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We review the theory of free-electron laser (FEL) oscillators operating with tapered undulators. We

have considered the case of a uniform tapering and introduced a parameter which characterizes the effect

of the tapering on the gain and the saturation intensity. We have analyzed the effect of the tapering on the

FEL dynamics by including the pulse propagation effects. We further analyze the importance of tapering

as a tool to model the optical pulse shapes and to control the higher harmonic intensities.
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I. INTRODUCTION

Free-electron laser (FEL) oscillators operating with
tapered undulators have been discussed in the past, but
the relevant theory and phenomenology require some
clarifications because there are some not fully understood
aspects, which deserve further consideration. Furthermore,
the problems associated with the pulse propagation effects
and nonlinear harmonic generation have not been dis-
cussed in depth and, as we will report here, they give rise
to new and interesting dynamical features which are worth
studying carefully.

Originally, the concept of undulator tapering was intro-
duced for FEL amplifiers [1] and its straightforward
extension to the oscillator regime has been the source of
some surprises, regarding the relevant consequences on the
oscillator efficiency.

In the case of the amplifier, the tapering is usually
designed in such a way that the undulator field (and/or
the undulator period as well) decreases in the forward
direction, in order to compensate the effect of the energy
losses of the e-beam and ensure an efficient trapping of the
electrons in a stable bucket. The increase of the undulator
field in the forward direction, namely the reverse tapering,
causes reduction in the FEL amplifier efficiency. On the
one hand, a mild reverse tapering may be a tool to enhance
the efficiency in the case of FEL oscillators [2–4]. The
problem of a FEL oscillator with tapered undulators has
been the topic of experimental and theoretical investiga-
tions, but some interesting aspects have not been explored
yet, such as the effect of tapering on the nonlinear
harmonic generation. Here we will fill some of these

gaps and consider quite a general treatment by including
the small and the strong signal regimes. The analysis will,
however, be limited to linear tapering and we will not
develop strategies for an optimal tapering, which is not a
well-defined concept within the framework of the present
investigation.
This paper combines analytical and numerical results

and is also devoted to the derivation of practical formulas,
which include the effect of the tapering on the gain and the
saturation intensity. The paper consists of two parts.
In the first we will establish practical formulas concern-

ing the FEL operation with a linear tapering (namely, with
undulators exhibiting an on axis field amplitude depending
linearly on the longitudinal coordinate). In particular, we
will derive the expressions for the gain and the efficiency
factor as a function of tapering depth, the gain saturation
formula, and the saturation intensity.
In the second part we will discuss the pulse propagation

effects and the interplay between slippage, short pulses,
and tapering. We will investigate how the tapering com-
bines with slippage and lethargy effects, to give rise to a
new and interesting phenomenology.

II. SMALL SIGNAL GAIN INCLUDING TAPERING

In this section we will discuss different levels of ap-
proximation concerning the tapered FEL phenomenology.
We will indeed consider the small signal low gain effects
and we will essentially recover the results of Ref. [2]. We
will then include the high gain corrections and the
consequences of the pulse propagation effects.
Following Ref. [2], we write

GTð�;�TÞ¼�2�g0 Im½gð�;�TÞ�;
gð�;�TÞ¼

Z 1

0
d�

Z �

0
d��e�i��þið��T=2Þ�ð2���Þ; (1)

where
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�T ¼ 2N
�B

B

K2
0

1þ K2
0

2

; �B ¼ BðLuÞ � Bð0Þ; (2)

N is the number of undulator periods, Lu ¼ N�u is the

undulator length, �T is the tapering parameter, �B
B is the

field variation along the undulator with a uniform tapering,
and K0 is the undulator parameter at the entrance of the
undulator.1

The physical meaning of the �T parameter should be
understood as follows. The phase matching condition, after
any undulator period advance, requires that the electron
longitudinal velocity, the undulator period, and the FEL
wavelength be related by ð1� �zÞ�u ¼ n� to ensure con-
structive interference. In the case of tapered devices the

longitudinal component of the velocity depends on the

position inside the undulator, namely �z ’ 1� 1
2�2 �

ð1þ K2ðzÞ
2 Þ. Therefore, for the linear undulator tapering,

the phase matching condition cannot be satisfied through-
out the undulator length. This phase mismatch due to
undulator tapering gives rise to frequency shift. By assum-
ing linear tapering we can set KðzÞ ¼ K0ð1þ 	zÞ where
	 ¼ �B

B � 1, which yields a frequency detuning shift

given by 
� ’ 2��T . This factor plays a role similar to
the inhomogeneous broadening effects and indeed it de-
termines a shift of the maximum gain position and a gain
reduction.
As already remarked, the condition of positive 	 is

referred to in literature as ‘‘inverse tapering’’ to denote
the fact that the strength of the field increases with increas-
ing z. The gain vs the frequency detuning � is shown in
Fig. 1 for different values of the tapering parameter �T .
It is evident that when �T is small, the gain curve

resembles, apart from a shift in the detuning parameter,

FIG. 1. Gain curves vs frequency detuning for different �T .

1Equation (2) implicitly assumes that the undulator field only
undergoes a variation along the longitudinal direction, more in
general the undulator period can be tapered too, in this case �B

B in
Eq. (2) should be replaced by �K

K .
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the usual low gain curve. When the tapering parameter
increases, the maximum gain shifts smoothly towards
larger frequency detuning. Further increase corresponds,
however, to an abrupt variation of the maximum gain
position. The threshold for the occurrence of this effect is
j��Tj ’ 25:2.

The value of the detuning, corresponding to the maxi-
mum gain, including the corrections due to the tapering, is
given by the following simple relation:

��ð�TÞ ’ ��ð0Þ½1þ 0:1844��T�;
j��Tj< 25:2; g0 � 0:3 (3)

and is shown in Fig. 2.
For values of the tapering parameter larger than 25.2, the

curve exhibits a kind of discontinuity due to a longitudinal
mode flipping. The consequences of this behavior will be
commented on later in the paper. The dependence of the
maximum gain on the tapering parameter is shown in
Fig. 3, where the discontinuity in the detuning parameter
is clearly evident.

The maximum gain function for j��Tj � 25:2 is repro-
duced by the equation

GMð�TÞ ’ GMðg0ÞPð�TÞ; GMðg0Þ ’ 0:848g0

Pð�TÞ ¼ 1þ 0:275

�
1� 2

1þ e0:301ð��T Þ

�
� 0:0428��T:

(4)

For the larger values of the tapering parameter
(25:3 � �j�Tj � 39),2 the maximum gain is almost con-
stant and exhibits the following parabolic form:

GMð�TÞ ’ 0:168 � g0Qð�TÞ
Qð�TÞ ¼ 1þ 13:69� 10�3ð��T � 25:3Þ

� 25� 10�4ð��T � 25:3Þ2: (5)

The results obtained so far confirm those of Ref. [2] and
show that the role of tapering is fairly more complicated
than usually believed. The gain exhibits indeed a rich
structure, which, as we will see in the following, is respon-
sible for an unexpected and interesting dynamical behavior
of FEL oscillators operating with nonconstant parameter
undulators.
The considerations we have developed so far do not

include high gain effects, which can be accounted for using
the integral equation:

@�a ¼ i�g0
Z �

0
d��e�i��þði��T=2Þ�ð2���Það�� �Þ: (6)

It is well known, from the usual FEL gain theory, that,
when the small signal gain coefficient increases, the gain
curve loses its antisymmetric shape. An example of this is
reported in Fig. 4 where we have shown the gain of a FEL
operating with a large small signal gain g0 ¼ 2 and a
modest value of the tapering parameter. This means that,
for increasing g0, nonlinear contributions in the gain coef-
ficient play an increasingly important role. It has, however,
been shown that these high gain contributions tend to
disappear when inhomogeneous broadening due to energy
spread and/or emittance are active [5,6]. This effect occurs
with the increase of the tapering parameter too, as shown in
Fig. 4.
We have checked the validity of the previous gain curves

by evaluating the gain dependence vs detuning dependence
by means of the simulation code PROMETEO [5]. The code
has been run with the parameters reported in Table I. The
comparison, discussed below, confirms the correctness of
the previous analysis.
For large values of the small signal gain coefficient, the

previous formulas for the value of the detuning �� corre-
sponding to the maximum gain and for the maxim gainGM

need slight corrections in g0, reported below:

FIG. 2. �� vs ��; the plot includes the region above the
instability threshold.

FIG. 3. GM

g0
vs ��T ; the dotted line is the fitting curve.

2We will not consider values of the tapering above the first
threshold because the gain becomes too small and the effects of
the tapering have no practical importance. It was however
unexpected to find the occurrence of a further peak shift and
for this reason we have quoted such extreme values.
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��ðg0; �TÞ ’ ��ðg0; 0Þ½1þ 0:1832ð1þ 0:0631g0Þ��T�;
GMðg0; �TÞ ’ GMðg0ÞPðg0; �TÞ;

GMðg0Þ ’ 0:848g0 þ 0:19g20

Pðg0; �TÞ ¼ 1þ 0:275

�
1� 2

1þ e0:301ð��T Þ

�
� 0:0428ð1þ 0:042g0Þ��T; g0 < 2:

(7)

In Fig. 5 we have shown the behavior of gain vs ��T for
different values of g0.

Reversing the sign of the tapering does not create sig-
nificant difference (at least in the small signal regime), as
shown in Fig. 6, where the gain curve with opposite

tapering values has the same shape, but its maximum is
located at ��ð0Þ½1� 0:1844 � j��Tj�.
Before concluding this section it is worth making some

comments on the agreement between the gain curves

FIG. 4. Gain vs detuning for g0 ¼ 2 and different values of ��T; continuous line with high gain corrections, dotted without high
gain corrections.

FIG. 5. Maximum gain vs ��T for different values of g0; the
dots are the result of the simulation, the continuous curve is the
fitting curve [Eq. (7)].

TABLE I. Simulation parameters.

E [MeV] 155.3

�u [cm] 2.8

K0 2.13

N 50

Relative energy spread 10�4

e-bunch length [�m] 102

Cavity length [m] 2
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obtained with the numerical code and the integral equation.
An example is shown in Fig. 7. The disagreement between
analytical and numerical solution is due to the fact that the
analytical procedure does not provide any corrections as-
sociated with the variations of the K parameter in the small
signal gain coefficient. The relative error associated with
the Bessel factor term in the gain coefficient is proportional

to ð�K2K Þ2 and becomes more significant with the increasing

of the tapering parameter.

III. THE SATURATION INTENSITY

In the previous section we have dealt with the small
signal regime. Here we will introduce the saturation effects
and discuss how other quantities of crucial importance for
the FEL performance, like the saturation intensity, are
affected by the tapering.

We would like to mention here that, by saturation
intensity, we mean the value of the laser intensity for
which the FEL gain becomes half of its small signal
gain value.

The gain saturation mechanism consists essentially of
two parts; one which is a kind of frequency shift towards
the negative part of the gain and the second is an effect of

the inhomogeneous broadening associated with the in-
duced energy spread.
We introduce the FEL Hamiltonian, which can be quite

useful to understand the previously mentioned points. For a
tapered undulator FEL the Hamiltonian can be written,
according to Ref. [7], as

H ¼ 1
2�

2 þ ��T� � jaj sinð� þ ’Þ; (8)

where the effect of tapering on the FEL dynamics is
like that of an accelerating electric field. The above
Hamiltonian is a rigorous formulation of this effect.
The fact that the gain is shifted towards larger � values

implies that it requires larger kinetic energy to overcome
the trapping potential. For this reason the saturation inten-
sity should be larger than the corresponding value for the
nontapered case.
In Fig. 8 we have reported the saturation intensities vs

tapering parameter for different values of g0 and the cor-
responding behavior is reproduced by

FIG. 6. Gain vs detuning for g0 ¼ 2; continuous line ��T ¼
15, dotted line ��T ¼ �15.

FIG. 7. Gain vs detuning for g0 ¼ 0:1 and different ��T ; dotted line: analytical formula; continuous line: simulation.

FIG. 8. Saturation intensity vs tapering parameter for different
g0; the dots are the result of the simulation, the continuous curve
is the fitting curve [Eq. (9)].
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Isðg0; �TÞ
Isðg0; 0Þ ¼ 1þ 0:017��T þ 0:162ðe4:8�10�3ð��T Þ2 � 1Þ;

g0 < 2: (9)

The saturation intensity Isðg0; 0Þ contains the high gain
corrections [5]. We stress that Eq. (9) is valid only for
reverse tapering. In the case of direct tapering (i.e. for

negative values of ��T), the situation is different and the
associated saturation mechanisms will be discussed
elsewhere.
We can combine gain formula and saturation intensity to

get the round-trip evolution of the intracavity field IðrtÞ.
The result can be expressed in terms of the discrete logistic
equation as [8]

IðrtÞ ¼ I0
½ð1� �ÞðGMðg0; �TÞ þ 1Þ�rt

1þ I0
Ieðg0;�T;�Þ f½ð1� �ÞðGMðg0; �TÞ þ 1Þ�rt � 1g ;

Ieðg0; �T; �Þ ¼ ð ffiffiffi
2

p þ 1Þhð�T; �=g0Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �

�
GMðg0; �TÞ

s
� 1

�
Isðg0; �TÞ;

hð�T; �=g0Þ ¼ 1þ að�TÞe�bð�T Þðn=g0Þ; ��T < 20;
�

g0
> 0:04

að�TÞ ¼ 0:124þ 0:063e0:262��T bð�TÞ ¼ 9:13� 0:34��T þ 0:068ð��TÞ2; (10)

where I0, Ieðg0; �T; �Þ denote the input seed and the
equilibrium intracavity intensities, respectively. The func-
tion hð�T; �=g0Þ is an ad hoc introduced correction, which
accounts for the high intracavity equilibrium power, occur-
ring at low cavity losses. The comparison between fitting
formula and numerical results for Ie is reported in Fig. 9.

The cavity losses can be divided in passive�P and active
�A losses in such a way that

� ¼ �A þ �P ¼ �Að1þ rÞ; r ¼ �p

�A

(11)

and

Ioutð�T; �A; rÞ ¼ �AIeð�T;�Þð1þGeÞ
¼ �A

1� �
Ieð�T; �Þ; (12)

where Ge ¼ �
1�� is the equilibrium gain.

The output power is therefore just given by the product
of the active losses times the intracavity power density. In
Figs. 10 and 11 we have reported the dimensionless output
power vs the active losses for different values of the taper-
ing parameter. Figure 10 is the result of a semianalytical
computation based on the previous formulas while Fig. 11
shows the simulation results obtained with PROMETEO.
The conclusion we may draw from Figs. 10 and 11 is

that the optimum value of the cavity losses depends on the

FIG. 9. Intracavity equilibrium power; comparison between numerical results (dots) and fitting formula (continuous line) for g0 ¼ 1:
(a) vs cavity losses, (b) vs tapering parameter.
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value of the tapering; this is not surprising since the taper-
ing affects the peak gain. Even if present results are fairly
accurate they are the consequence of a one-dimensional
analysis. Inclusion of the transverse optical mode structure
could induce some changes which do not however hamper
the conclusion of the paper.

Let us now discuss whether a tapered undulator deter-
mines an effective enhancement of the FEL efficiency, in
the case of the oscillator configuration. To this aim we
remind that the efficiency is defined as the ratio between
the FEL output power density and electron beam power
density IE, namely,

Eð�TÞ ¼ Ioutð�T; �A; rÞ
IE

Eð0Þ ¼ Ioutð0; �A; rÞ
IE

: (13)

The efficiency enhancing factor is

eð�T; �A; rÞ ¼ Ioutð�T; �A; rÞ
Ioutð0; �A; rÞ ¼ Eð�TÞ

Eð0Þ : (14)

An effective increase of the efficiency due to the taper-
ing occurs therefore whenever eð�T; �A; rÞ> 1.
In Fig. 12 we have reported the efficiency enhancing

factor vs the tapering parameter; it is evident an effective
increase3 for values of ��T above 10.
This assessment is consistent with the recent experimen-

tal results of Ref. [4].
Such a comparison cannot be considered conclusive

because the analysis developed so far is one-dimensional
and not fully appropriate for the analysis of the results of
the ELBE FIR tapered FEL oscillator, operating with a
waveguide and a hybrid cavity with an output toroidal
holed mirror.

IV. PULSE PROPAGATION EFFECTS

This concluding section is not dedicated to the efficiency
problem but to the phenomenology emerging from the
inclusion of pulse propagation effects in a tapered FEL
oscillator [9]. It is particularly interesting because, as we
will see in the following, new interesting dynamical
features emerge which make the uniform tapering an addi-
tional tool to control the laser beam quality.
The equation yielding the small signal evolution of the

FEL field with the inclusion of tapering and short pulses
can be written as

FIG. 11. Ratio of output power to electron power vs losses for
different ��T ; r ¼ 0:4, g0 ¼ 1.

FIG. 12. Tapered FEL efficiency enhancing factor vs ��T for
different values of the active losses, g0 ¼ 0:3, r ¼ 0:2, �A ¼ 3%
continuous line; �A ¼ 4% dotted line; �A ¼ 6% dashed line.

FIG. 10. Dimensionless output power density vs �A, r ¼ 0:4,
g0 ¼ 0:2; ��T ¼ 15, continuous line; ��T ¼ 10, dotted line;
��T ¼ 5, dashed line; ��T ¼ 0, dash-dotted line.

3Note that Fig. 12 shows the increase of efficiency with respect
to the value with zero tapering parameter. It does therefore not
imply that the optimum of the operation is at 3% cavity losses,
but only that for this value of the active losses the tapering is
more efficient.
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@�a ¼ i�g0ðzþ � � �Þ
�

Z �

0
d��e�i��þði��T=2Þ�ð2���Þaðzþ � � �; �� �Þ

� ¼ N� � slippage length; g0ðzÞ ¼ g0fðzÞ;
fðzÞ � electron packet shape: (15)

The slippage length is due to the different velocities
between electrons and radiation, which causes a slipping
of the optical bunch over the electrons during the interac-
tion inside the undulator. The combination of tapering and
slippage gives rise to a new phenomenology.

Albeit we will discuss these aspects of the problem in a
dedicated paper, here we will present a few interesting
results emerging from the numerical treatment of the prob-
lem. In Fig. 13 we have reported the evolution vs the round-
trip of the optical pulses, for the case with zero, negative,
and positive values of the tapering parameter and the cavity
set at zero mismatch. The sequence shows that the effect of
the tapering is an obvious reduction of the small signal gain

FIG. 13. Optical pulses vs round-trip for different values of ��T ; g0 ¼ 1, � ¼ 0:06 and zero cavity mismatch. Pulse range shows
Gaussian e-beam range; x-axis tick marks indicate the position of the e-beam center.

FIG. 14. Intracavity power evolution vs round-trip number for
different ��T , same parameters as in Fig. 13.
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FIG. 15. Comblike structure in FEL oscillators in deep saturation (round-trip 240) at zero cavity mismatch, g0 ¼ 1, � ¼ 0:06, for
different values of ��T ; dotted curve represents the electron longitudinal distribution.

FIG. 16. Third harmonic in deep saturation, same parameters as in Fig. 15, for two different values of ��T .

FREE ELECTRON LASER OSCILLATORS WITH TAPERED . . . Phys. Rev. ST Accel. Beams 15, 030708 (2012)

030708-9



which determines an increase of the time necessary to
reach the saturation (see also Fig. 14) and, for nonzero
values of the tapering parameter, a kind of compensation of
the slippage effect.
The radiation packets tend to be more confined within

the electron packet; this effect is more evident for reverse
tapering.
In Fig. 15 we have detailed the pulse shapes of the

previous snap shots in the region of deep saturation. It is
interesting to note that a kind of comblike structure occurs
well beyond saturation.
The physical origin of the peaks is essentially due to a

strong mode-locking mechanism occurring at the scale of
the cooperation length. The effect is a genuine combination
between mode locking, slippage effect, and superradiance.
The longitudinal mode locking occurs because we are
considering FEL oscillators in which the mode coupling
(active mode locking) is induced by the pulsed structure of
the bunch itself. The effect was predicted long ago in
Ref. [10] and is not dissimilar to the occurrence of the
spikes in high gain SASE devices [11]. In this last case we

FIG. 17. Equilibrium intracavity power intensity vs 
, g0 ¼ 1,
� ¼ 0:06. The average power is the average on laser packet
distribution.

FIG. 18. Power evolution of the fundamental, third, and fifth harmonic at zero cavity mismatch for different values of ��T .
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cannot however consider a mode locking in strict sense, in
the absence of an optical cavity (for further comments see
Ref. [12]).
This effect is also evident for the pulses associated with

the higher order nonlinear harmonics, which, in the tapered
case, has a less defined structure due to the fact that the
optical pulse well overlapped to the electron packet is
creating a strong bunching in a region spread over all the
electron bunch.
The consequence of this type of structure on the

coherently generated harmonics is shown in Fig. 16
where we have reported the third harmonics generated
with no tapering and inverse tapering; the figures put in
evidence the sensitivity of the harmonic pulse shape to
the tapering, which becomes a tool to shape the emerg-
ing pulse.
A further key point is the role of the lethargy, which we

have just touched on in the paper. Plots reported in Fig. 17

FIG. 19. Intracavity power growth at zero cavity mismatch,
g0 ¼ 1, ��T ¼ 25, � ¼ 4%.

FIG. 20. Optical pulse shapes at different round-trips for g0 ¼ 1, ��T ¼ 25, � ¼ 4%: (a) round-trip 200, (b) round-trip 400,
(c) round-trip 600.
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can be considered clarifying. The figure shows indeed the
behavior of the stable intracavity power vs the cavity

length mismatch 
 ¼ �L
� , where �L is the cavity length

reduction necessary to compensate the lethargy effect and
� the operating wavelength. It is evident that the reverse
tapering yields the best conditions of operations, in terms
of power but not for the stability curve. The region of
cavity mismatch allowing the growth of stable output
power is larger in the case of zero tapering.4 This is just
a consequence of the fact that the gain curve is narrower in
the case of reverse tapering. The case of ��T ¼ �15 is
evidently the less favorable.

Regarding the harmonics we have reported in Fig. 18,
the round-trip power evolution of the first, third, and fifth
harmonic for ��T ¼ 0,	15. The effect of the tapering on
the higher harmonics is quite remarkable, if confronted to
the case with no tapering. In this last case the harmonic
power exhibits a bump before that the fundamental has
reached the onset of the saturation and then decreases even
by an order of magnitude. When tapering is active, the
power of the higher order harmonics remains almost con-
stant, even when the fundamental has deeply saturated. The
case with inverse tapering yields a more efficient result in
terms of harmonic power too.

The final point we will treat is relevant to the case of the
pulse dynamics for values of the tapering parameter giving
rise to the gain instability reported in the previous sections.
We have already remarked that in this region there are two
competing modes which may give rise to a quite interesting
dynamics and indeed we may have two different carrying
frequencies separated by 
 ¼ !2�!1

!res
’ 1

N .

The full dynamics is rather difficult to check because the
code becomes time consuming since a large number of
competing modes should be included in the calculation and
perhaps the slowly varying amplitude approximation is not
valid any more. We have however considered the mode
dynamics of a single carrying frequency with slightly
larger gain with respect to the other. For such large values
of the tapering, the system reaches the saturation after a
large number of round-trips, as it should be, since the gain
is quite low, even for large values of the small signal gain
parameter (see Fig. 19).

We have noted that, at zero detuning, the slippage effect
is no more active and that the optical field remains locked
to the electron bunch in an almost congealed position over
the entire evolution which in our simulation went well
beyond the onset of the saturation (see Fig. 20). Beyond
the saturation point the optical pulse becomes distorted and
small structures over the peak of the bunch start to develop.

The results of this paper can be summarized as it fol-
lows: (i) FEL oscillators operating with undulators having
a uniform tapering exhibit an interesting behavior associ-

ated with the peculiar nature of the gain function. (ii) The
uniform tapering guarantees an enhancement of the effi-
ciency which is not the result of an optimization criterion
as it happens in the case of the amplifier. (iii) The pulse
propagation dynamics displays a very interesting phe-
nomenology, which indicates that an interesting interplay
may occur between tapering, slippage, and lethargy. We
have some indication that the combined use of these effects
can be useful to model the pulse shape.
In a forthcoming investigation, we will explore more

deeply the pulse propagation dynamics in tapered oscilla-
tors and show that definite advantages (in terms of effi-
ciency, pulse shapes, . . .) can be obtained with undulators
with nonuniform tapering.
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