intensity projections. The radiation pattern used to calculate WDF (bottom
row) is obtained at 50 m from the undulator center.
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FIG. 19. Electron phase space at the center of 25 m long undulator corresponding to two different currents: 25 mA (left) and 100 mA
(right).
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To provide more optimal matching for the core
of the beam, �x is chosen to be �x ¼ 4 m close to the
Rayleigh range of the core of the radiation from a
pencil (zero emittance) beam, Fig. 20(a). Figure 20(b)
shows the effect of the energy spread for otherwise
ideal (zero emittance) beam. Some degradation of the
Bavx can be seen.
Figure 21 shows the effect of the beam emittance on the

radiation phase space. It can be seen that the negative parts
of theWDF are no longer present after the convolution, and
the average 2D brightness is degraded by a factor of about

TABLE II. Parameters used in computing the radiation phase
space.

Number of periods, Nu ¼ 1250
Undulator period, �u ¼ 2 cm

Resonant photon energy (n ¼ 1), @! ¼ 8 keV
Detuning radiation frequency, �! ¼ �0:75!=Nu

Beam energy, E ¼ 5 GeV
Electron energy spread, ��e

¼ 2� 10�4
Electron emittance, �x ¼ 11, 29 pm

Average current, I ¼ 25, 100 mA

� function, �x ¼ 4 m

FIG. 20. X-ray phase space corresponding to zero emittance and zero energy spread (left) and nonzero energy spread ��e
¼

2� 10�4 (right). The beam current is 100 mA.

FIG. 21. X-ray phase space including the effects of emittance and energy spread for the two different currents.
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2 and 3 for 25 and 100 mA cases, respectively, compared to
zero emittance. Other relevant parameters of the radiation
are shown in Fig. 21.

V. CONCLUSIONS

The Wigner distribution function approach to describe
partially coherent radiation in phase space has been
reviewed. Despite the general nature of the approach,
the true power of the method to describe modern and
future x-ray synchrotron sources is to employ 5D or 6D
phase space (times 4 for arbitrary polarized light) com-
plementing the 4D transverse phase space with frequency
and time where the timing structure is important. Though
straightforward, such a description is rather challenging
from the point of computational requirements, even
though a sampled approach similar to particle tracking
in accelerator physics can be employed to represent the
radiation in the entire 6D phase space (the microscopic
brightness is allowed to take on negative values). When
the x-ray optics beam line consists of drifts and perfect
lenses without clipping apertures, this description is
complete and allows one to fully account for the light
properties following geometric optics transformation
rules. Introduction of apertures in the beam, however,
requires the convolution of the transmissive mask’s WDF
with that of the beam. In these cases, it might be more
efficient to consider decomposition of the partially co-
herent light into orthogonal mutually incoherent modes
and to include the diffraction effects on each mode
separately. Nonlinear optical elements similarly pose a
challenge for an efficient WDF transport, even though
examples of Monte Carlo quantum transport using the
Wigner distribution are finding increasing application for
the semiconductor devices [46]. Borrowing some of
these techniques may yield a practical method capable
of including all the relevant phenomena for the x-ray
transport line design.

In summary, the Wigner distribution function is shown
to be a rigorous and insightful way to describe the coher-
ence and other properties of the synchrotron radiation. Its
use will grow in importance as synchrotron x-ray sources
with higher coherence become more prevalent. Other
quantum mechanical analogies can be gainfully exploited
in this framework, including quantum decoherence and the
connection of density matrix to entropy to mention only the
obvious.
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