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Excess of nuclear interaction probability at volume reflection is evaluated within the approximation of

dominance of the continuous planar potential and thin nuclear concentrations. The domain of the adopted

approximations is determined. An estimate of the volume capture probability is provided. The theoretical

predictions for inelastic nuclear interaction probability and for the final beam divergence are compared

with the results of recent experiments, with satisfactory agreement within the theory applicability domain.
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I. INTRODUCTION

Volume reflection [1] of ultrarelativistic charged parti-
cles from curved atomic planes of an oriented bent crystal
has proved to be a viable option for beam steering at high-
energy particle accelerators [2–5]. The physical condition
of its applicability essentially coincides with the Tsyganov
condition for channeled beam deflection in a bent crystal:
R> Rc, with R the crystal bending radius, and Rc the
so-called critical radius proportional to the particle energy
[Eq. (4) below]. In contrast to channeling, however, at
volume reflection the particle passes through the crystal
in an overbarrier mode, somewhere within the crystal
volume finding a point (or a relatively small region) from
which it reflects to the side opposite to that of the crystal
bending. The advantages of the volume reflection mecha-
nism are the large angular acceptance (equal to the crystal
total bending angle), and almost 100% deflection effi-
ciency. The price to pay is that volume reflection angle is

of the order of the Lindhard’s critical angle �c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0=E

p
,

where V0 is the interplanar continuous potential well depth,
and E the particle energy, so at E��V0 the angle of single
deflection is pretty small. Fortunately, this difficulty can be
surmounted by transmitting the particle through a sequence
of bent crystals [6], or arranging a composite volume
reflection from several crystallographic planes within one
crystal [7], thereby multiplying the deflection angle.
Experiments on volume reflection begun within a decade,
and are currently continuing.

The theory of volume reflection is less mature than that
for channeling. The physical origin of the reflection effect
in a bent crystal is understood to be due to the asymmetry
of the continuous potential in the area where the angles of
atomic plane crossing by the particle become comparable
to �c. Particle dynamics in the pure continuous potential of

a uniformly bent crystal can be relatively easily calculated
analytically, and the reflected beam angular distribution be
evaluated as a function of the beam energy and the crystal
bending radius [8,9].
In a real crystal, however, one must also take into

account incoherent Coulomb scattering on individual
atomic nuclei at close interactions with them. The con-
dition for the incoherent scattering not to blur the beam
deflection is the smallness of the multiple Coulomb
scattering rms angle accumulated along the whole
traversed crystal compared to the mean volume reflection
angle. That still permits the usage of crystals with thick-
ness by an order of magnitude exceeding the essential
volume reflection region extent. However, in other re-
spects, for instance for evaluation of the outcoming beam
angular dispersion, the account of multiple Coulomb
scattering is mandatory, and for volume capture treatment
it is crucial.
It is worth mentioning that, besides elastic scattering at

particle passage close to an atomic nucleus, nuclear inter-
actions can also be inelastic, when the proton hits a nucleus
directly. Inelastic interactions at high energy typically lead
to multiple hadron production, which can be registered
downstream in so-called beam loss monitors [10]. Since
the rates of inelastic and close (incoherent) elastic events
are proportional, by this method the relative rate of nuclear
interactions can be directly measured [11].
For a rigorous treatment of incoherent multiple scatter-

ing at volume reflection, one needs to solve the correspond-
ing kinetic equation in the nonuniform external field. Thus
far, that was only feasible with the aid of a computer [1,12].
In the ‘‘thick’’-target approximation, though, the bulk of
the multiple scattering comes from areas preceding and
successive to the volume reflection. Since therein the par-
ticle motion becomes highly overbarrier, and straightens
out even relative to the active atomic planes, the rate of a
fast particle scattering on atomic nuclei must approach that
in an amorphous medium (see analysis at the beginning of
Sec. II); hence, the number of nuclear interactions in the
whole crystal about equals that in an amorphous target of
same material and thickness.
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In the next approximation, however, one must realize
that there remains a finite difference between nuclear
interaction probability at volume reflection in a bent crystal
and in an amorphous target, accumulated in the volume
reflection region, whose extent estimates as �R�c [13].
Therefore, for practically used crystals, the mentioned
difference must constitute �10%, and grow with the in-
crease of the bending radius. Recently, this difference has
been measured [14], by subtracting the number of nuclear
interactions in the same crystal turned to an ‘‘amorphous
orientation’’ (see Sec. II B). It may even have a possible
application for diagnostics of the volume reflection dynam-
ics and estimate of its deteriorating effects (with the
expectation that the greater the difference, the weaker the
deterioration); however, a reliable theory needs to be pro-
vided first. Last but not least, the peculiarities of multiple
Coulomb scattering in the volume reflection region may be
important for the theory of volume capture, which is yet in
its infancy.

Setting to evaluate the contribution of nuclear interac-
tions and multiple Coulomb scattering at volume reflec-
tion, it appears that for the practically interesting range of
beam and crystal parameters, particularly for the condi-
tions of CERN experiments, the multiple Coulomb scat-
tering must be relatively weak and allow for perturbative
treatment. Therefore, the number of inelastic nuclear in-
teractions, as well as the mean square angle of multiple
Coulomb scattering, must be proportional to the particle
range in the regions containing nuclei, and this range may
be evaluated along the particle trajectory in the pure con-
tinuous potential. Furthermore, for simplification of the
calculation, the atomic planes may be treated as infinitesi-
mally thin, whereby the nuclear range in one plane is
inversely proportional to the sine of the plane-crossing
angle. Then, the problem boils down to evaluation of a
sum of inverse plane-crossing angles, and averaging
thereof over the impact parameters of particles in the initial
beam. In fact, based on the transverse energy conservation
law, and even without resorting to model approximations
for the interplanar continuous potential (such as those
employed in [9]), the entire procedure can be accomplished
in closed analytic form, rewarding the simplified approach.
The results obtained in this framework were partially
published in [15]. In the present paper we will describe
their derivation and explore the applicability conditions.
We will also discuss the relationship with the volume
capture phenomenon.

The plan of our paper is as follows. In Sec. II we carry
out the calculation by the principles formulated above, for
particles of different charge sign, and different orientations
of the silicon crystal: (110) and (111). In Sec. III the
limitations of the adopted approach are determined.
Section III D gives relevant estimates for the volume cap-
ture probability. In Sec. IVA we return to the formulas
obtained in Sec. II, applying them to evaluation of the

probability of inelastic nuclear interactions at specific ex-
perimental conditions, whereupon the theory is compared
with the experiment. In Sec. IVB we extend the theory
predictions to the elastic scattering, and address the issue
of the volume-reflected beam angular divergence, also
bringing the theory into correspondence with the experi-
ment. The summary is given in Sec. V.

II. PROBABILITY OF NUCLEAR INTERACTION
AT VOLUME REFLECTION

A. Continuous potential and volume reflection

At the beginning, let us recapitulate basic notions of
volume reflection, and the parameters of crystals used. The
crystal material is usually silicon, and the simplest choice
for the family of active planes is (110), which is often
employed. In this orientation, the planes are all equidistant

with spacing d ¼ 1:92 �A. Another popular orientation is
(111), involving 2 nonequidistant atomic planes within a
period. We will be mostly considering case (110), and
discuss generalization to (111) later in Sec. II C 2.
Moving at a small angle to a crystallographic plane, the

fast charged particle experiences a so-called continuous
potential, averaged along the atomic planes, and depending
only on the coordinate perpendicular to them. In a silicon
crystal, the interplanar continuous potential is nearly para-
bolic, i.e., harmonic. Besides d, it is characterized by the
well depth V0 ¼ 22:7 eV [for orientation (110)]. Another
useful parameter is the maximal potential gradient F
achieved in the vicinity of the atomic planes; it satisfies
the approximate relation

Fd � 4V0: (1)

The particle motion in the pure continuous potential
conserves the so-called transverse energy E _r2?=2þ
Vðr?Þ. Depending on whether kinetic transverse energy
E _r2?=2 is large or not compared to the potential energy,

i.e., _r? is large or not compared with �c defined in
the Introduction, the fast particle motion falls into the
category of highly overbarrier, or channeled or quasi-
channeled [16].
When the crystal is bent to a small angle, i.e., with a

bending radius R greater than all the crystal dimensions,
the continuous potential turns to a function of the radius r
relative to the crystal bending axis, and in addition to VðrÞ,
it involves the centrifugal energy, which due to large
distance to the axis (located outside of the crystal) may
be linearized in r. In total, the conserved transverse energy
reads

E? ¼ E

2
_r2 þ VeffðrÞ; (2)

with

VeffðrÞ ¼ VðrÞ � E
r

R
: (3)
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The value of R at which the centrifugal force E=R equals
the maximal gradient F of the interplanar potential energy
is called the critical radius [17,18]:

Rc ¼ E

F
’ Ed

4V0

� E

5 GeV
½cm�: (4)

We will be dealing with values R> Rc, at which channel-
ing in a bent crystal is sustainable, but be interested in
overbarrier particle motion, at which there exists a
phenomenon of volume reflection.

The volume reflection assumes the particle entry to a
bent crystal with a plane-crossing angle �0 � �c, and
inside the crystal, when the plane-crossing angles become
��c, there develops an uncompensated transverse action
of the continuous potential on the particle, leading to an
aggregate deflection to angle ��c. The extent of the
volume reflection region may be assessed by an order of
magnitude by approximating the particle trajectory by a
straight line; that gives extent �R�c.

Further on, it is useful to estimate the number of planes
crossed by the particle within the volume reflection area.
At the border of the volume reflection region,

E? ’ E

2
�2c � V0: (5)

On the other hand, the energy difference between the
neighboring potential barriers equals

�VeffðdÞ ¼ VeffðrÞ � Veffðrþ dÞ ¼ Ed

R
: (6)

Thus, the number of atomic planes crossed by the particle
on its way to the reflection point is given by the ratio [19]

N ¼ E?
�E?

’ RV0

Ed
¼ R

4Rc

: (7)

The same number of planes is crossed by the particle after
the reflection point.

In fact, when N � 1, the angular distribution of de-
flected particles is broad, with the width exceeding the
mean deflection value; such a pattern is unsuitable for
practical purposes. In contrast, when

R> 4Rc; (8)

i.e.N > 1, it was shown in [9] that for the case of positively
charged particles in a purely harmonic interplanar continu-
ous potential, the outcoming particle angular distribution
looks as [see Eq. (72) of [9] ] [20]

dwcont

d�
� N

�lim

�

�
�lim

2N
� j�� h�ij

�
; (9)

with � the Heaviside unit step function, and

h�i � �lim

�
1� 1

2N

�
; �lim ¼ �

2
�c: (10)

The corresponding rms variation of the angles about the
mean value evaluates as

�cont ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

d�ð�� h�iÞ2 dwcont

d�

s
� �lim

2
ffiffiffi
3

p
N
: (11)

Notably, it decreases with the increase of the crystal bend-
ing radius, whereas the mean value (10) tends to a nonzero
constant. The fact that with the increase of R=Rc, the
angular distribution of the volume-reflected particles
shrinks may be explained by the simultaneous decrease
of �VeffðdÞ, whereby the spread of energies at particle
crossing of the last potential barrier decreases, and so
trajectories of all the particles relative to their reflection
points tend to be more similar.

B. Nuclear interaction events

Turning to nuclear interactions at volume reflection, first
of all one notes that since all the atomic nuclei in a perfect
crystal are located in planes, we can regard particle cross-
ing of a single atomic plane as an elementary act of nuclear
interaction. The surface atomic density of a plane, in the
simplest orientation (110), equals natd, where nat is the
atomic density in the crystal volume. Therefore, the proba-
bility of any kind of nuclear interaction in one atomic plane
crossed at a tangential angle � is

P1 ¼ nat�A

d

sin�
; (12)

�A being the corresponding cross section on a single
nucleus. For elastic scattering one must implement there
the transport cross section (�A ¼ �tr), while for inelastic
interactions use the corresponding total inelastic cross
section on a silicon nucleus (�A ¼ �inel) [21].
If we consider a straight crystal, and a highly overbarrier

particle, when � by far exceeds the critical value,

� � �c; (13)

and thus is subject to negligible variation within the crystal,
summing up contributions (12) for � L sin�

d crossed planes

yields the total nuclear interaction probability:

P ¼ nat�AL
straight crystal;

highly overbarrier motion

 !
: (14)

This value is independent of d and �, and is equal to the
corresponding probability in an amorphous (i.e. polycrys-
talline) medium—not surprisingly since the uniform parti-
cle flow covers each nucleus with the same density,
irrespective of the far atomic order in the medium. In
that sense, one can speak about an ‘‘amorphous orienta-
tion’’ of a perfect crystal as well. By the same token, the
latter notion applies in bent crystal regions where the
particle motion is highly overbarrier.
In a bent crystal, however, condition (13) breaks down in

a vicinity of the radial reflection point. Since there the
plane-crossing angle varies considerably along the particle
path, it must be evaluated accurately at each plane
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crossing. As mentioned in the Introduction, the simplest
way of doing that is to compute the particle trajectory in
the pure continuous potential, neglecting the multiple
Coulomb scattering. In a uniformly bent crystal (which is
a good approximation at the present technology level), the
sine of the plane-crossing angle entering Eq. (12) expresses
simply as the time derivative of the particle radial
coordinate:

sin� � _r: (15)

Inserting Eq. (15) to Eq. (12) and summing over all the
planes crossed by the particle, we obtain the total nuclear
interaction probability in a uniformly bent crystal:

P � nat�Ad
X
n

1

_rn
: (16)

To isolate the physics associated with volume reflection,
we may form a difference between the number of nuclear
interactions in an oriented crystal and in an ‘‘unoriented’’
crystal:

�P ¼ nat�A�L; (17)

where factor

�L ¼X
n

d

_rn
� L (18)

is independent of the detail of nuclear interaction, repre-
senting the excess (or deficit) of the target nuclear interac-
tion range. In principle, �L may depend on both volume
and boundary effects, �L ¼ �LðR; E; L; �0Þ, but consid-
ering that usually the crystal is thicker than the volume
reflection region, we will restrict ourselves herein to the
thick-crystal limit L ! 1:

�LðR;EÞ ¼ lim
L!1

�X
n

d

_rn
� L

�
: (19)

Provided that away from the volume reflection area the
particle motion straightens out, the nuclear interaction rate
there should approach that in the amorphous medium, so
the limit (19) must exist. The rest of this section is dedi-
cated to its evaluation.

Granted the symmetry of the particle trajectory in a
centrally symmetric continuous potential with respect to
the reflection point, one may count the crossed planes
beginning from the reflection point in one direction only
(changing the summation index from n to m ¼ nmax � n,
where nmax corresponds to the crossed plane nearest to the
volume reflection point), and then double the result:

�L ¼ 2 lim
nmax!1

�Xnmax

m¼0

d

_rnmax�m

� trefl

�
: (20)

Here trefl is the distance from the reflection point to the
crystal boundary—say, its entry face, where the entrance
angle �0 relative to the atomic planes is known (see Fig. 1).

We may express trefl in terms of the particle trajectory
parameters, too. In fact, at large nmax it is unambiguously
related with the total volume reflection angle �. In the
small-angle approximation, from Fig. 1 one infers [22]

�=2 ¼ lim
�0!1

ð�0 � trefl=RÞ: (21)

Having traded trefl for �0, the latter angle is now to be
related with nmax. But this relation, in fact, appears to be
trivial in the thick-crystal limit implying the condition

�0 � L

2R
� �c ð“thick”-crystal limitÞ: (22)

Acting by the same principle as at evaluation of N in
Sec. II A, but substituting _r ¼ �0 instead of �c, and V0=2
as an average potential energy, we find

nmax ¼ R�20
2d

þO
�
V0R

2Ed

�
� R�20

2d
þO

�
N

2

�
; (23)

where the indeterminacy is related with the dependence of
the initial potential energy on the particle impact parameter
in the incident beam. Solving Eq. (23) for �0, we get

�0 ¼
ffiffiffiffiffiffi
2d

R

s � ffiffiffiffiffiffiffiffiffiffi
nmax

p þO
�

N

4
ffiffiffiffiffiffiffiffiffiffi
nmax

p
��

: (24)

Here, the interaction-dependent correction term asymptoti-
cally vanishes as nmax ! 1, and may be omitted under the
limit sign.
Combining Eqs. (20) and (21) with (23), we cast �L in

the form

R

trefl L 2

0

0

2

FIG. 1. Relation between the volume reflection angle, the
angle of particle entrance to the crystal, the depth of the
reflection point, and the crystal bending radius. Dashed arc—
one of the bent atomic planes. Solid curve—schematic of the
particle trajectory. (The real trajectory remains symmetric with
respect to the reflection point, but has some oscillations away
from it, though at large distance it straightens out.)
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�L ¼ R�½1þOð�cR=LÞ�

þ 2
ffiffiffiffiffiffiffiffiffi
2Rd

p
lim

nmax!1

�Xnmax

m¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
d=2R

p
_rnmax�m

� ffiffiffiffiffiffiffiffiffiffi
nmax

p �
: (25)

The inaccuracy Oð�cR=LÞ due to the boundary effects
appears to be commensurable with the ratio of the volume
reflection area and the crystal thickness. Under conditions
of CERN SPS experiments, it constitutes �1%–15%, and
can be safely neglected.

C. Summation over atomic planes

1. Orientation (110)

To proceed, we need to evaluate the terms of the se-
quence of angles _rn entering the denominator in Eq. (25).
For a single-well interplanar potential, independently of its
precise shape, _rn appears to be a beneficially simple func-
tion of the plane order number n. From Eq. (2) we express

_r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
E? � V

E
þ r

R

�s
; (26)

with E? ¼ E?ð�0; bÞ depending on the particle initial
conditions including its impact parameter b and the inci-
dence angle �0 with respect to the planes. Now, granted the
periodicity of the intracrystal continuous potential, values
of VðrÞ are equal at atomic plane locations:

VðrnÞ ¼ Vjr2atomic plane ¼ const: (27)

As for r in the centrifugal energy term in Eq. (26), its value
at different atomic planes differs only by a multiple of d:

rn ¼ rnmax
þ ðnmax � nÞd ðn � nmaxÞ: (28)

With the account of this, we are able to write

_r nmax�m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
d

R
ð�þmÞ

s
; m ¼ 0; 1; 2; . . . ; (29)

where variable

� ¼ ½E? � Vðrnmax
Þ�R

Ed
þ rnmax

d
(30)

accumulates all the dependence on the initial conditions. In
order to secure the relation minf _r2ng ¼ maxf _r2n�1g, � be-
longs to an interval of unit length:

�min <� � �min þ 1: (31)

Substituting rnmax�m from Eq. (29) to Eq. (25), we cast it

in the form

�L ¼ R�þ ffiffiffiffiffiffiffiffiffi
2Rd

p
�ð12; �Þ ½Sið110Þ�; (32)

where

�

�
1

2
; �

�
¼ lim

nmax!1

�Xnmax

m¼0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þm

p � 2
ffiffiffiffiffiffiffiffiffiffi
nmax

p �
: (33)

The latter limit is categorized as Hurwitz (or generalized
Riemann) zeta function with the parameter equal 1

2 [for a

general definition of �ð�; vÞ see [23] ]. For all practical
purposes, it may be approximated by

�

�
1

2
; �

�
� 1ffiffiffiffi

�
p þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p
; 8 �; (34)

obtained by application to the sum in (33) (after isolation
of the first, singular term) of the Euler-Maclaurin formula
[24]. Furthermore, at �> 1 it admits a simpler approxi-
mation:

�ð12; �Þ � �2
ffiffiffiffiffiffiffiffiffiffiffiffi
�� 1

2

q
ð�> 1Þ (35)

(see Fig. 2).

2. Orientation (111)

In the case of orientation (111), the continuous potential
values at all the planes are still equal, but the interplanar
intervals assume alternating values d=4 and 3d=4. The
principle of calculation remains the same, except that the
summation over the atomic planes is to be performed
separately for odd and even numbers. The result then
involves two different � functions:

�L ¼ R�þ
ffiffiffiffiffiffiffi
Rd

2

s �
�

�
1

2
; �1

�
þ �

�
1

2
; �2

��
½Si ð111Þ�;

(36)

where depending on which of the nonequivalent planes is
encountered the last,

�min <�1 � �min þ 3
4; �2 ¼ �1 þ 1

4; (37a)

or

�min <�1 � �min þ 1
4; �2 ¼ �1 þ 3

4: (37b)

For positive particles, the probability of case (37a) equals
3=4, while that of case (37b) equals 1=4. For negative
particles at R> 4Rc the case (37a) is realized with the

0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

0.5

1.0

1.5
1 2,

FIG. 2. Blue curve—behavior of Hurwitz zeta function �ð12 ; �Þ
given by Eq. (33); red curve—its approximation (34); black
dashed curve—approximation (35) becoming neat for �> 1.
The integral from function �ð12 ; �Þ over the displayed interval

0<� � 1 equals zero [Eq. (43)].

NUCLEAR INTERACTIONS AT VOLUME REFLECTION: . . . Phys. Rev. ST Accel. Beams 15, 032802 (2012)

032802-5



unit probability, inasmuch as the higher potential barriers
completely shadow the adjacent minor ones, despite the
centrifugal energy tilt.

So far the analysis applied for particles of any charge
sign. But in what concerns the last unknown quantity �min,
the situation turns principally different for positively and
for negatively charged particles. Below we shall scrutinize
these two cases separately.

D. Determination of �min and averaging
over the particle initial conditions

1. Positively charged particles

In the case of positively charged particles (typically
protons), determination of �min is the simplest. Consider,
again, the case of orientation (110). At particle entrance to
the reflection interval [see Fig. 3(a)], the minimum of the
kinetic energy is achieved when the particle passes the last
potential barrier with a vanishing kinetic energy on its top.
But for positively charged particles, that barrier coincides
with the atomic plane, the kinetic energy on which we
desire to know. So, at�min this energy merely turns to zero:

minf _r2nmax
g ¼ 0 ) �min ¼ R

2d
minf _r2nmax

g ¼ 0: (38)

Thus, � belongs to the interval 0<� � 1 (actually exhib-
ited in Fig. 2). The divergence of function �ð1=2; �Þ at the
physical interval end point � ! 0 corresponds to a grazing
crossing of the last atomic plane. The other end point value
equals �ð1=2; 1Þ ¼ �ð1=2Þ � �1:46. Note that with the
known lower limit (38), � may be found even without
the need to evaluate nmax, if one rewrites Eq. (30) as

� � f�gf ¼
�ðE? � Vjr2at: planeÞR

Ed
þ rplane

d

�
f
; (39)

with braces f gf signifying the operation of taking the frac-
tional part, and rplane representing r at any atomic plane

(with the same result after the f gf operation).
Since at � & 1 typical values of function � are �1, the

ratio of the two terms in (32) is of the orderffiffiffiffiffiffiffiffiffi
2Rd

p
R�c

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RcFmaxd

RV0

s
’ 1ffiffiffiffi

N
p < 1: (40)

But in actual practice, that ratio may still be sizable,
especially at � ! 0 where the � function blows up.
Then, it might seem that � must necessarily be specified
issuing from the initial conditions.
However, one should remember that in a real beam the

initial conditions for the particle entrance to the crystal
are not strictly definite. The beam transverse dimensions
are always much greater than interatomic distances in the
crystal, therefore the particle impact parameters b must be
averaged over. Besides that, the indeterminacy ��0 of
the angles in the incident beam is usually large compared
to d=L, and needs some averaging in a vicinity of the mean
value �0.
Examining Eq. (39), we see that the expression under the

fractional part sign contains contributions from the initial
kinetic and potential energies in an additive way: E? ¼
E
2 �

2
0 þ VðbÞ. Actually, fluctuations of both contributions

are large:

�

�
R

Ed

E

2
�20

�
’ R�0

d
��0 � L

2d
��0 � 1; (41)

and

�

�
R

Ed
V

�
� N > 1: (42)

Thus, at fluctuations of particle parameters in a real beam,
� spans its unit definition interval many times, and at each
time its relation with �0 and b is approximately linear, so,
in fact, �may be treated as a uniformly distributed random
variable. Then, averaging over the beam is equivalent to an
unweighted averaging over �. But such an average of
function � entering (32) gives zero due to identityZ 1

0
d��

�
1

2
; �

�
¼ 0; (43)

straightforwardly checkable from definition (33). That ul-
timately leads to a simple and model-independent relation
of the mean excess of the nuclear range at volume reflec-
tion with the mean volume reflection angle:

h�Li ¼ Rh�i ðpositively charged particlesÞ: (44)

The accuracy of Eq. (44) is an interesting question.
Within the adopted approximation of thin atomic planes
linked by a pure continuous potential, the only parameter

rnmax

r

Veff r

rnmax 2 d R , max 1

rnmax 0, min 0

(a)

rnmax

r

V top

V plane

Veff r
max min 1

rnmax 2 V top V plane E min

(b)

FIG. 3. Determination of the range of variation of parameter �
in crystal orientation (110); (a) for positively charged particles;
(b) for negatively charged particles. For details see text.
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in the problem is N, which is further assumed to be large.
We found fortuitous vanishing of the term of relative

significance OðN�1=2Þ, but this does not mean that we

deal with an expansion in powers ofN�1=2. The inaccuracy
of Eq. (44) stems from replacing the averaging over b by
averaging over � (or E?). This approximation must work
better than OðN�1Þ, presumably as OðN�2Þ (cf. [9]).
However, one should not forget about physical corrections
due the approximation of thin planes and the pure continu-
ous potential in itself, which can be actually more signifi-
cant. The corresponding estimates will be provided in
Sec. III.

For the case of orientation (111), the calculation is a bit
more involved, but straightforward. Interestingly, one
arrives at the same result (44).

2. Negatively charged particles

For negatively charged particles (such as ��), the situ-
ation is different in that the atomic plane positions do not
coincide with tops of the potential barriers – thus, here
�min � 0 [see Fig. 3(b)]. To determine the value of �min,
we need to know the particle kinetic energy at the last plane
crossing, which in the present case equals the difference of
potential energies between the atomic plane and the top of
the preceding barrier:

E

2
min _r2nmax

¼ Vjr2top � Vjr2plane � V0

�
1� Rc

R

�
2
: (45)

Here, the last equality would be exact for a parabolic
interplanar potential, while for a nonparabolic one it also
turns to be exact in the limits R � Rc and R ! Rc. So,
heuristically, we may expect it to be sufficiently accurate
over the entire interval R> Rc. Therewith, we get

�min ¼ R

2d
min _r2nmax

� N

�
1� 1

4N

�
2
: (46)

Here the prefactor must be >1 [see Eq. (8)]. From Fig. 2
we see that at �> 1, function �ð1=2; �Þ is fairly smooth
and may be linearized in � about the midpoint �min þ 1=2.
Taylor expanding Eq. (35), we obtain

�

�
1

2
; �

�
� �2

ffiffiffiffiffiffiffiffiffiffi
�min

p � 1ffiffiffiffiffiffiffiffiffiffi
�min

p
�
�� �min � 1

2

�
: (47)

Averaging the last term of Eq. (47) over the interval � 2
ð�min; �min þ 1� gives zero. Substituting in the first term of
(47) �min from Eq. (46), and all that to Eq. (32), we obtain
the final expression for the average nuclear range differ-
ence in the case of (110) orientation:

h�Li ¼ Rh�i � 2R�c

�
1� Rc

R

�
½negatively charged particles; Sið110Þ�: (48)

At R � 4Rc, when h�i � �c, Eq. (48) reduces to

h�Li � �R�c: (49)

For orientation (111) in the negative particle case the
calculation is more complicated. We will quote the result
under the condition R> 4Rc, retaining only the linear
correction in Rc=R, which is relatively simple:

h�Li ¼ Rh�i � 2R�c

�
1� 5Rc

3R

�
½negatively charged particles; Sið111Þ�: (50)

Here we define �c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VL=E

p
, and Rc ’ 3Ed

16VL
, with VL the

larger well depth in a straight crystal (see [18]).
Equations (44) and (49) were reported in [15]. We stress

that for positive particles the nuclear range excess is
positive, while for negative particles it is negative (repre-
senting a deficit), though being of the same order of
magnitude. This is natural from the point of view that
positive particles are repelled from the atomic planes,
crossing them more tangentially, while negative particles
are attracted, crossing the planes more quickly. For mul-
tiple Coulomb scattering, such an effect was noticed in
numerical simulation already in the pioneering paper [1].
On the practical side, for measurement of the nuclear

interaction excess compared to the amorphous orientation,
it may appear easier to actually deal with the difference
between volume reflection of positively and negatively
charged particles in the same bent crystal, inasmuch as
the latter difference is about doubled.

III. CONDITIONS OF APPLICABILITY

The simplified account of nuclear interactions in the
previous section rested on a few assumptions. Prior to
proceeding to comparison with the experiment, let us
determine their conditions of validity, in terms of the
crystal and the beam parameters. For simplicity, we restrict
ourselves to the positive particle case, which has received
more experimental attention.

A. Spread of nuclear concentrations in atomic planes

The first approximation we made in Eq. (16) is the
neglect of fluctuations of nuclei about the atomic
planes. In fact, even at zero temperature, there remains
quantum indeterminacy of the same order of magnitude as
the thermal fluctuations at room temperature. For a crude
estimate of a nucleus departure from its equilibrium posi-
tion, in projection onto direction perpendicular to the
active plane, a harmonic oscillator model may be adopted.
For an oscillator with typical frequency !0, the mean
square coordinate of the nucleus at a temperatureT equals

hð�XÞ2i ¼ @

2M!0

coth
@!0

2kT
; (51)

where M is the nucleus mass, and k the Boltzmann con-
stant. In a solid state, a satisfactory estimate for !0 is
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@!0 ’
ffiffiffi
3

p
kT D; (52)

where T D is the Debye temperature [25]. For silicon,
T D � 650 K. Based on these crude estimates, we retrieve

the value u� 0:05 �A for the spread of nuclei about any
plane in a silicon crystal at room temperature (see also
[26]).

Our approximation of thin nuclear concentrations will
be valid if relative variation of _rwithin u is small. That is to

say, the variation of the kinetic energy E _r2

2 must be rela-

tively small. But the total transverse energy (2) is con-
served, thus the variation of the kinetic energy equals to the
(minus) variation of the effective potential energy. At the
distance of nuclear fluctuations, the variation of the poten-
tial energy equals the height of the nuclear cap on the top
of the potential barrier (the centrifugal energy may be
neglected):

�Vjnucl ¼ Fu

2
� 1:5 eV: (53)

This quantity is to be compared with the kinetic energy of a
particle at the last atomic plane crossing, which for posi-
tively charged particles has the order of the (half) potential
energy difference (6) between the neighboring barriers:

Ekinjnmax
� 1

2�VeffðdÞ: (54)

From condition �Vjnucl � Ekinjnmax
, one derives a restric-

tion on the crystal bending radius as a function of the
particle energy and crystal temperature:

R � RuðE;T Þ ðthin nuclear concentrationÞ; (55)

where

RuðE;T Þ¼Ed

Fu
¼Rcd

u
ðpositively charged particlesÞ:

(56)

Obviously, it holds that Ru � 4Rc until the crystal
temperature rises so that u� d=4, whereat the crystal

may already melt. At room temperature, Ru

4Rc
� d

4u ’ 10, so

the double inequality 4Rc < R � Ru may bewell satisfied.

B. Dominance of the continuous potential

In order that multiple Coulomb scattering in the crystal
bulk did not overwhelm the volume reflection effect, at
practice the crystal thickness is always made sufficiently
small, such that the rms angle of multiple scattering is
small compared to �� �c:

�am � �c: (57)

However, that condition does not yet guarantee that mul-
tiple scattering has little effect on �L, because in the
volume reflection region the angles of plane crossing
are � �c, as well. Taking as the smallest and the most

vulnerable dynamical angle that of the last atomic plane
crossing, _rnmax

, the average _rnmax
for positively charged

particles, may be estimated from Eq. (29) as

h _rnmax
i ¼

Z 1

0
d� _rnmax

¼ 2

3

ffiffiffiffiffiffi
2d

R

s
�

ffiffiffiffi
d

R

s
: (58)

[The corresponding transverse kinetic energy E
2 h _rnmax

i2 �
1
2 �VeffðdÞ equals half the potential energy difference be-

tween neighboring barriers.] In contrast to �c, h _rnmax
i does

not depend on the particle energy, instead involving the
crystal bending radius, but at particle energies and crystal
radii suitable for volume reflection,

h _rnmax
i

�c
� 1ffiffiffiffiffiffiffi

2N
p < 1: (59)

The effective rms angle of multiple Coulomb scattering
(in projection onto one relevant transverse direction per-
pendicular to the active family of atomic planes) is deter-
mined by the Highland-Lynch-Dahl Gaussian fit [27,28]:

�amðTÞ ¼ 13:6 MeV

E

ffiffiffiffiffiffi
T

X0

s �
1þ 0:038 ln

T

X0

�
(60)

ð10�3 < T=X0 < 102Þ; (61)

with T the traversed material thickness, and X0 the
material-dependent radiation length (for silicon this con-
stant equals X0 � 9:36 cm). The logarithm of T in Eq. (60)
owes to the Rutherford large-angle ‘‘tail’’ of multiple
scattering, violating under conditions (61) the
Gaussianity of the profile in principle, though weakly.
Formula (60) works with an accuracy of a few percent
for high- and intermediate-Z media. Around T � 0:2	
1 mm, i.e., with 1þ 0:038 ln T

X0
’ 0:8
 0:03, Eq. (60)

may be used in a simplified form:

�amðTÞ � 11 MeV

E

ffiffiffiffiffiffi
T

X0

s
; (62)

obeying the property of square additivity �2
amðT1 þ T2Þ ¼

�2
amðT1Þ þ �2

amðT2Þ. The obtained coefficient 11 MeV in

(62) is smaller than estimate
ffiffiffiffiffi
4�
�

q
mffiffi
2

p ¼ 21:2 MeVffiffi
2

p ’
14:8 MeV often used within the simplest leading logarith-
mic approximation [29].
Inserting T � R�c into Eq. (62), and dividing by

Eq. (58), we arrive at a requirement,

�amðR�cÞ
h _rnmax

i ’ R
11 MeV

E

ffiffiffiffiffiffiffiffiffi
�c
X0d

s
� 1; (63a)

which may be viewed as a restriction on the crystal bending
radius,

R � RmultðEÞ ðcontinuous potential dominanceÞ;
(63b)
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if we introduce

RmultðEÞ ¼ E

11 MeV

ffiffiffiffiffiffiffiffiffi
X0d

�c

s
¼
�

E

18 GeV

�
5=4 ½m�

ðpositively charged particlesÞ:
(64)

From Eqs. (4) and (64) we notice that at relativistic particle
energies, definitely, Rmult � 4Rc, so there is enough room
for double inequality 4Rc < R � Rmult to hold.

Condition (63b), in principle, may be significant not
only for equations describing the excess of nuclear inter-
action probability, but for the volume reflection robustness
as a whole. The impact of multiple scattering may result in
more uniform distribution of the particle flow over the
crystal volume, whereat contributions from positive and
negative force regions will become less unequal. In par-
ticular, that may lead to a suppression of the mean angle of
volume reflection at R> Rmult, which, however, is difficult
to estimate in the context of the perturbative approach.

C. Combined conditions

Simultaneous fulfilment of conditions (8), (56), and (64)
guarantees our calculation of the nuclear interaction proba-
bility at volume reflection to be self-consistent. In Fig. 4
we assemble all those conditions as functions of the parti-
cle energy. As we observe, they allow for a sufficiently
broad corridor (green band in Fig. 4), extending to arbi-
trarily high energies.

Conditions (56) and (64) appear to be rather close (at list
for silicon), and at E� 40 GeV, R� 2 m they have an
intersection point. Sector Ru < R< Rmult (yellow wedge
in Fig. 4) is acceptable for realization of volume reflection,
but not for our formulas for the nuclear interaction excess.

Points in Fig. 4 indicate parameters of the world experi-
ments on volume reflection. [Some of them are actually for

(111) crystal orientation, but may serve for qualitative
demonstration.] As we see, CERN SPS experiment spans
exactly the band best suited for volume reflection, whereas
experiments at 1 and 15 GeV probe other interesting
regions.

D. Volume capture and volume reflection inefficiency

Although conditions (8), (56), and (64) seem to basically
suffice for the validity of the derived Eqs. (17), (44), and
(49), there may arise an extra question concerning the
effect of capturing of some of the volume-reflecting
particles to channeling states (volume capture) and their
subsequent dechanneling. If the capture happens near the
top of the potential barrier, the particle oscillation ampli-
tude in the channel is large, so it dechannels within a short
distance, and may emerge at angles adjacent to the volume
reflection peak. Phenomenologically, there is indeed ob-
served a thrust in the otherwise Gaussian volume reflection
peak extending to the crystal bending direction. The frac-
tion of particles belonging to this thrust is called the
volume reflection inefficiency. For completeness, in this
subsection wewill provide some conservative estimates for
the probability of the volume capture process.
First of all, it is instructive to estimate how local are the

collisions between two relativistic particles with a sizable
transverse energy exchange �E? � E? � Fu

2 . The trans-

ferred momentum

�q� ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EE?

p
(65)

corresponds to a typical impact parameter

b�min

�
@

�q
;
Ze2

�q

�
¼ @

�q
� @ffiffiffiffiffiffiffiffiffiffi

EFu
p �u

�
0:04 �A

u

�
3=2

ffiffiffiffiffiffiffiffiffiffi
GeV

E

s
:

(66)

At u * 0:05 �A, and E � 1 GeV, Eq. (66) implies b � u,
so the scattering process leading to volume capture may be
regarded as sufficiently local. If the scattering is multiple,
at sufficiently high energy it also remains local, and may be
described as a diffusion in the particle transverse velocities,
with the diffusion coefficient proportional to the local
nuclear density. Within the area of nuclear concentration
in an atomic plane, the nuclear density is of the order

	 ¼ d

2u
	0; (67)

where 	0 is the net density of atoms in the crystal. The
incoherent scattering on atomic electrons may be neglected
in the first approximation.
Now consider a particle having arbitrary transverse ki-

netic energy ~E? on the top of a potential barrier; its past
history (which may as well include some amount of mul-
tiple scattering) is irrelevant. Let us estimate conditions at
which this particle will be likely to lose a substantial
fraction of its transverse kinetic energy after having rolled

1 5 10 50 100 500
E GeV

0.1

1

10

R m

FIG. 4. Combined plot of conditions for volume reflection of
charged particles in a silicon crystal, and the parameters of the
related experiments. Solid black line—condition (8); dashed
line—Eq. (64); dotted—Eq. (56); solid gray line—volume cap-
ture (73). Blue points—experiments at CERN SPS, 400 GeV
protons, orientation (110) [32]; green—ITEP at 70 GeV, orien-
tation (111) [2]; yellow—CERN PS at 13 GeV, orientation (110)
[5]; red—PNPI at 1 GeV, orientation (111) [3]. Triangles—
experiment at CERN SPS, 180 GeV electrons and positrons,
crystal orientation (111) [33]. The colored band indicates the
region best suited for volume reflection. For discussion see text.
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down the hill to distance u—then, its total transverse
energy may become underbarrier. Assuming that the par-
ticle motion is still governed predominantly by the con-
tinuous potential, the time spent by the particle in the
region populated by atomic nuclei equals

T1 ¼
Z u

0

dr

_r
¼
Z u

0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F
Eu r

2 þ 2 ~E?
E

q ¼
ffiffiffiffiffiffiffi
Eu

F

s
arsinh

ffiffiffiffiffiffiffiffiffiffi
Fu

2 ~E?

s
:

(68)

Traversing distance T1 in nuclear density (67), the particle
will acquire angular spread

� _r ¼ 11 MeV

E

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T1

X0

d

2u

s
¼ 11 MeV

E3=4ðFuÞ1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

2X0

arsinh

ffiffiffiffiffiffiffiffiffiffi
Fu

2E?

svuut
:

(69)

This can compete with the initial transverse velocity on top
of the potential barrier

_rjtop ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~E?=E

q
(70)

provided

~E? ¼ E

2
ð _rjtopÞ2

¼ ð11 MeVÞ2
4

ffiffiffiffiffiffiffiffiffiffi
EFu

p d

X0

arsinh

ffiffiffiffiffiffiffiffiffiffi
Fu

2 ~E?

s
� 1 eV

ffiffiffiffiffiffiffiffiffiffi
GeV

E

s
: (71)

The first consequence of this result is that at
E � 1 GeV, apparently, ~E? � Fu [that enabled us to

replace in (71) arsinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fu=2 ~E?

q
� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Fu= ~E?

q
� 2].

Under condition (56), this will also imply ~E? �
�VeffðdÞ, whereby the volume capture can occur only at
the last plane crossing, and its probability equals

PcaptðR;EÞ &
~E?

�VeffðdÞ ¼ 10
R

m

�
GeV

E

�
3=2

: (72)

Numerically, this gives Pcaptð10 m; 400 GeVÞ � 4%,

Pcaptð0:72 m; 70 GeVÞ � 20%, which does not contradict

to experiments and numerical simulation.
Result (72) may be converted into a characteristic radius

of volume capture

RcaptðEÞ ¼ 1

10

�
E

GeV

�
3=2½m�; (73)

obtained by letting in (72) Pcapt � 1. In Fig. 4 it is shown

by a gray line. This line goes above RuðEÞ, RmultðEÞ practi-
cally at all energies, so under conditions best suited for
volume reflection (the colored band in Fig. 4), volume
capture plays a minor role, while for experiments [2,3] it
may be significant.

As for the obtained estimate (72) itself, it is interesting to

note that it obeys the scaling law Pcapt / RE�3=2 proposed

in [30]. However, our analysis suggests a different pattern
of the particle capture: the smallness of ~E? permits capture
at one barrier only, whereas Refs. [12,30] assume capture
events to happen over the entire volume reflection area
�R�c [containing many planes, according to Eq. (7)], and
presume statistical equilibrium of volume-reflecting and
channeled particle fractions over this region (which for one
particle should mean that it passes from overbarrier to
underbarrier states and back many times).
Besides the difference in the physical approach, our

result differs from [30] by the coefficient at the power

law RE�3=2, most notably by the factor Z
ffiffiffiffi
d
2u

q
.

Interestingly, it indicates that Pcapt must decrease with

the increase of u, i.e., with the increase of the crystal
temperature, in contrast to the dechanneling probability.
In [31], there was proposed a correction factor to [30],

which, however, scales as u�1, rather that u�1=2.
Admittedly, the pattern of particle capture at one last

plane may need modification when R> Ru, because
thereat the particles hitting the back wall of the well may
descend to underbarrier energies, too. On the other hand,
thereat the dechanneling doubles, and it is unobvious
whether the captured particle fraction will increase or
decrease. Experimentally, it is established that at larger
R, the increase of the volume reflection inefficiency with R
slows down [32].
At yet greater R, when R * RcaptðEÞ, the capture acts

can really occur at various planes along the volume reflec-
tion area �R�c, and the situation may in some sense
approach the statistical equilibrium, with the crystal bend
being just adiabatic.
In conclusion, let us remark that in principle, volume

capture may be not the only source of volume reflection
inefficiency. In a pure continuous potential of a bent crys-
tal, there exists an effect of orbiting (see [9] and references
therein), arising due to a retention of the particles on the
round top of a potential barrier, which turns as the crystal
bends, and it leads to an exponential tail in the angular
distribution of the volume-reflected particles, towards the
side of the crystal bending. This manifested itself already
in Eq. (68) where the arsinh diverges as ~E? ! 0. Orbiting
is stronger for negative particles, because for them the
potential energy around the barrier top is flatter, but for
positive particles, with the account of smearing of the
atomic planes, orbiting is possible, too. With the increase
of R=Rc, the fraction of orbiting particles increases, but, as
was mentioned in Sec. II A, the angular distribution shrinks
as a whole.
However, if one takes into account the multiple scatter-

ing, its effect is to hinder the particles, too. Furthermore, as
we saw in Eqs. (68) and (69), the extension of the nuclear
range due to orbiting enhances the multiple scattering,
which in turn may detain the particles on top of a curved
potential ridge, extending the tail of the angular distribu-
tion of exiting particles in the direction of the crystal
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bending. We may hypothesize that cooperating in this way,
orbiting and multiple scattering may contribute to the
inefficiency of volume reflection beyond the volume cap-
ture mechanism, but that needs more quantitative inves-
tigation than we can provide herein.

IV. COMPARISON WITH EXPERIMENTS

A. Inelastic nuclear interaction probability

Now we are in a position to test the predictions of Sec. II
against the available experimental data. The most direct
check is supposed to be against the results of experiments
on inelastic nuclear scattering. At present, there is one such
experiment, performed with 400 GeV protons and a
L ¼ 2 mm thick silicon crystal at a single value of the
crystal bending radius R ¼ 10 m [14].

In this experiment volume reflection conditions were
investigated along with those of channeling, and therefore
the number of inelastic nuclear interaction events was
actually measured vs the varying cutting angle ��0 (essen-
tially the initial beam collimation angle). When the cutting
angle was sufficiently large (which ought to correspond to
perfect averaging over b or E?), the measured relative
difference was about constant, holding on the level

�P

P
� ð5
 2Þ%: (74)

For comparison, our prediction, using the experimentally
determined mean value h�iexp ¼ 13:35 
rad at the given

bending radium R ¼ 10 m, amounts to

�P

P
¼ h�Li

L
¼ Rh�iexp

L
¼ 6:67%: (75)

The theoretical accuracy of prediction (75) can be esti-
mated as OðR=RuÞ [see Eq. (56)]. With R ¼ 10 m and

Ruð400 GeVÞ � 27 m;

we infer R=Ru � 1=3. That estimate of the accuracy is
commensurable with the relative difference between our
theory and the experiment [Eqs. (74) and (75)].

A curious feature found in Fig. 6 of [14] is that at small
cutting angles (& 2 
rad), the difference between the rate
of inelastic nuclear interactions at volume reflection and in
an amorphous case seems to depart from a constant and
actually vanish, although experimental errors in this region
are too high for an unambiguous conclusion. In principle,
some sensitivity to ��0 might emerge due to an imperfect
averaging over the particle initial conditions and to the
impact of the second term in Eq. (32). To check this
possibility, let us estimate the range of variation of the
argument � under the variation of �0 in an interval ��0 �
2 
rad. From Eq. (41) we get

�� ¼ R

d
�0��0 � L

2d
��0 � 10: (76)

Apparently, this number is still much greater than the unit
definition interval of variable �; hence, with the variation
of �0 in that range, � actually scans its definition interval
several times, i.e., cutting angles down to�1 
rad still can
have no significant impact on�L. So, we can only attribute
the small-cutting-angle fluctuation of h�Li to enhanced
experimental errors reflecting the difficulty of achieving
such small cutting angles.

B. Angular divergence of the volume-reflected beam

Measurement of inelastic nuclear scattering discussed in
the previous section demands the usage of some dedicated
instrumentation like the beam loss monitors. But even
without it, the nuclear interactions shall manifest them-
selves through an angular broadening of the final beam due
to elastic Coulomb scattering. A complication here arises
because of an additional contribution to the broadening
from the impact parameter dependence of the deflection
angle, even in a pure continuous potential [see Eq. (4)]. In
fact, the latter contribution is anisotropic, but the beam
spread transverse to the direction of deflection is rarely
measured, so in the published experimental data on the
beam dispersion in the direction of deflection they contri-
bute together. Again, the bulk of the broadening is accu-
mulated away from the volume reflection region, but we
suppose the latter contribution to be subtractable. The
theoretical problem, then, is to compute the difference of
the volume reflection case from the amorphous orientation,
and the difference between the positive and negative par-
ticle cases.
To prove the possibility of the unambiguous subtraction,

even though in the whole crystal the multiple scattering
is stronger than in the intrinsic volume reflection region
alone, let us decompose the kinetics of the particle passage
through the crystal into three distinct stages: pure incoher-
ent multiple scattering upstream the volume reflection
region (where the beam acquires Gaussian shape), pure
dynamical broadening in the volume reflection region, and
pure incoherent multiple scattering downstream of it. The
resulting angular distribution function expresses as a con-
volution of probability distributions of the subsequent
processes:

dw

d�
¼
Z

d�2

e�½ð���2Þ2=2�2
2
�ffiffiffiffiffiffiffi

2�
p

�2

Z
d�1

dwcontð�2 � �1Þ
dð�2 � �1Þ

� e�ð�2
1
=2�2

1
Þffiffiffiffiffiffiffi

2�
p

�1

; (77)

where we assumed the upstream and downstream incoher-
ent scattering to be purely Gaussian, and dwcont is the
angular distribution function in a pure continuous potential
(slightly averaged over the particle incidence angles). The
small portion of multiple Coulomb scattering within the
arbitrarily isolated volume reflection region may be in-
cluded either in the upstream or downstream scattering
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piece, as long as it is small, and thus additive. Moreover, if
in (77) we change the integration variables, one integration
can be taken, with the result

dw

d�
¼
Z

d�
dwcontð�Þ

d�

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð�2

1 þ �2
2Þ

q e�f½ð���Þ2�=2½ð�2
1
þ�2

2
Þ�g (78)

depending only on the sum �2
1 þ �2

2. Obviously, the latter
sum must be equated to �2

amðLþ�LÞ, and thereby the
precise positions of the boundaries separating the different
kinetic regions prove to be inessential. Neglecting �L
compared to L in the argument of �am amounts to the
approximation of [8].

In practice, usually, the width of dwcont=d� is smaller
than �2

am, whereby the resulting angular distribution
becomes close to a Gaussian, anyway. Therefore, it is
described essentially in terms of the first two moments:

h�i ¼
Z

d��
dw

d�

�Z
d�

dw

d�
¼ 1

�
; (79)

and

�2 ¼
Z

d�ð�� h�iÞ2 dw
d�

: (80)

The mean value h�i only receives a contribution from
dwcont=d�:

h�i ¼
Z

d��
dwcont

d�
(81)

(as was implied in Sec. III), while when we evaluate �2

from Eq. (78), the coherent and incoherent contributions to
it appear to be just additive:

�2 ¼ �2
amðLþ �LÞ þ �2

cont

� �2
amðLÞ þ �2

amðRh�iÞ þ �2
cont; (82)

with

�2
cont �

Z
d�ð�� h�iÞ2 dwcont

d�
: (83)

Angular distribution dwcont=d� has some differences,
for positive and negative particles [9], as does the nuclear
interaction rate calculated in Sec. II. Let us begin with the
case of positive particles, to which most of the data refer.

1. Positively charged particles

For positive particles, at R> 4Rc, �cont was quoted in
(11). For a realistic continuous potential the numerical
coefficient in Eq. (11) may slightly differ, but that is not
crucial for the following estimates.

Measurements of total �2 for 400 GeV protons interact-
ing with a (110) silicon crystal were carried out in experi-
ment [32]. There, in order to get access to the intrinsic
volume reflection angular divergence �cont, the difference

�2 � �2
amðLÞ ¼ ��2

v:r: (84)

was evaluated. From Eq. (82) we see, however, that it
differs from pure �cont:

��v:r: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

am

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

cont þ �2
amðRh�iÞ

q
;

��v:r: � �cont:

(85)

Assuming condition (63a) to hold, we may insert ex-
plicit theoretical expressions (62), (11), and (10) into
Eq. (85), which leads to a nonscaling R dependence of
the measured quantity ��v:r::

�� v:r: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

12�2c

d2

R2
þ ��c

2

�
11 MeV

E

�
2 R� d=�2c

X0

s
: (86)

The most characteristic feature of function (86) is the
existence of a minimum. The minimum location is found
by equating to zero the derivative of the radicand with
respect to R:

R�ðEÞ ¼ 1

�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

3
X0d

23

r �
E

11 MeV

�
2=3 ’

�
E

38 GeV

�
7=6 ½m�:

(87)

The physical meaning of R� is not drastically different
from that of Rmult—it marks the scale of R where
the multiple scattering compares with coherent deflection
angles, with the proviso that Rmult is derived from
generic reasoning in terms of the particle trajectory, while
R� in terms of specific contributions to the beam broad-
ening in the crystal. However, the actual expressions for
Rmult and R� are not equivalent; moreover, their ratio

Rmult

R�
¼
�
3

�

E

11 MeV

�
1=3
�
X0

d

�
1=6

ffiffiffiffiffi
�c
2

s
’
�

E

50 MeV

�
1=12

(88)

depends on the particle energy, albeit pretty weakly. At
ultrarelativistic energies, ratio (88) is >1:5, justifying the
use of Eq. (86), but up to LHC energies it does not exceed
3. The value of ��v:r: at the minimum equals

�� min ¼ ��v:r:ðR ¼ R�Þ ’
�
1 keV

E

�
2=3

: (89)

The available data at E ¼ 400 GeV (presented in Fig. 5)
reach beyond R�, which according to Eq. (87) amounts to

R�ð400 GeVÞ � 16 m: (90)

Around R�, the data show a flattening of the R dependence.
However, the point at R ¼ 35:71 m, which exceeds Ru,
resumes the decrease of ��v:r:, and departs from our
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theoretical prediction. Although in that domain our equa-
tions are no longer valid, qualitatively the decrease of ��v:r:

may be understood from the point that as the relative
variation of _r within the nuclear region increases, _r in this
region on average gets larger than in themiddle of the plane,
and so the total nuclear interaction probability diminishes.

2. Negatively charged particles

For negative particles, the experimental data are too
scarce to extract the ��2

v:r:ðRÞ behavior, so we restrict our-
selves to delineating the main theoretical anticipations.

First of all, for negatively charged particles the expres-
sion for �contðRÞ somewhat differs, though its R depen-
dence keeps close to 1=R, up to logarithmic factors.
Second, in this case we have ��2

am / h�Li< 0.
Therefore, the expression for ��2

v:r: for negative particles
is similar to the radicand of Eq. (86), but with a negative
coefficient at the second term. That implies that for nega-
tive particles ��2

v:r: changes sign and becomes negative for
sufficiently large R. That is the salient feature of the final
beam angular distribution for negative particles, which is
apt for experimental verification.

Next, since �cont for positively and for negatively
charged particles differ, in general it is not as straightfor-
ward to compare the angular broadenings for positive and
negative particles, as it was for the rate of inelastic nuclear
interactions. However, in the region R> R� where �cont

gets relatively small, that must already be feasible. The
simplest way of pinning down �cont, though, is to measure
both angular beam divergence components perpendicular
and parallel to the family of the active atomic planes.

V. SUMMARY

The problem of multiple Coulomb scattering at volume
reflection belongs to the category of combined potential
and stochastic motion, and is complicated even in the
radial 1D case. However, in the limit of small multiple
scattering angles, relevant at most of the experimental
realizations of volume reflection, we proved a quite simple

relation according to which the difference between the
probability of any kind of nuclear interaction of a proton
in a bent crystal and in an amorphous target is proportional
to the particle mean volume reflection angle and the crystal
bending radius [Eqs. (17) and (44), and a similar Eq. (49)
for negative particles]. These relations exploit only the
local character of nuclear interactions and the periodicity
of atomic planes in the crystal, and do not resort to any
parametrization for the continuous potential, such as the
parabolic approximation used in our earlier treatment of
volume reflection [9].
We also examined the physical conditions of applicabil-

ity of our equations in the case of positive particles. It
resulted in introducing two scales for the crystal
bending radius as functions of the particle energy. First,
RuðEÞ [Eq. (56)], is the radius at which the width
of distribution of atomic nuclei in atomic planes becomes
relevant. The second, RmultðEÞ [Eq. (64)], is where
the multiple Coulomb scattering affects the plane-
crossing angles near the volume reflection point. We had
also estimated the probability of volume capture under
conditions typical for volume reflection. At high energies,
it is small, but the process is interesting in its own right.
Although its E and R dependences comply with the pre-
dictions of previous authors, the temperature dependence
thereof appears to be different. The estimates provided and
scales introduced are expected to be of rather general
significance for the volume reflection and volume capture
processes.
The perturbative prediction for positive particles was

confronted with the experimental data [14,32], both for
the rate of inelastic nuclear interactions and for the angular
divergence of the volume-reflected beam. The theoretical
predictions are in a satisfactory agreement with the experi-
mental data.
As we mentioned in the Introduction, monitoring of the

nuclear interaction excess (either by inelastic nuclear in-
teraction events, or through the measurement of the final
beam angular divergence) may potentially be used for in
situ diagnostics of the quality of volume reflection-based
crystalline deflector. The information received from inco-
herent interactions in the crystal is complementary to that
obtained from measurements of coherent processes, such
as coherent bremsstrahlung in a bent crystal [33,34].
In conclusion, we remind that our study is concerned

only with the volume part of the effect. Under conditions
when either R grows, or L decreases, so that R�c becomes
comparable to L, there must also arise boundary effects, in
the same manner as for the volume reflection angle itself
[35]. In contrast, volume capture probability, even at large
R, should be less sensitive to boundary effects.
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FIG. 5. Subtracted final beam angular width vs the crystal
bending radius, for E ¼ 400 GeV protons in a L ¼ 2 mm sili-
con crystal. Solid curve—theoretical prediction [Eq. (86)].
Dotted curve—pure �cont (also compatible with calculation of
[8] in a more realistic continuous potential model). Points—
experimental data [32].
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