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A muon ionization cooling channel based on lithium rods (Li-rod) has been under consideration since the

middle of the 1980s. Features of muon beammotion in such a channel are discussed, namely, an influence of

nonparaxiality ofmotion and transverse-longitudinal coupling.Most simulations ofmuon beamcoolingwere

performed using the specially developed software LYRICS (lithium rod ionization cooling simulation); a

comparison between its results and the predictions of a linear model serves both to examine the simulation

code and to determine the contribution of nonparaxiality to the beam motion. For numerical examples, we

usedmuons around 200MeV total energy since such energy is close to optimal. The idea of the inclusion of a

symplectic (nondissipative) emittance exchanger to the cooling channel, which allows one to cool in all

degrees of freedom, is introduced. The appropriate beam parameters for emittance exchange procedure and

their dependence on transverse emittance and beam longitudinal parameters are discussed.
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I. INTRODUCTION

A. General overview

One of the most important steps that enabled progress in
high energy physics was implementation of colliding
beams over 50 years ago. Higher energy and higher pro-
ductivity (luminosity) of colliders are important for any
further progress in HEP.

A proton-proton collision at very high energy is equiva-
lent to a collision of its fundamental constituents with an
effective energy of about 1=6 of the initial proton energy,
though with a very wide energy spectrum. As a result of
this complex collision, analysis of experimental data and
extraction of properties of fundamental interactions be-
comes more difficult than for elementary particles.

Therefore, it would be highly beneficial to study high
energy processes in collisions of elementary particles. For
center-of-mass energy up to about 1 TeV linear electron-
positron colliders could solve the problem acceptably well.
However, in order to reach sufficiently high luminosity,
high intensity bunches are required. Such high-density e�
(eþ) bunches produce very high focusing fields, so primary
particles emit too many photons. The effect can be sub-
stantially reduced with the use of wide but very thin
bunches of the same transverse cross section. However,
even in this case, the resulted energy spread reaches several

tens of percent for 1 TeV beams. The use of electron-
electron collisions instead leads to strong repulsion, which
results in orders of magnitude lower luminosity.
The source of this problem is in smallness of the electron

mass, as the emitting power in a collision is proportional to
E2=m4. The effect can be practically suppressed if heavier
leptons are used. The only heavier lepton with acceptably
long lifetime is a muon whose mass is a factor of 200 higher
than that of an electron (the idea of a muon collider was
proposed byBudker [1,2] in 1969 and later described inmore
detail by Skrinsky [3] in 1971). The muon lifetime is 2:2 �s
in its rest frame and rises proportionally to its total energy in
the laboratory frame. As a result, one can expect up to 1000
bunch collisions in a high-field cyclic collider prior to muon
decay. Thus, in a collider of a given perimeter and guiding
magnetic field, use ofmuons instead of protons allows one to
study fundamental interactions at 6 times higher energy and
under much cleaner conditions (initial particles are well
determined and effective monochromaticity of collisions is
much, much better). That is why muon beams present a
unique opportunity for a precision study of fundamental
interactions at a several TeV center-of-mass energy scale.
However, several key technologies for a muon collider

are not yet developed. First of all, it is necessary to reduce
the 6-dimensional muon emittance by 5–6 orders of mag-
nitude, preserving the beams intensity. That strong muon
cooling is a must to reach sufficient luminosity.
The most promising method for muon beam cooling is to

use ionization energy losses in some dense matter with a
consequent compensation of lost energy (and longitudinal
momentum) via the rf field. Pioneering works on ionization
cooling were done by Kolomenskii [4] in 1965 and later
developed by a number of authors [5–7]. Much effort is
being invested to develop and study various cooling
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schemes both analytically and using computer simulation
during the past 10 years (a list of the most recent references
can be found in review articles by Shiltsev [8] and Zisman
[9]). Recently, experimental study of some cooling tech-
niques has been done at Fermilab MuCool Test Area [10]
and at the Muon Ionisation Cooling Experiment at
Rutherford Appleton Laboratory [11].

B. Article structure

This article covers more carefully the study of a
cooling channel based on liquid-lithium rods (Li-rod).
The main parameters of this cooling scheme are presented
in Sec. II. The rods provide muon energy losses due to
ionization and simultaneously strong transverse focusing
by carrying a very high current along the rod. While its
technical realization is still in development, Li-rod may
provide sufficiently strong focusing for the final cooling
stage. Different engineering aspects and technical limita-
tions for Li-rods, as well as a list of references, can be
found in [12–14]. In simulations, we used Li-rods with

current up to 1 MA and magnetic field on the surface up to
200 kG.
Predominantly, this article focuses on a muon motion

analysis in a single Li-rod, which is a core of this cooling
scheme, and not on a whole beam line. Different features of
transverse and longitudinal muon beammotion through the
rod are presented in Secs. IV and V, respectively (such as
nonparaxiality and transverse-longitudinal coupling). The
comparison between different simulations and linear
model predictions are presented. As will be shown, the
nonparaxiality of motion results in a higher rate of heating
of the longitudinal degree of freedom in comparison with
predictions of a paraxial model (up to 2 times). An addi-
tional rf cavity, which rotates a beam in the (cdt, dE=Eeq)

plane by an angle of pi, can be placed after a main one to
suppress this undesirable effect.
The idea of the inclusion of a nondissipative emittance

exchanger in the cooling channel, which can upgrade the
cooling to all degrees of freedom, is introduced [15].
Optimal parameters for the emittance exchange procedure
are determined in Sec. VI. More complete consideration of
emittance exchange procedure will be presented in future
work.
At the end of this paper, one can find two appendixes

where the linear models for transverse and longitudinal
motion are investigated in detail.

II. COOLING SCHEME UNDER CONSIDERATION

The proposed cooling channel is based on Li-rods alter-
natingwith rf cavities. Thematching betweenmain elements
is realized by a cascade of lithium and plasma lenses [16,17]:
the short lithium lenses (strong in comparison with plasma
ones)make the beta function several times larger at the exit of
lithium rods (smaller at the entrance) and weaken the low-
aberration functioning of plasma lenses, which have longer
focal lengths. An example of parameters for one period of
this cooling scheme along with beta-function behavior are
presented in Table I and Fig. 1, respectively.

TABLE I. Example of element parameters for one period of the cooling channel.

Li-rod Drift Li lens Drift Plasma lens rf cavity Plasma lens Drift Li lens Drift Li-rod

Ea (MeV) 190 190 190 190 190 220 220 220 220 220 190

�b (cm) 1.11 2.52 5 75.28 165 158 63.19 5 1.39 1.1 1

Hc (kG) 200 � � � 147 � � � 3.1 � � � 7.9 � � � 139 � � � 200

Id (MA) 0.5 � � � 0.78 � � � 0.05 � � � 0.26 � � � 0.81 � � � 0.4

Le (cm) 30 1.25 1.63 18.7 23.37 150 24.6 17.05 2.84 0.56 30

Df (cm) 1 � � � 2.14 � � � 6.3 � � � 13.32 � � � 2.34 � � � 0.8

aParticle full energy at the exit of element.
bBeta function at the exit of element.
cMagnetic field on the surface of element.
dCurrent through the element.
eLength of element.
fDiameter of element.
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FIG. 1. Example of the beta-function behavior in one period of
the cooling channel.
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III. BEAM MOTION SIMULATION

The multipurpose software ‘‘lithium rod ionization cool-
ing simulation’’ (LYRICS) has been developed for a study of
a scheme of final cooling for muon beams based on con-
sequent lithium rods. It can simulate the 6-dimensional
motion of a muon beam through the matter including
such effects as nonparaxiality, dissipation, and stochastic
processes like scattering or fluctuations of energy losses.
The fluctuation of energy losses is considered as a
Gaussian stochastic process, since Li-rod corresponds to
a thick absorber; in this limit Gaussian approximation
works with high precision [18]. Also LYRICS allows simu-
lation of the motion in matching sections, including accel-
eration in rf cavities (with taking into account transverse
focusing due to transverse components of rf fields).

IV. TRANSVERSE MOTION

In the paraxial case, the evolution of the second mo-
ments of the beam hx2i, hx02i, hxx0i and the transverse
emittance "tr is sufficiently simple and can be described
analytically (see Appendix A). Examples of their behavior
are presented in Fig. 2. Each of these quantities tends to
its asymptotic from above (below) if its initial value is
bigger (smaller) than the equilibrium one [see Appendix A,
Eq. (A4)]. In the most general case, when the initial values
of the second moments are unmatched with the optical
functions of the cooling channel, they are damped with
oscillations (grey lines on the graph). Despite the fact that
in both cases the cooling rate is the same, there is no doubt
that these oscillations are undesirable because they can

lead to additional particle losses on the physical aperture
and should be avoided [see Appendix A, Eq. (A6)].

A. Comparison of linear model and simulation

A comparison between the simulation results and the
predictions of a paraxial linear model is presented below,
with specific examples shown in Fig. 3 for two different
values of the initial transverse emittance. The simulation
was made for ten consecutive lithium rods similar to that
considered in Sec. II. Each of them has a length of 30 cm
and a field on its surface of 200 kG. The diameter of rods
was chosen as 5 and 2 cm for the (a) and (b) cases,
respectively. Particle motion in the matching and accelera-
tion sections were simulated as ideal thin transformations
such that the full energy of a beam, ��m�c

2, at the

entrance to each rod is equal to 220 MeV and the second
moments are matched with the channel optics. The beam
energy used in the linear model is about 205 MeV, corre-
sponding to the simulated beam energy. It turns out that
this relatively simple analytical model agrees with simula-
tion to high precision, with a discrepancy of less than 5%.
To determine in detail how longitudinal motion affects

transverse cooling, beam passage through a single rod was
examined for multiple values of initial longitudinal emit-
tance, or more exactly, the initial position of the beam on

the [hðc�tÞ2i1=20 , hð�E=EeqÞ2i1=20 ] plane, with a fixed initial

transverse emittance. It has been found that only in cases of
relatively small transverse emittance (close to the equilib-
rium value) or very large initial energy spread (more than
10%) is there an around 5% decrease in the rate of cooling
compared to the linear model. This confirms that the
influence of longitudinal motion on the transverse cooling
is indeed small.
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FIG. 2. Stylistic impression of the behavior of the second
moments of the beam and transverse emittance due to ionization
cooling in the cases of matched initial conditions (black curves)
and unmatched ones (gray curves).
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FIG. 3. Linear model of transverse motion compared to simu-
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(b) small one.
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V. LONGITUDINAL MOTION

Similar to the transverse motion, the longitudinal motion
of the beam in matter can be described analytically by a
linear approach (see Appendix B). The heating of longitu-
dinal moments occurs by two processes: antidamping
under the action of ionization friction and ‘‘diffusion’’—
a fluctuation of ionization losses.

In this model the behavior of the root-mean-square
energy spread [Eq. (B5a)] can be described using a certain
characteristic value

�ch ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

dE=E=4�t

q
:

If the initial energy spread in a beam,

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�E=EeqÞ2i0

q
;

is larger than this value, an exponential growth of the root-
mean-square energy spread by antidamping is observed.
Vice versa, for the case when �< �ch, this longitudinal
second moment has an extremely fast growth described by
diffusion initially (the smaller the initial value of the
energy spread, the faster the growth), which becomes ex-

ponential. The similar quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

x=4�s

p
, for the case of

the transverse motion, refers to the equilibrium angular
spread determined by the competition of damping and
diffusion processes. Numerical examples of the evolution
of the root-mean-square energy spread is presented in
Fig. 4 (top left plot), where the average full energy is
chosen as 205 MeV.

In contrast to mean square energy spread, the behavior
of the mean square spread of the arrival time, hðc�tÞ2i, is
determined by a function of all longitudinal initial data [see
Eq. (B5c)]. But it has the asymptotics which depends on �

only, regardless of the initial value � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihðc�tÞ2i0
p

:

lim
t!1hðc�tÞ

2i ¼
�
�2 þ�2

dE=E

4�t

��
c

�2
eq�

2
eq

e2�tt

2�t

�
2
:

Several examples of the behavior of root-mean-square
spread of the arrival time are shown in Fig. 4 (top right)
for different values of � and � [the value of hðc�tÞ�
ð�E=EeqÞi0 is equal to zero for simplicity for all cases].

The evolution of the longitudinal emittance is given at
the bottom of this figure for all considered sets of initial
beam second moments. It shows that, even for the same
initial values of "long, its behavior depends on the relation

between � and� (compare gray solid and black dot-dashed
curves). Regardless of the fact that in matter both second
moments grow / e4�tt for the large time asymptotic, lon-
gitudinal emittance grows / e2�tt

ffiffiffiffiffiffiffi
�tt

p
.

A. Comparison of linear model and simulation

The same analysis of beam passage through one rod with
variation of the initial conditions (such as initial "tr and the
initial beam position on the ð�;�Þ plane), which has been
used in Sec. IVA, is also useful for describing the depen-
dence of longitudinal second moments heating on trans-
verse beam parameters.

The growth of hð�E=EeqÞ2i1=2 (the ratio of the final root-
mean-square energy spread upon the exit of a lithium rod to
that at the entrance) is shown in Fig. 5(a). As expected, it is
independent of the transverse beam parameters, even for
large values (though undoubtedly these parameters are
limited from above to values reasonable for this cooling
scheme).

In contrast, the growth of hðc�tÞ2i1=2 conforms to the
linear model prediction with confidence only in the case of
small transverse emittance (lines with circle symbols in
Fig. 5(b)]; the increment of the spread in the arrival time
upon the exit of the rod grows with the transverse emit-
tance (at fixed initial parameters, namely, � and �). This
too is a result of nonparaxiality of motion—the presence of
particles with big angles entails a significant increase in the
paths they take, relative the equilibrium one. This effect is
demonstrated for two cases with different initial energy
spreads (black and gray solid lines which refer to large and
small values of �, respectively).

B. ‘‘Head-tail’’ rotation

Upon studying the cooling process as a whole, simula-
tions show that due to nonparaxiality the longitudinal
emittance grows faster than the linear model predicts (up
to 2 times).
A study of the distribution of particle arrival times

during the cooling process reveals its deformation after
passing through a few rods (a numerical example is pre-
sented in Fig. 6, top left). There are three main differences
between the initial and final distributions (black and white
bars, respectively). First of all, the packet spreads faster
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than predicted by the linear model. Also, a long tail forms
asymmetrically as a result of lagging particles. The third
difference, which is a direct result of the emergence of a
long tail, is that the ‘‘center of gravity’’ of the distribution
shifts from the peak position. All this means that non-
paraxial particles lose more energy than those at the center,
causing them to drop behind the main part of the beam.
This emphasizes again the importance of taking transverse
parameters into account during a study of longitudinal
motion.

A similar analysis of the distribution of the relative
energy (Fig. 6, top right) also shows particles with bigger
losses, but the amount of distribution deformation is not as
significant in this case.

It appears that a procedure of a beam symmetrization
(‘‘head-tail’’ rotation [17]), consisting of beam rotation in
longitudinal phase space by an angle of �, can completely
solve this problem; it allows one to obtain the same rate of

longitudinal emittance growth in simulation as the linear
model predicts without additional increase due to nonpar-
axiality effects. Similar simulations of the evolution of cdt
and dE=Eeq distributions but with head-tail rotation usage

are shown in the bottom of Fig. 6. Even just visually, the
final distributions are much more symmetric and narrow.
The beam symmetrization was simulated as a thin ideal
process after the second and fourth rods. Practically, it can
be realized by an additional rf section with a zero accel-
eration gradient placed in each period of the cooling sys-
tem (or performing an additional rf gymnastic in sections
of energy recovery). The influence of this procedure on a
muon’s lifetime and its technical parameters will be esti-
mated in future work.

VI. EXTENSION TO 6D COOLING

The redistribution of the cooling decrement between
longitudinal and transverse degrees of freedom is the gen-
eral idea behind the organization of 6D cooling or the
slowing down of the longitudinal emittance heating for
muons (for details, see, e.g. [19]). A typical beam line
with such a redistribution should include magnetic ele-
ments with a gradient (e.g. dipoles) to provide dispersion,
and additional ‘‘wedge’’ absorbers to organize momentum-
dependent energy loss (ideally placed at the location of the
maximum of dispersion). The helical cooling channel con-
cept, reverse emittance exchange, wedge absorber, or con-
tinuous gaseous absorber schemes are just a few examples.
However, analytical calculations show that the density
gradient in the Li-rod helix is not enough for cooling in
all degrees of freedom, while a magnetic field in a system is
limited from above by a practical value.
The usage of the symplectic emittance exchange can

offer an alternative scenario. The linear transformation,
R, is said to be symplectic if it satisfies RTJR ¼ J,
where J is a fixed nonsingular skew-symmetric matrix
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J ¼ 0 In
�In 0

� �
;

In is the n� n identity matrix, and 2n is a dimension of a
square matrix of transformation R. In contrast to the idea
of decrement redistribution, symplectic emittance ex-
change does not require the employment of dissipative
forces; moreover, the transformation is linear and therefore
preserves phase space because of Liouville’s theorem.
Note that for the fully uncoupled and uncorrelated beam,
as best, one can swap two eigenemittances (while keeping
the third one fixed) if beam will remain uncoupled or mix
all of them together by means of projected emittances,
since under any linear Hamiltonian transformation the
eigenemittances of a beam are invariant up to a reordering
(for details, see, e.g. [20,21]). Therefore one can employ
the emittance exchange to redistribute phase-space volume
from longitudinal to one of the transverse degrees of free-
dom (as soon as longitudinal emittance becomes too large
to operate with it) to continue the cooling process.

One of the possible technical realizations of the emit-
tance exchange between the longitudinal and one of the
transverse degrees of freedom is a combination of a four
dipole-magnet chicane and a dipole-mode cavity placed at
the dispersive region of chicane [20]. Here we do not focus
on any exact implementation of an emittance exchanger
but will consider it as a thin ideal process in simulations of
a cooling. Some general limitations for exchange usage
will be discussed in Sec. VIA.

Note that neither the redistribution of the cooling decre-
ment nor the symplectic emittance exchange can change the
total 6Ddamping rate (analogouswithRobinson’s theorem).

A. Limitations for emittance exchange usage

The final value of full emittance is determined by the
equilibrium value of the transverse emittance [Eq. (A7)]
and how much phase-space volume is redistributed from
the longitudinal to transverse degrees of freedom during
the cooling. Therefore, the wish to redistribute as much as
possible is natural, but there is a certain limitation: if the
longitudinal second moment values are too small, the
diffusion (a fluctuation of ionization losses) begins domi-
nating and longitudinal heating goes faster, which can even
lead to full 6D emittance heating. In Fig. 7 two sketches of
cooling with redistribution demonstrate how an excessive
redistribution (bottom row of figures) can slow down 6D
cooling. Therefore, a proper value for the longitudinal
emittance after redistribution and the dependence of that
value on the transverse motion should also be determined.

By scanning the ð�;�Þ plane of initial beam parameters,
one can determine the region of parameters optimal for
cooling as a function of the transverse phase-space (for a
certain length of rod). An example of such a scan is pre-
sented in Fig. 8 for the 30 cm rod with a 2� 105 Gauss
limitation for the field on its surface. The gray color

corresponds to the area of initial parameters where the
antidamping dominates over diffusion. The ‘‘0’’ emittance
case refers to a simulation where transverse motion was
completely removed and, therefore, the obtained region is
very close to that predicted by the linear model. One can
therefore conclude that, while transverse motion is rela-
tively independent of longitudinal parameters, longitudinal
motion is strongly influenced by transverse beam
parameters.
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of freedom and excessive redistribution with undesirable full
emittance increment, respectively. The redistribution is shown as
a thin ideal process by dashed arrow.
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B. Preliminary simulation with thin exchange

A conceptual view of emittance exchange usage is pre-
sented in Fig. 9. Since the cooling process is not symmetric
with respect to transverse coordinates x and y, there are
two plots "long vs "x and "long vs "y. Three emittance

exchanges are used as follows: Long with X, Long with
Y, and then Long with X again. Diagonal gray lines are the
levels of a full 6D emittance for the case of equal trans-
verse emittances. The brown horizontal lines approxi-
mately show the range of longitudinal parameters where

Li-rods can be used: the bottom bound refers to a diffusion-

dominance region which was described above, and the top

bound refers to the rf-system parameters. The symplectic

emittance exchange lets one map a point on this plot

relative to a main diagonal (red dashed line). Therefore,

the intersection between horizontal band and its flip image

(brown dashed lines) is an area where emittance exchange

procedure can be used. Otherwise, after the exchange the

longitudinal emittance will be out of range of an adequate

for this scheme parameters.
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(2 ! 20), second Li-rod based cooling channel (20 ! 3), symplectic emittance exchange from vertical (y) to longitudinal degree of
freedom (3 ! 30), third Li-rod based cooling channel (30 ! 4), symplectic emittance exchange from horizontal (x) to longitudinal
degree of freedom (4 ! 40), final Li-rod based cooling channel (40 ! 5).
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The simulation of this idea is presented in Fig. 10. The
emittance exchange, rf, and matching were simulated as
ideal thin processes, but all Li-rods were simulated with
taking into account all main effects such as dissipation,
scattering, and energy fluctuation. The black line is a
general scenario of a full cooling process for muon collider
considered in many articles (e.g. [8]).

VII. SUMMARY

The motion of a muon beam in the final cooling scheme
based on lithium rods has been simulated using LYRICS

software. The analytical linearized model of muon beam
motion, which helps to check the code of the developed
software, was used to determine the influence of nonpar-
axiality and the interdependence of transverse and longi-
tudinal motion. Preliminary estimations of the optimal
longitudinal beam parameters for the symplectic emittance
exchange procedure, which will possibly help to organize
the cooling of all degrees of freedom, are presented in
Sec. VIA.

The main conclusions are: (i) The selected linear model
is able to describe the transverse motion with high preci-
sion independent of beam longitudinal parameters (in the
range reasonable for all parameters in this type of cooling).
(ii) The evolution of the relative energy deviation also
converges with the linear model for a wide range of trans-
verse emittances and is independent of the deviation in the
arrival time. In contrast, the spread of the arrival time
agrees with the linear model only in the case of small
transverse emittance, which is a direct consequence of
nonparaxiality (particles with large angular deviations fol-
low a longer path in matter than the equilibrium one, which
results in the ‘‘tail’’ formation in the direction of delayed
particles). Also, the dependence of the root-mean-square
arrival time on the transverse emittance makes the optimal
beam longitudinal sizes (corresponding to a minimal incre-
ment of longitudinal heating) depend on it too. (iii) The
additional increase of the longitudinal emittance in com-
parison with the linear model prediction (which was de-
tected in [17]) has been described in more detail. The
statistical approach gives cogent evidence of the efficiency
of the head-tail rotation procedure for suppression of non-
paraxiality related effects. (iv) It seems that if symplectic
emittance exchange parameters will have reasonable val-
ues, this scheme can be included to the general scenario
starting from the first exchange from horizontal (x) to
longitudinal degree of freedom 2 ! 20 (marked by the
blue circle marker in Fig. 10).
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APPENDIX A: LINEARIZED MODEL OF
TRANSVERSE MOTION

The transverse motion can be approximately described
by a paraxial linear model with a fixed mean energy of a
beam; in reality it conforms to short enough sections with
matter which alternate with sections of energy recovery.
For the case of paraxial motion, it is simple to replace time
derivatives to those over the longitudinal path, s, in the
equation of motion. Using notations in which operators d

dt

and d
ds are denoted as _ and 0, respectively, and neglecting a

variation of the total mean velocity (which is applicable in
this approach),

dpx

dt
¼ ��m�

d

dt

�
dx

ds

ds

dt|{z}
¼v�

�

¼ ��m�

�
v�

d

dt

�
dx

ds

�
þ x0

d

dt|{z}
�0

v�

�

¼ ��m�v�

dx0

ds

ds

dt
¼ ���

2
�m�c

2x00:

The frictional force

Ffr
x � Ffrx0 ¼ �ðdE=dlÞx0

and focusing force

Ffoc ¼ �e��Gx;

where G is a field gradient, substituted into the equation of
motion

dp

dt
¼ X

i

Fi; (A1)

without taking into account scattering, immediately result
in a standard equation for damped oscillations for one of
the transverse degrees of freedom:

x00 þ 2�sx
0 þ k2sx ¼ 0; (A2)

where �s and ks are determined by

�s ¼ 1

2

1

���
2
�m�c

2

dE

dl
; ks ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eG

����m�c
2

s
:

The dE=dl value of average friction forces due to ioniza-
tion losses is characterized by the Bethe-Bloch equation
[22]:

�dE

dl
ð��Þ¼ 4�nee

4

�2
�mec

2

�
ln
����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mec

2Tmax

p
�I

��2
�

�
; (A3)

where ne is an electron density of matter, �I is a mean
excitation energy, and Tmax is a maximal possible kinetic
energy transferred to an electron in a single collision:
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Tmax ¼
2�2

��
2
�mec

2

1þ 2��ðme=m�Þ þ ðme=m�Þ2
:

The behavior of single particle motion crucially depends
on the relationship between �s and ks. When �s > ks the
system is said to be overdamped and the solution decays
exponentially without oscillation. If ks > �s > 0, the sys-
tem oscillates at reduced frequency (compared to the un-
damped case when �s ¼ 0) with progressively decaying
amplitude. A numerical example of the dependence of �s

and ks on the value of muon energy is presented in Fig. 11
and shows that �s < ks for considering energy range.

Averaging over the ensemble of particles makes it pos-
sible to rewrite Eq. (A2) as a system of linear differential
equations in terms of beam second moments:

hx2i0 ¼ 2hxx0i;
hxx0i0 ¼ hx0x0i þ hxx00i ¼ hx02i � k2shx2i � 2�shxx0i;
hx02i0 ¼ 2hx0x00i ¼ �2k2shxx0i � 4�shx02i:
Converting it to a matrix form and adding the column
corresponding to the scattering process omitted in
Eq. (A2), we have

hx2i
hxx0i
hx02i

2
664

3
775

0

¼
0 2 0

�k2s �2�s 1

0 �2k2s �4�s

2
664

3
775

hx2i
hxx0i
hx02i

2
664

3
775þ

0

0

�2
x

2
664

3
775:

The two zeros in the last column describe a zero value of
the average scattering angle and a fact that the scattering
process does not produce immediate influence on a trans-
verse coordinate. The value of�x has a meaning of a root-
mean-square scattering angle per unit of length passed in
matter, which in the first approximation can be described
by the expression for multiple Coulomb scattering [23]:

�2
x ¼ 4�nez

2ðZþ 1Þe4
�2
��

4
�m

2
�c

4
LC;

where z and Z are charges of a scattered particle and
scattering one, respectively (in elementary electron charge)
and LC is a Coulomb logarithm.
A solution of this equation is given by a sum of the

general solution

hx2iGS¼ expð�2�ssÞ
�
C1

1

k2s

þC2

�
�2
s�!2

k4s
cos2!s�2�s!

k4s
sin2!s

�

þC3

�
�2
s�!2

k4s
sin2!sþ2�s!

k4s
cos2!s

��
;

hxx0iGS¼ expð�2�ssÞ
�
�C1

�s

k2s

þC2

�
��s

k2s
cos2!sþ!

k2s
sin2!s

�

þC3

�
��s

k2s
sin2!s�!

k2s
cos2!s

��
;

hx02iGS¼ expð�2�ssÞ½C1þC2 cos2!sþC3 sin2!s�;

where ! �def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s � �2

s

p
, and a partial one

hx2iPS ¼ �2
x

4�sk
2
s

; (A4a)

hxx0iPS ¼ 0; (A4b)

hx02iPS ¼ �2
x

4�s

: (A4c)

A substitution of the initial conditions ðhx2i0; hxx0i0; hx02i0Þ
into a complete solution with s ¼ 0 determines arbitrary
constants Ci:

C1

C2

C3

2
664

3
775 ¼ 1

2!2

k4s 2�sk
2
s k2s

�k4s �2�sk
2
s ð!2 � �2

sÞ
0 �2!k2s �2!�s

2
664

3
775

hx2i0
hxx0i0
hx02i0

2
664

3
775

þ 1

2!2

�2
x

2�s

�k2s

�2
s

!�s

2
664

3
775:

From this expression, we can obtain a nonoscillatory solu-
tion for beam second moments as well as matched initial
conditions for it by making C2 and C3 equal to zero:

hx2iM ¼ 1

�s

�
�shx2i0 � �2

x

4k2s

�
e�2�ss þ �2

x

4�sk
2
s

; (A5a)

hxx0iM ¼ �
�
�shx2i0 � �2

x

4k2s

�
e�2�ss; (A5b)

hx02iM ¼ k2s
�s

�
�shx2i0 � �2

x

4k2s

�
e�2�ss þ �2

x

4�s

(A5c)
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FIG. 11. Dependence of �s and ks on the value of relativistic
beta of muons, ��, in Li-rod with a field on its surface of 200 kG

and the diameter of 2 cm.
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hxx0iM0 ¼ �2
x � 4�sk

2
shx2i0

4k2s
; (A6a)

hx02iM0 ¼ k2shx2i0; (A6b)

respectively.
It seems that asymptotics of the complete solution is a

partial solution [Eq. (A4)] because of the presence in the
general solution of the exponentially damped factor. This
asymptotics also gives the equilibrium value of the trans-
verse emittance:

"eqtr ¼ lim
s!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2iPShx02iPS � hxx0iPS2

q
¼ �2

x

4�sks
: (A7)

Note that, due to the presence of a diffusion (multiple
scattering), the cooling decrement is no longer constant. In
the limit of a large transverse emittance (compared to "eqtr ),
the value of "tr cools down / e�2�ss, but as a system
approaches equilibrium the decrement of cooling becomes
smaller and tends to zero as s tends to infinity (see Fig. 12).

APPENDIX B: LINEARIZED MODEL OF
LONGITUDINAL MOTION

Similarly to the model selected for the transverse mo-
tion, in a paraxial case one can describe the longitudinal
motion of a test particle relative to the equilibrium onewith
an average beam energy. The time derivative of momentum
in the case when an acting force is directed along velocity

dp

dt
¼ m��

3
� _v;

substituted into Eq. (A1), gives a differential equation of
the second order (Newton equation):

€zðtÞ ¼ 1

m��
3
�

X
i

Fi:

In contrast to Appendix A, for the longitudinal motion
there is no focusing force when particles move in matter,
which appears only in the section of energy recovery. A full

friction force can be represented as a sum of average losses
Ffr [Eq. (A3)] and stochastic force f responsible for fluc-
tuations of average losses:

€zðtÞ ¼ 1

m��
3
�

�
�dE

dl
� fðtÞ

�
: (B1)

Having selected an equilibrium particle which moves with
average velocity of a beam �eq, and linearizing dE=dl as

��� þ b (Fig. 13), one can obtain the equation of motion

for the equilibrium particle:

€z eq ¼ 2�t _zeq � b

m��
3
�

; (B2)

where

�t ¼ � 1

2

�c

�3
�m�c

2
:

The set of Eqs. (B1) and (B2) gives the equation for a
deviation of a test particle from the equilibrium one:

ð€z� €zeqÞ ¼ 2�tð _z� _zeqÞ � fðtÞ:
Turning it to a differential equation of the first order for a
relative velocity, one obtains

� _v ¼ 2�t�v� fðtÞ;
which solution is

�vðtÞ ¼ �v0e
2�tt � e2�tt

Z t

0
e�2�t�fð�Þd�; (B3)

where �v0 ¼ �vjt¼0 is the initial condition.
Considering the fluctuation of energy losses as a

Gaussian stochastic process delta correlated in time with
a zero mean value [18],

hfðtÞi ¼ 0; hfðt1Þfðt2Þi ¼ Bðt1; t2Þ ¼ B�ðt1 � t2Þ;
and averaging over a stochastic force of Eq. (B3) allows
one to find the correlation function of velocity:

εtr
eq

εtr

s

exp[−2     s]λs

FIG. 12. Behavior of the transverse emittance in logarithmic
scale.

β µ

β eq

0

0.4

0.8

1.2

0.7 0.8 0.9 1

frF   (MeV/sec)

FIG. 13. The average ionization losses (black curve) and its
linear approximation (red line) as a function of muon velocity.
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h�vðt1Þ�vðt2Þif
¼ �v0

2e2�tt1þ2�tt2 ��v0e
2�tt1

Z t2

0
e�2�t�2hfð�2Þid�2

� �v0e
2�tt2

Z t1

0
e�2�t�1hfð�1Þid�1 þ e2�tt1þ2�tt2

�
Z t1

0
d�1

Z t2

0
d�2fe�2�t�1�2�t�2hfð�1Þfð�2Þig:

The last integral in this equation depends on the relation-
ship between t1 and t2 due to causality (see explanatory
Fig. 14), which gives

h�vðt1Þ�vðt2Þif ¼
�
�v0

2 þ B

4�t

�
e2�tðt1þt2Þ

� B

4�t

e2�tðt1þt2Þ�4�t minðt1;t2Þ:

Assuming t1 ¼ t2 in it gives the root-mean-square velocity
spread:

h�v2ðtÞif ¼
�
�v0

2 þ B

4�t

�
e4�tt � B

4�t

: (B4)

Comparison of Eqs. (B4) and (A5c) shows the meaning of
B—this is a root-mean-square velocity ‘‘spread’’ per unit
time, arising because of fluctuations of energy losses:

�2
dE=E ¼ 2���cr�ne½2� �2

��;
from which

�v �def B1=2 � c

���
2
�

�dE=E:

Note that, besides a difference in a sign of �t and �s in
Eqs. (B4) and (A5c), there is also a factor-of-two differ-
ence in exponent. This fact is a direct consequence of the
presence of a focusing force for the case of transverse
motion: the average of friction force squared is twice
smaller because the friction force acting on a particle varies
along with x0 as the sine function. Adding longitudinal rf
and integrating over synchrotron oscillations gives a focus-
ing force which removes this distinction.

Making a similar proof for the value of the longitudinal
deviation �zðtÞ: writing a solution in an integrated form
from � _z ¼ �v

�zðtÞ ¼ �z0 þ
Z t

0
�vð�Þd�;

and averaging it by a stochastic force, one can find the root-
mean-square value of �zðtÞ:

h�z2ðtÞif ¼ �z20 þ 2�z0
Z t

0
h�vð�Þifd�

þ
Z t

0
d�1

Z t

0
d�2fh�vð�1Þ�vð�2Þifg:

To perform the last integral, one needs to split the domain
of integration (see explanatory Fig. 15), which finally gives

h�z2ðtÞif ¼ �z20 þ
�
2�z0�v0 � �2

v

4�2
t

��
e2�tt � 1

2�t

�

þ
�
�v2

0 þ
�2

v

4�t

��
e2�tt � 1

2�t

�
2 þ �2

v

4�2
t

t:

The calculation of the cross correlation function gives

h�zðtÞ�vðtÞif ¼
��

�v2
0 þ

�2
v

4�t

�
e2�tt � �2

v

4�t

�
e2�tt � 1

2�t

þ �z0�v0e
2�tt:

Finally, averaging over the initial ensemble of particles
and turning to variables of energy deviation and arrival
time (here and further multiplied by the speed of light)

�E

Eeq
� �eq�

2
eq

�v

c
; c�t � ��1

eq �z;

one can find an expression describing the behavior of the
longitudinal emittance for a beam moving in matter:

τ1

τ2

τ1

τ2 t 2 t 2

τ1 τ2=τ1 τ2=

> <t t 11

t1

2t

t1

t12t

2t

FIG. 14. Domain of integration (thick black line) ofRt1
0 d�1

Rt2
0 d�2fe�2�t�1�2�t�2 hfð�1Þfð�2Þig depending on the rela-

tionship between t1 and t2.
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FIG. 15. Domain of integration (j) of
R
t
0 d�1�R

t
0 d�2fh�vð�1Þ�vð�2Þifg for �1 > �2 and �1 < �2.
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"long ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðc�tÞ2i

��
�E

Eeq

�
2
�
�

�
ðc�tÞ

�
�E

Eeq

��
2

s
;

��
�E

Eeq

�
2
�
¼

�
�2 þ�2

dE=E

4�t

�
e4�tt ��2

dE=E

4�t

; (B5a)

�
ðc�tÞ

�
�E

Eeq

��
¼

��
�2 þ�2

dE=E

4�t

�
e2�tt ��2

dE=E

4�t

�

�
�

c

�2
eq�

2
eq

e2�tt � 1

2�t

�
þ 	e2�tt; (B5b)

hðc�tÞ2i ¼
�
�2 þ�2

dE=E

4�t

��
c

�2
eq�

2
eq

e2�tt � 1

2�t

�
2

þ
�
2	 � 1

�t

c

�2
eq�

2
eq

�2
dE=E

4�t

�

�
�

c

�2
eq�

2
eq

e2�tt � 1

2�t

�

þ c2

�4
eq�

4
eq

1

�2
t

�2
dE=E

4�t

�ttþ �2; (B5c)

where

� �def hðc�tÞ2i1=20 ; � �def

��
�E

Eeq

�
2
�
1=2

0

and

	 �def

�
ðc�tÞ

�
�E

Eeq

��
0

are initial data averaged over the initial ensemble. The
large time asymptotics of the longitudinal emittance is

lim
t!1"long ¼

c

�2
eq�

2
eq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�2 þ�2

dE=E

4�t

��2
dE=E

4�t

vuut ð�ttÞ1=2e2�tt

�t
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