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Bunches in the Tevatron are known to exhibit longitudinal oscillations which persist indefinitely. These

oscillations are colloquially called ‘‘dancing bunches.’’ Although the dancing proton bunches do not cause

single bunch emittance growth or beam loss at injection, they lead to bunch lengthening at collisions. In

Tevatron operations, a longitudinal damper has been built which stops this dance and damps out coupled

bunch modes. Recent theoretical work predicts that the dance can also be stopped by an appropriate

change in the bunch distribution. This paper describes the Tevatron experiments which support this theory.
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I. INTRODUCTION

Since the start of Run II, the proton bunches in the
Tevatron have been observed to have longitudinal oscilla-
tions which persist indefinitely. The initiators of these
oscillations for coalesced [1] bunches come from the co-
alescing process (see Sec. III A 2) and possibly also from
injection errors [2]. The reason for the persistence of these
oscillations has been traced to the loss of Landau damping
(LLD) caused by the inductive impedance of the Tevatron
[3]; these oscillations are colloquially called ‘‘dancing
bunches.’’ At the injection energy of 150 GeV, these
oscillations do not seem to cause any emittance growth
or any beam loss. But at the flattop energy of 980 GeV, they
lead to an effective bunch length growth which reduces
luminosity. A longitudinal damper system has been built
which damps out the dance [4].

Recent theoretical work has predicted that the dance can
also be stopped by flattening out its phase space distribu-
tion at low synchrotron frequencies [5,6]. In particular, this
flattening can be achieved by modulating the rf phase at the
synchrotron frequency of the low amplitude particles [7].
The goal of this paper is to demonstrate experimentally that
the dance can be stopped by changing the beam distribu-
tion appropriately.

II. THEORY

The Boltzmann-Jeans-Vlasov equation [8] is conven-
tionally used to describe longitudinal motion of bunched
beams. This equation has a continuous spectrum and,
possibly, a discrete one [9,10]. The discrete van Kampen
modes are described with regular functions and some of
them do not decay. Therefore, in principle, any coupled
bunch wake drives an instability when there is LLD.

However, in practice, the coupled bunch wake has to be
high enough to give an observable growth rate. If
the growth rate is too small, LLD results in persistent
oscillations caused by initial perturbations.
For bunched beams, LLD was first discussed and esti-

mated by Sacherer [11]. Later, his main results were
rederived and discussed in more detail by other authors
[12–16]. For a dipole mode, all of the approaches were
actually based on the assumption that the bunch moves as a
rigid body. However, recent solutions of the eigenvalue
problem [5,6] show that the rigid bunch approximation can
lead to significant overestimation of the LLD threshold.
As it is shown in the original paper by Sacherer [11], the

threshold bunch population Nth is a strong function of the
bunch length ‘. In particular, for an inductive wake above
transition,

Nth / ‘5: (1)

This scaling law can be derived from the idea that Landau
damping is lost whenever the incoherent tune shift �� /
NZkðc=‘Þ=‘2 exceeds the incoherent tune spread �� / ‘2,
where N is the bunch population and Zk is the longitudinal
impedance at frequency c=‘. For the inductive impedance,
the incoherent tune shift decreases with the bunch length as
�� / ‘�3. The combined action of this decrease with
increasing nonlinear tune spread �� / ‘2 results in ‘5 in
Eq. (1). This high sensitivity to bunch length indicates that
approximations of the bunch profile or arbitrary assump-
tions about the eigenfunctions can lead to significant errors
in the calculated LLD threshold because they can change
the effective bunch length. For example, for a full bucket of
a single-harmonic rf system with an inductive impedance
above transition, the threshold relative tune shift ��=�
was found to be as low as 10% for the Hofmann-Pedersen
distribution, and just �1% for a model of the Tevatron
coalesced bunch [5]. In terms of bunch population, the two
thresholds differ by almost 2 orders of magnitude. It turns
out that the onset of LLD is highly sensitive to the steep-
ness of the distribution function at low amplitudes: the
flatter the distribution, the more stable it is. This prediction
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appears to be generally correct when the bare rf synchro-
tron frequency monotonically decreases with amplitude
and the wakefield is repulsive, i.e., the wake lowers the
incoherent synchrotron frequencies. For example, space
charge below transition, inductance or resistive wall above
transition are all repulsive. This conclusion agrees with
Ref. [15], where the LLD threshold was calculated for
several distributions with the inductive impedance above
and below transition. It was shown there that below tran-
sition LLD is sensitive to the edges of the distribution,
while above transition, it is sensitive to the flatness of the
bunch core.

As was discussed in Ref. [5], in the case of a sinusoidal
rf system, any combination of inductance, wall resistivity,
high order cavity modes above transition, or space charge
below transition will shift the incoherent spectrum down to
lower frequency and the coherent mode will emerge above
it. Since the incoherent frequencies of low amplitude
particles are close to the mode frequency, their weight in
the mode dominates. Hence, for a single-harmonic rf sys-
tem and a repulsive wake function, the discrete mode
causes dipole motion of the bunch center while its tails
remain still. This is the behavior of the bunches in the
Tevatron [3].

A. Flattening out the distribution
for particles with small amplitudes

To flatten out the bunch distribution at small amplitudes
in the Tevatron, resonant phase modulation of the rf phase
was suggested [7], with the idea of using anomalous
diffusion within a controlled phase space area; see
Refs. [17–19] and references therein.

Let it be assumed that the rf phase is modulated at a
frequency�m, which is close to the synchrotron frequency
�s. Let the amplitude of the modulation �mðtÞ adiabati-
cally grow from zero, then stay a while at some value �0,
and then adiabatically decrease to zero. To prevent excita-
tion of the tail particles and the coherent modes, the
process must be adiabatic. However, even when the process
is generally adiabatic, i.e., when jd�m=dtj � �s�0, the
adiabaticity for some particles will be broken. Indeed,
resonant rf phase modulation results in either one or two
stable fixed points (SFPs) inside the bucket. In the last case,
there is an inner separatrix between the two SFPs and when
the modulation amplitude changes, the separatrix moves
and some particles cross it. Separatrix crossing is a non-
adiabatic process resulting in classical chaos and anoma-
lous diffusion.

Thus, the phase space density can be changed only in the
case of two SFPs which occur when the modulation fre-
quency is lower than the synchrotron frequency,�m <�s,
and the modulation amplitude is lower than its bifurcation

value, �m <�b ¼ 3:08�3=2 with � ¼ 1��m=�s. When
the modulation amplitude grows from zero to its bifurca-
tion value, and when it comes back to zero later, the

irreversible change of the phase space density occurs for
the phase space area with action J � Jlim, where

Jlim � 6�Jbucket; (2)

and Jbucket is the bucket acceptance. For dimensionless
variables associated with the unperturbed Hamiltonian
Hðz; pÞ ¼ p2=2þ 1� cosz, the acceptance Jbucket ¼
8=�. The dimensionless variables are the same as in
Ref. [19], page 265, with time measured in radians of the
synchrotron phase. The numerical factor ‘‘6’’ in Eq. (2)
was approximated using a numerical solution discussed
below and it is about 2 times larger than the separatrix
border at zero amplitude. After this adiabatic cycle, the
phase space density becomes nearly constant for the entire
area J < Jlim, provided that the modulation amplitude
crosses its bifurcation value, i.e.,

�0 � 3:08�3=2: (3)

It is worth mentioning that the adiabatically ramped
modulation does not excite any coherent motion when
the modulation is turned off. Thus, to make a flat phase
space density within a certain action Jlim, the adiabatic rf
phase modulation has to be applied slightly below the
synchrotron frequency, � ¼ 0:16Jlim=Jbucket, and its ampli-
tude must cross the bifurcation value in Eq. (3).
A simulation of how the bunch distribution is modified

with rf phase modulation has been done using the follow-
ing map:

znþ1 ¼ zn þ pn�t

pnþ1 ¼ pn � �t sin½znþ1 ��mðtnÞ sinð1� �Þtn�
tnþ1 ¼ tn þ�t;

(4)

where zn and pn are the coordinate and momentum, re-
spectively, in dimensionless units, tn is the time variable in
radians of the synchrotron oscillation, and�t is its numeri-
cal step. The amplitude of the rf phase modulation �mðtÞ
was taken to be a trapezoid similar to that shown in Fig. 4,
Here are the typical parameters used in the simulat-

ions: (i) the adiabaticity parameter _�m=ð�s�0Þ � 200;
(ii)�t ¼ 0:01 radians which is small enough for the results
to be independent of its specific value; (iii) initial phase
space density is assumed to be FðJÞ / ðJmax � JÞ2 with the
emittance Jmax set close to the bucket acceptance; and
(iv) number of macroparticles N ¼ 4� 104.
The simulation results before and after phase modula-

tion are shown in Fig. 1 for � ¼ 0:03,�0 ¼ 0:025, and two
consecutive phase modulation cycles with Tsim ¼ 600 ra-
dians or about 90 synchrotron periods each. Each cycle
time was equally divided into three parts of about 30
synchrotron periods each: a linear growth of the modula-
tion amplitude from 0 to �0, staying at �0, and a linear
decrease from �0 back to 0.
Clearly, the action distribution PDF [J] has successfully

flattened out and there is even a little divot that is less
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pronounced after the second phase modulation cycle.
Except for this small difference, the second cycle does
not significantly change the distribution. The phase distri-
bution PDF [c ] after every cycle is as flat as before, show-
ing that no coherent oscillations were excited.
The time dependence of the unperturbed Hamiltonian

Hðz; pÞ ¼ p2=2þ ð1� coszÞ calculated for the bunch-
average values of the canonical variables hzi and hpi is
shown in Fig. 2. This simulation shows that the adiabaticity
of the phase modulation is very important: after every
cycle, the Hamiltonian goes to zero. The irregular features
of this plot probably reflect the chaotic nature of the
anomalous diffusion responsible for the flattening of the
distribution.

III. EXPERIMENT

The block diagram of the phase modulation hardware
used for phase modulating the beam is shown in Fig. 3. A
signal generator generates a sine wave where its amplitude
and frequency can be programmed and its output is fed into
a phase shifter module. The phase shifter modulates the
Tevatron low level rf (LLRF) and the result is fed into the
Tevatron high level rf (HLRF). Essentially, the components
shown in the block diagram produce the following:

fHLRF ¼ A sin½2�fLLRFtþ�mðtÞ sinð2�fmtÞ þ ��; (5)

where fHLRF is the phase modulated signal sent to the
HLRF, A is the amplitude of the signal sent to the HLRF,
fLLRF is the frequency from the LLRF, and � is an arbitrary
phase. The amplitude �m and frequency fm for the phase
modulation are set by the signal generator.
The time evolution of the bunch during the experiment is

measured using the sampled bunch display (SBD) [20]. Its
block diagram is shown in Fig. 3. The SBD measures the
bunch profile using a resistive wall current monitor with an
oscilloscope that has a 2 GHz bandwidth. The collected
data is processed with a LABVIEW program which calcu-
lates the following parameters: (i) bunch centroid;
(iii) bunch current; and (ii) rms bunch length.
These parameters are then returned to the control system

and can be plotted as in Figs. 5 and 9. Furthermore, the
snapshots of the bunch from the resistive wall signal can
also be downloaded. The SBD trigger has been set up to
take five consecutive snapshots of the bunch at 1 Hz. These
snapshots are presented in the figures below.
A block diagram of the phase detector used to measure

the longitudinal motion of the bunch with respect to the
Tevatron rf is shown in Fig. 3. The I=Q phase detector is a
part of the Tevatron longitudinal damper system [4] which
essentially takes the sum signal from a stripline pickup,
down-converts it with the Tevatron LLRF, and low pass
filters it to produce a quadrature signal. The quadrature
signal is then measured with a spectrum analyzer.

Action distribution

Action distribution

Phase distribution, t=0 & t=Tsim

FIG. 1. (a) Distributions over action PDF [J], original (blue)
and after the first ramp (pink); the overlapped area is in violet.
(b) A similar comparison of the distributions before and after the
second ramp. (c) A comparison of the phase distributions PDF

[c ] before and after the first ramp.

FIG. 2. Time dependence of the unperturbed Hamiltonian
taken for the bunch-average coordinate and momentum.
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The Tevatron parameters relevant to the experiment are
shown in Table I. This experiment uses only two coalesced
proton bunches and measurements are either taken at the
injection energy of 150 GeV or at the flattop energy of
980 GeV.

A. Results at the injection energy of 150 GeV

The studies presented in this section have been per-
formed at the injection energy of 150 GeV. At injection,
the bunch nearly fills the bucket and so there are small
beam current losses whenever the bunch is modulated.
(Results at flattop do not have this problem. See
Sec. III B.) In this experiment, fm has been set to
87.47 Hz because it is the measured synchrotron frequency
fs and the bunch is modulated once for 14 s. (Note:
theoretically, fm should have been set to a frequency which
is smaller than fs. However, at the time, this criterion was
not appreciated so the experiment was not done.) The
phase ramp used in the 150 GeV experiments is not adia-
batic and is shown in Fig. 4. The maximum amplitude of
the phase modulation has been tested for �0 ¼ 1, 2, and
3 deg, respectively. Experimentally, �0 ¼ 3 deg has been
found to produce the best effect for the duration of the
modulation.
Figure 5 shows the modulation duration and the behav-

ior of the bunch current, centroid, and rms bunch length
before and after phase modulation. The beam current drops
by about 2.3% and the rms bunch length grows by about
1.8% after being modulated. The beam current drop is not
surprising because the filled bucket is full. The change in

FIG. 3. The block diagrams of the bunch phase modulator and
detectors used to monitor the bunches for the described experi-
ments.

TABLE I. Tevatron parameters relevant to the experiment.

Parameter Value Units

Injection energy 150 GeV

Flattop energy 980 GeV

Synchrotron frequency at 150 GeV 87.47 Hz

Synchrotron frequency at 980 GeV 34.75 Hz

rf frequency at 150 GeV 53.103 MHz

rf frequency at 980 GeV 53.104 MHz

Harmonic number 1113

Buckets between two injected bunches 21

Intensity per bunch ð200–300Þ � 109
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FIG. 4. These are the phase ramps �mðtÞ used at 150 GeV and
980 GeV. For the 150 GeV experiments, tstop is user defined.
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rms bunch length is due to the shape change which can be
seen clearly in Fig. 6. After the modulation is turned off, a
divot structure forms which confirms the prediction pre-
viously discussed in Sec. II A.

1. Contrast to dampers

The bunch distribution after it has been modulated can
be contrasted to the distribution when dampers are used
instead to stop the dancing. The before and after distribu-
tions are shown in Fig. 7. The effect of dampers on the
bunch distribution is to make it more triangular. This can
be contrasted to the effect of the modulation technique
shown in Fig. 6 where the distribution becomes more
rotund. Also, after the dance stops and the dampers are
turned off, the bunches do not start dancing again even
after the dampers have been off for 5 minutes.

At first glance, the stability of the bunch after the damp-
ers are turned off contradicts the described theory of LLD.
Indeed, according to this theory, the LLD threshold is
lowered when the distribution function becomes more
steep and thus the beam distribution shown in Fig. 7 is
less stable after the dampers are turned off than it was
before they were turned on. This seemingly contradictory
observation can be explained by the extremely small
growth rate of the two bunch system. When Landau damp-
ing is lost, the growth rate is determined by the coupled
bunch wake forces. If these forces are weak enough, the
instability takes too long to grow and so it cannot be
observed. There are two types of long range wakefields
that can be considered as possible candidates for driving
the longitudinal coupled bunch instability (LCBI): para-
sitic cavity modes and the resistive wall wake. Direct

calculations show that the resistive wall wake is extremely
weak and can be ignored. Even for 36 Tevatron bunches,
the calculated resistive wall LCBI growth time is�10 days
and so the only remaining candidate is the rf cavity modes.
According to Ref. [21], the LCBI observations at the top
energy for 36 proton bunches can be explained by a para-
sitic higher order mode at 311 MHz with the caveat that the
calculated growth time using the rigid bunch approxima-
tion is an order of magnitude faster than the measured one.
There are two possible reasons for this discrepancy: the
first is a decreased Q value compared to the measured
value done in 2000 [21,22] and the second is that the rigid
bunch approximation grossly overestimates both the
threshold and the growth rate of the instability.
Growth time of the LCBI for the two bunches, �2, driven

by the parasitic cavity mode can be calculated and com-
pared with the growth time �M for M equidistant bunches.
Using Eqs. (4.123) and (4.128) of Ref. [23], it is straight-
forward to show that

FIG. 5. The data from the SBD system taken at 150 GeV is
plotted here: T:SBDPWS, T:SBDPIS, and T:SBDPCS. The beam
is modulated for 14 s and there is some beam loss and bunch
length growth. Although the measured bunch centroid looks like
it is still oscillating, the snapshots show that the dancing has
stopped. See Fig. 6.
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FIG. 6. These are snapshots taken by the SBD before and after
modulation at 150 GeV. Before any modulation, the bunch is
dancing. The result after modulating the beam for 14 s is the
creation of a divot structure in the bunch and stoppage of the tip
motion.
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�2
�M

� M

4��s

td
T0

expðT0=tdÞ; (6)

where �s is the synchrotron tune, T0 is the revolution time,
!R is the angular frequency of the parasitic mode, and td ¼
2Q=!R is its e-fold decay time. This formula was derived
under the assumption that the mode decay time td is shorter
than the revolution time and longer than the time separa-
tion between the neighboring bunches. This assumption
allows the neglect of all multiturn terms in the wake sum of
Eq. (4.123) of Ref. [23] for the two bunch case. Application
of this formula to the experimental parameters shows that
the two bunch growth time is at least 5� 103 times longer
than the standard 36 bunch growth time. According to
the measurements of [21,22], the 36 bunch growth time
is 2–3 seconds. Thus, Eq. (6) yields at least 3 hours for the
growth time for the two bunch system which is much
longer than the �5 minutes of experimental observations
with the dampers off.

2. Initial bunch shape effects

The number of modulation cycles required to stop the
bunch varied from case to case. Most likely, this is due to
the nonoptimized detuning of the modulation frequency
and some variations in the bunch intensities and profiles
which cause variations in the incoherent tune shifts.
Perhaps, a better choice of the detuning parameter � ¼
1� fm=fs can lead to single modulation damping of the
dance, but there was no opportunity to test this.
In this experiment five bunch coalescing is used rather

than the usual seven. The initial bunch distribution between
bunch 1 and 2 is quite different because the Main Injector
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FIG. 8. The initial bunch shape can have an effect on how strongly it must be modulated to stop the dancing.
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has not been tuned up for five bunch coalescing. Therefore,
the random effects of untuned coalescing has made bunch 1
dance much more than bunch 2 before the modulation is
applied. Figure 8 shows the result of modulating the two
bunches at the same time. The bunches are modulated for
7–8 s at �0 ¼ 3 deg and the first bunch does not stop
dancing while the second bunch stops dancing and gets a
divot.

B. Results at the flattop energy of 980 GeV

The bucket is about a factor of 2 larger than the beam
size at 980 GeV, and thus allows the beam to freely change
shapewithout being constrained by the bucket edges. A�m

FIG. 9. The beam is modulated 7 times using the �m ramp
shown in Fig. 4 at 980 GeV. After the seventh modulation the
dancing stops but there is growth in the rms bunch length
because of the shape change.
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modulation, the synchrotron amplitude is reduced by about
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ramp has been created so that there are no abrupt changes
in the rf as shown in Fig. 4. Previous experiments have
shown that sudden turn-ons can cause some beam loss even
though the bucket is large compared to the beam size.

In this experiment, the total phase ramp time is 3 s. The
rise and fall time of the ramp has been chosen to be 1 s
because it is slow compared to the synchrotron period of
29 ms. The flattop period can be varied, but for this
experiment it has been set to 1 s.

The modulation frequency fm has been set to the mea-
sured synchrotron tune 34.75 Hz and the bunch is modu-
lated 7 times with the �m ramp.

Figure 9 shows the seven �m ramps and the behavior of
the bunch current, centroid, and rms bunch length for the
duration of the experiment. The beam current is constant
throughout the experiment but the rms bunch length grows
by about 18% (from 1.67 to 1.97 ns) by the end of the
experiment. It is interesting that the rms bunch length
grows after each modulation because of the shape change.
A comparison of the bunch shapes before and after the
modulation shows that the rms bunch length growth comes
from the flatter core of the bunch while its tails remain
unchanged.

Figure 10 shows the bunch shape and the spectrum
before modulation starts. The spectrum shows the revolu-
tion frequency and the synchrotron sidebands which are
about 6 dB smaller than the revolution harmonic. The beam
has no quadrupole motion because there are no resonances
at twice the synchrotron frequency.

Figure 11 shows both the bunch shape evolution and the
spectrum from the phase detector after the first, third, fifth,
and seventh modulations. It is clear from these plots that
after the first modulation the amplitude of the dance has
increased by about 14 dB relative to the amplitude before
modulation. After each subsequent modulation, the ampli-
tude becomes smaller, and after the seventh modulation,
the dance amplitude has decreased by 14 dB relative to the

amplitude before the first modulation. The shape of the
bunch after the seventh modulation has clearly changed.
Figure 12 shows superimposed snapshots of the bunch
before and after the seventh modulation.

IV. CONCLUSION

Similar ideas for bunch distribution flattening have been
suggested and implemented in the KEK-PS [24,25] and the
KEK Photon Factory [26]. This technique is also routinely
applied in the CERN SPS to blow up the longitudinal
emittance for stabilizing the beam [27]. However, in all
of these cases, narrow band rf noise around the synchrotron
sidebands is used as the excitation. In the KEK-PS and
SPS, the rf perturbation is applied to the voltage amplitude
while at the KEK Photon Factory, noise is applied to the rf
phase. The experiments described in this paper take a
different approach: instead of noise, the rf phase is excited
at the synchrotron frequency, and its amplitude is ramped
adiabatically. This technique works because anomalous
diffusion flattens the bunch distribution. It is also possible
that this technique is able to finely regulate the width where
the distribution is flattened while keeping the remaining
distribution untouched.
As was previously discussed in Sec. II, this method of

bunch flattening is very sensitive to the detuning of the
modulation frequency from the synchrotron frequency. In
all these experiments, the rf phase was modulated at the
measured coherent synchrotron frequency which can be
higher or lower than the proper value calculated with the
potential well distortions taken into account. In the experi-
ments, several consecutive rf modulation cycles are needed
to stop the bunch oscillations, while theoretically, with the
proper detuning of the phase modulation frequency, only
one modulation cycle should be able to stop it. Presently,
there is no convincing answer for the number of rf modu-
lation cycles needed in these experiments. However, part of
the answer has to lie in controlling the detuning of the
phase modulation frequency. Unfortunately, due to the lack
of machine studies time and the shutdown of the Tevatron
[28], the effects of detuning have not been explored.
Hopefully, future studies in other machines will shed light
on this issue.
All of the Tevatron experiments discussed here show

that an rf phase modulation that is ramped to an amplitude
of a few degrees for a duration of a few seconds can flatten
the low amplitude distribution of the beam. In some cases,
a divot forms à la computer simulations. These beam
studies show that stabilization does happen as soon as the
bunch is flattened, confirming the proposal that resonant rf
modulation can stop the beam from dancing.
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