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We present a novel method for measuring the duration of femtosecond x-ray pulses from self-amplified

spontaneous emission free electron lasers by performing statistical analysis in the spectral domain.

Analytical expressions of the spectral correlation function were derived in the linear regime to extract both

the pulse duration and the spectrometer resolution. Numerical simulations confirmed that the method can

be also used in the nonlinear regime. The method was demonstrated experimentally at the Linac Coherent

Light Source by measuring pulse durations down to 13 fs FWHM.
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I. INTRODUCTION

The Linac Coherent Light Source (LCLS) at SLAC
National Accelerator Laboratory is the world’s first hard
x-ray free-electron laser (FEL) source that began lasing in
2009 [1] and is now in user operation, supporting a wide
range of scientific research including physics, structural
biology, energy, chemistry, and material science. An FEL
x-ray source, such as the LCLS, is based on the so-called
self-amplified spontaneous emission (SASE) process. It
exhibits three unique properties: ultrafast pulse duration
ranging from a few to hundreds of femtoseconds, ultra-
high peak brightness that is many orders of magnitude
greater than the brightest storage-ring based synchrotron
sources, and nearly full spatial coherence in the transverse
directions. Although having these unprecedented charac-
teristics, SASE FEL sources are, however, considered to
be chaotic in nature, giving rise to statistical fluctuations
in the beam properties on a pulse-by-pulse basis. In
particular, the temporal profile of the LCLS FEL x-ray
pulse consists of a large number of coherent spikes of
varying magnitudes. However, the development of an
appropriate diagnostic tool for ‘‘seeing’’ the exact tempo-
ral details, including such simple measurement as the
pulse duration, has proven to be very challenging and
elusive. This is largely due to the vanishingly small cross
sections in nonlinear processes at x-ray wavelengths
that make temporal correlation techniques, commonly
used in the optical regime, exceedingly difficult. The
lack of progress in this regard has hindered the LCLS
users from knowing the exact pulse duration for
resolving atomic/molecular motions and for calculating

the exact fluence in studying x-ray nonlinear light-matter
interactions.
SASE FEL radiation originates from the initial random

distribution of the electrons within a bunch, and its statis-
tical properties are related to the ones of the shot noise.
After a start-up phase, FEL enters in the exponential linear
regime, where the output power grows exponentially with
the undulator length and is proportional to the shot noise
power of the electron bunch current. At some undulator
length, FEL power does not grow exponentially anymore
and reaches saturation. To extract more power from the
electrons, postsaturation taper can be applied [2]. After
saturation, the relationship between the input shot noise
power and the output radiation power is nonlinear.
Statistical fluctuation of the incoherent radiation inten-

sity has been used to get information about the electron
bunch length [3,4], as demonstrated by earlier experiments
using spontaneous radiation sources [5–8]. However, a
SASE FEL differs from a spontaneous source in two
aspects. First, although the amplification process in a linear
regime does not change the statistical properties of the
radiation, it can modify the x-ray pulse duration compared
to the electron bunch length due to the exponential gain
and slippage effects. Recent studies of the statistical fluc-
tuation and the x-ray pulse duration in the exponential gain
regime can be found in Refs. [9,10]. Second, a SASE FEL
typically operates in the saturation regime for the purposes
of intensity stability and a higher power extraction. Here
the FEL process is very nonlinear, and it is not obvious
whether statistical fluctuations may be useful to retrieve the
radiation pulse duration.
In this paper, we present a novel method for measuring

the x-ray pulse duration through the analysis of the statis-
tical properties of the SASE FEL spectra. First, we show
theoretically how this method can be applied in the ex-
ponential growth regime. Then, through numerical simu-
lations, we show why this method still applies in the FEL
saturation regime. Finally, we apply this technique to
experimental data taken at the LCLS. The measurements
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were performed at various machine settings where the
x-ray pulse durations were determined in the range from
10 to 200 fs.

II. THEORY

The SASE FEL behaves as a narrow band amplifier,
which selectively amplifies a wideband random input sig-
nal. The fluctuations result from the shot noise of the
electron beam current

IðtÞ ¼ ð�eÞXN
k¼1

�ðt� tkÞ; (1)

at the undulator entrance, where the arrival times tk are
random variables with the probability density fðtÞ. In our
theoretical approach we will use a one-dimensional model
assuming that a single transverse mode is established
through gain guiding [2]. The spectrum of the FEL electric
field EðtÞ is calculated as ~Eð!Þ ¼ Rþ1

�1 EðtÞei!tdt. The first
and second order spectral correlation functions are intro-
duced as [11]

g1ð!;�!Þ¼ h ~Eð!��!=2Þ ~E�ð!þ�!=2Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj ~Eð!��!=2Þj2ihj ~Eð!þ�!=2Þj2i

p ; (2)

g2ð!;�!Þ¼ hj ~Eð!��!=2Þj2j ~Eð!þ�!=2Þj2i
hj ~Eð!��!=2Þj2ihj ~Eð!þ�!=2Þj2i : (3)

We express a single-shot spectrum taken by the spectrome-
ter as

Sð!Þ ¼
Z þ1

�1
e�½ð!0�!Þ2=2�2

m�ffiffiffiffiffiffiffi
2�

p
�m

j ~Eð!0Þj2d!0; (4)

where we assume that the spectrometer resolution function
has a Gaussian shape with �m rms width. We define the
weighted spectral second order correlation function as

G2ð�!Þ¼
Z þ1

�1
Wð!Þ

� hSð!��!=2ÞSð!þ�!=2Þi
hSð!��!=2ÞihSð!þ�!=2Þi�1

�

�d!; (5)

where the weight function W is described as

Wð!Þ ¼
Rþ1
�1hSð!þ b=2ÞihSð!� b=2ÞidbRþ1

�1hSð!þ b=2ÞihSð!� b=2Þidbd! : (6)

We introduce a simple model for the exponential growth
regime that allows us to obtain an analytical formula for
Eq. (5). The process of amplification, within a one-
dimensional model, can be described by a Green function
hðt; �Þ, and the electric field can be calculated as the
convolution,

EðtÞ ¼
Z

hðt; �ÞIð�Þd�: (7)

For electron beams with constant parameters, the SASE
FEL Green function has the form [11,12]

htiðt� �Þ ¼ A0ðzÞeik0ze�i!0ðt��Þ�½ðt���z=vgÞ2=4�2
ht
�½1þði= ffiffi

3
p Þ�;
(8)

where A0ðzÞ / ez=lg contains the exponential growth factor,
with lg representing the field gain length. The time-

dependent growth process, originating from an electron
beam with a nonflat current profile, can be described
assuming that the gain length is a function of t [13]. The
gain mechanism also depends on other quantities, such as
transverse emittance, energy spread, and undulator taper.
To model this, we introduce a time-dependent gain func-
tion htd, which is a slow-varying function on the scale of
the FEL radiation coherence length. Thus, we express the
time-dependent SASE FEL impulse response function as

hðt; �Þ ¼ htiðt� �Þhtdð�Þ: (9)

In Appendix A we show that, within the proposed model,

g2ð!;�!Þ ¼ 1þ jg1ð!;�!Þj2 (10)

and we derive the analytical formula (A19) for the
weighted spectral correlation function (5). When the aver-
age spike width is much narrower than the FEL bandwidth
�a ¼ 1ffiffi

3
p

�ht
, (A19) simplifies to

G2ð�!Þ ¼
Z þ1

�1
e½�ð���!�0Þ2=2�2�j ~Xð�Þj2ffiffiffiffiffiffiffi

2�
p

�j ~Xð0Þj2 d�; (11)

where ~Xð!Þ is the Fourier transform of the average profile

XðtÞ ¼ hjEðtÞj2i (12)

and

� ¼ ffiffiffi
2

p �a�mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

a þ �2
m

p ; �0 ¼ �2
a

�2
a þ �2

m

: (13)

Equation (11) can be particularized for different XðtÞ
shapes. For a Gaussian profile with rms duration �t, we
have

G2ð�!Þ ¼ e�½�!2�2
0
�2
t =ð1þ2�2�2

t Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2�2

t

p ; (14)

and for a flattop profile with full length duration T,

G2ð�!Þ¼2
Z 1

0
e��2�2T2=2ð1��Þcosð�!�0T�Þd�: (15)

The measurement procedure of the pulse duration is
described below. First, a large set of spectra is recorded.
By fitting the average spectrum we obtain �2

a þ �2
m. Thus,

only the spectrometer resolution �m and the pulse duration
are unknown. By fitting the experimental G2 function with
the analytical model, one can finally derive both the pulse
duration and the spectrometer resolution. For typical mea-

surement conditions �a � �m, � � ffiffiffi
2

p
�m, �0 � 1, and

the measurement is insensitive to errors on �a.

A. A. LUTMAN et al. Phys. Rev. ST Accel. Beams 15, 030705 (2012)

030705-2



Now we would like to compare Eqs. (14) and (15) under
the condition that �a � �m, one can conveniently rewrite
the G2 function expressions using the variables � ¼ �!

�m
,

Tg¼�t�m, and Tf¼T�m. In particular, with this notation,

1

G2ð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4T2

g

q
(16)

gives a measure of the average number of x-ray spectral
spikes (coherentmodes)within the spectrometer resolution.
The number ofmodes can be approximated by 2Tg, whenTg

is large. Mathematical details of the comparison can be
found in Appendix B. One can also note that when Tf �
1, the method cannot distinguish between Gaussian and
flattop pulses having the same rms duration. This is because

when T ¼ ffiffiffiffiffiffi
12

p
�t the number of modes and the shapes of

theG2 function are the same [see Fig. 10 and Eqs. (B6) and
(B7)]. In this sense the method gives an rms pulse duration
measure for compact x-ray pulse shapes, regardless of the
shape. For the case Tf � 1, achievable by using a finer

resolution spectrometer, the method is able to distinguish
between the two shapes. In this case G2 is proportional to
the square of the modulus of the Fourier transform of the
x-ray pulse envelope. Figure 1 represents both described

cases for a fixed pulse duration Tf ¼ Tg

ffiffiffiffiffiffi
12

p
and for differ-

ent spectrometer resolutions.
The measurement method described above is based on

the exponential growth model introduced in Eqs. (7)–(9).
Since, within that model, the FEL behaves as a linear
amplifier, the properties of the random Gaussian process
of the input signal are retained [14]. Moreover, the expres-
sion for the steady-state Green function allows us to derive
the analytical relation between the average profile XðtÞ and
the weighted spectral correlation function G2.

However, in the saturation regime, Eq. (10) does not
hold true in general and we do not have any analytical

model such as Eq. (8) to work out an expression for G2.
The statistical properties in this regime have been studied
by numerical simulations in [15], and a simplified analyti-
cal model is described in [12]. The most interesting
conclusion that can be drawn from these studies is that
the quasi-Gaussian statistics is retained for narrow band
instantaneous power fluctuations, and that Eq. (10) holds
true even at saturation.
Based on the above conclusion, we derived an approxi-

mate expression for the G2 function without reference to
any of the analytical models. The details of the derivation
are presented in Appendix C. By assuming that the spec-
trometer has Gaussian resolution function with rms width
�m, we obtain

G2ð�!Þ ¼
Z 1

�1
e��2=4�2

m j ~Xð�!þ �Þj2
2

ffiffiffiffi
�

p
�mj ~Xð0Þj2

d�: (17)

The derivation of expression (17) involves several approx-
imations. We assumed that Eq. (10) is valid also in the
saturation regime. This result was found in [15] and was
also confirmed by our simulations. We considered the case
when the average spike width is much narrower than the
FEL bandwidth, and the spectrometer resolution width is
much narrower than the FEL bandwidth as well. Further,
we assume that the approximation (C10) is valid. An
important result found in [15] is that the spectral correla-
tion functions do not change considerably between the
exponential growth and saturation regime. This means
that g1ð!;�!Þ has a width in �! of the order of 1=T,
where T is the duration of the profile. First, the approxi-
mation (C10) requires an assumption that the phase of
g1ð!þ b=2; �!Þg�1ð!� b=2; �!Þ is nearly zero for �!
being inside the described region, and for b being inside
the FEL bandwidth. Second, it requires that the amplitude
of g1ð!;�!Þ changes slowly in the! variable. This allows
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FIG. 1. Comparison between G2 functions derived for the flattop model and the Gaussian average x-ray profiles. (a) When Tf � 1,
Gaussian and flattop profiles having the same rms duration yield different G2 functions. (b) When Tf � 1, Gaussian and flattop
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us to use the approximation (C10) which is crucial for
deriving Eq. (17).

As expected, when �m � �a Eq. (11) gives Eq. (17).

III. NUMERICAL SIMULATIONS

We ran a series of numerical simulations using a 1D FEL
code in order to check if the proposed method is also
applicable at saturation and in deep saturation. A flattop
electron beam with an energy of 5.9 GeV, a peak current of
3 kA, and a 1 mmmrad normalized transverse emittance
was used. The undulator has a period of 3 cm and a strength
parameter of 3.5, yielding a radiation wavelength of 0.8 nm
(photon energy 1.55 keV) and saturation occurring close to

40 m. Two different electron bunch lengths, 30 and 3 �m,
were used during the simulations. Figure 2 shows the x-ray
pulse power as a function of the undulator distance for each
case. Simulation parameters were chosen to be close to the
experimental conditions used in Sec. III.
Figure 3 shows that the simulated pulse duration mea-

surements, based on Eq. (17), relate well to the pulse
durations obtained directly from the 1D code. The simu-
lations were performed for both the 30 �m and the 3 �m
electron bunch using 2000 independent shots. In the short
bunch case, the slippage and the edge effects played a more
important role as compared to the longer bunch, showing
that the method works well for ultrashort bunches. Two
different relative spectrometer resolutions, �m=!0, 10

�4

and 2� 10�4, were used to show that prior knowledge of
the spectrometer resolution is not needed. The relative
resolutions have been retrieved as ð1:00� 0:01Þ � 10�4

and ð2:01� 0:05Þ � 10�4 for the long bunch case, and as
ð1:00� 0:02Þ � 10�4 and ð1:96� 0:10Þ � 10�4 for the
short bunch case.
Simulations starting with a flattop electron bunch show

that the method can measure the average pulse duration
both in the linear and the nonlinear regime. The pulse
duration, however, stays almost constant for different
undulator distances. We have also ran simulations with
nonflat electron current profiles to prove that the method
can actually measure the pulse duration also when the
average profile duration changes during the FEL process.
We used Gaussian electron bunches with the following
parameters: an energy of 5.9 GeV, a peak current of 3 kA,
and a 1 mmmrad normalized transverse emittance. 500
independent shots were simulated for each electron bunch
starting condition. Two rms electron bunch lengths were
used: 18 and 6 �m. The relative spectrometer resolution
of 8� 10�5 was used in the simulated measurements.
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FIG. 2. X-ray pulse average power vs undulator distance.
Simulation with the 30 �m electron bunch (solid line), simula-
tion with the 3 �m electron bunch (dashed line).
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The results of the simulated measurements were com-
pared with the rms pulse duration derived directly from
the 1D code. Figure 4 shows the comparison for the long
bunch case. Figure 4(a) represents the normalized average
pulse profiles for different undulator distances. During the
exponential growth regime, the selective growth mecha-
nism described by means of the htd function favors the
growth where the density current is higher. This effec-
tively results in a shortening of the x-ray average profile.
Figure 4(b) shows the relation between the retrieved pulse
duration and the calculated average profile rms duration.
We find that the results are in very good agreement both
in the exponential growth and in the nonlinear regime.

The solid line in Fig. 4(b) is a quick estimate of the pulse
duration obtained by considering the field gain length lg
as a function of the current density and neglecting the
slippage effects. We can write this formula in a closed
form when approximating the gain up to the second order
in time:

�tðzÞ ¼ �tð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3lg0
2ð3lg0 þ zÞ

s
; (18)

where lg0 is the field gain length for the maximum bunch

current. Equation (18) predicts a shortening of the pulse
duration during the exponential growth. The retrieved
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relative spectrometer resolution for this case is 7:90�
10�5 � 0:09� 10�5. The simulation starting from the
6 �m electron bunch yields shorter pulse durations,
which are similar to the shortest measured pulse durations
presented in the experimental section. Figure 5(a) shows
the normalized average pulse profiles for different
undulator distances, and Fig. 5(b) shows the comparison
between the retrieved pulse duration and the calculated
average profile rms duration. Again we find good
agreement between the retrieved pulse duration and the
actual rms duration of the average profile. The retrieved
relative spectrometer resolution for the short bunch case
is 7:90� 10�5 � 0:11� 10�5.

As expected, our simulations confirm that Eq. (10) holds
true in the exponential growth regime. At saturation, the
second order correlation function can be empirically ap-
proximated as g2ð!;�!Þ � Aþ Bjg1ð!;�!Þj2, when �!
is not too large. This has been confirmed for simulations
using different electron bunch current profiles and lengths.
Figure 6 shows the comparison between g2ð!0; �!Þ � 1
and jg1ð!0; �!Þj2 in the nonlinear regime. In saturation,
we found A close to 0.88 for the short bunch simulation,
and close to 0.99 for the long bunch simulation, while B
equals to 1.03 and 1.01, respectively. This can eventually
lead to negative values in Eq. (5), suggesting that it is
necessary to fit Eq. (17) with a free offset parameter.
This behavior, predicted by the simulations, is confirmed
by the experimental data. In the long bunch simulation
Eq. (C1) holds better, since the slippage and the edge
effects play a less important role. Similar results were
found in [15] where the authors explain that, within the
accuracy of their simulations, the spectral first and second
order correlation functions do not change from the expo-
nential growth regime to the nonlinear regime.

IV. EXPERIMENTAL RESULTS

The experimental demonstration of the method de-
scribed above was performed at the LCLS operating at
1.5 keV photon energy. The spectra were recorded by the
LCLS soft x-rays spectrometer [16]. For each machine
setting around 40 000 spectra have been recorded. For
each spectrum we have also acquired such quantities as
electron beam energy and charge, peak current, trajectory
information, and x-ray pulse energy. The latter quantities,
particularly the electron beam energy and peak current,
were used to select a subset of the recorded data. This
subset had aligned spectra and similar electron bunch
lengths. A typical subset contained around 5% of the
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originally recorded results. Since the FEL intensity jitter
has an impact on the G2 function, measured spectra are
normalized by their integral over frequency. Full transverse
coherence is assumed for the above analysis. FEL simula-
tions suggest that the transverse coherence decreases after
saturation to about 50%–60% [17]. Additional analysis of
Genesis simulations [18] have shown that the degree of
transverse coherence in the vertical and the horizontal
directions is � 80% and � 70%, respectively. This was
confirmed by coherence measurements performed during
commissioning of the soft x-ray (SXR) instrument [19].
Care must be taken to reduce the effect of the transverse
modes on the statistical analysis. The spectra were re-
corded as 2D images. The spectrometer optics focused
the beam only in the vertical direction. During the post-
processing, only the subset of the data on the horizontal
coordinate has been used. This is equivalent to using a
horizontal slit for improving the transverse coherence in
the horizontal direction.

During our experiments we were investigating the
influence of different LCLS machine conditions on the
statistical properties of measured spectra. We varied
the undulator length and the electron bunch peak current.
We also applied the slotted foil technique to change the
effective electron bunch length that was able to lase [13].

In the first experiment we measured the pulse duration
for different undulator lengths. The peak current was set to
3 kA, which yields an 83 fs electrons bunch length for a
flattop shape. Pulse duration measurements are presented
in Fig. 7 showing that x-ray pulses were shorter than
electron bunches and that, with our postsaturation taper
configuration, the pulse duration increases when the deep
saturation is reached. The measured relative spectrometer

resolution was similar for the different analyzed data sets,
and was equal to �m=!0 ¼ ð1:02� 0:04Þ � 10�4. The
designed spectrometer resolution at 1.5 keV is 0:85�
10�4 [16]. Measurements performed at LCLS pointed out
that the SXR instrument resolution at that photon energy
should be closer to 1:4� 10�4 [20]. The discrepancy could
be attributed to the fact that this resolution was derived
from an averaged spectra, and it could be influenced by
such uncertainties as vibrations and photon beam jitters.
The resolution derived by our method is based on the
intensity interferometry principle. Therefore, it is much
less sensitive to such instabilities. A non-Gaussian shape
of the resolution function of the spectrometer could also
contribute to the differences in the resolution derived from
the two methods.
In the second experiment pulse durations were mea-

sured for different peak currents at a fixed electron
bunch charge. For these data sets, undulator taper has
been applied in order to maximize the output power
with 28 undulator segments present. Experimental re-
sults have been collected for the peak current from 1.5
to 3 kA. Figure 8 shows the measured x-ray pulse
duration compared to the electron bunch length in the
hypothesis of a flattop electron bunch distribution.
Higher peak current electron bunches yield clearly
shorter average FEL pulses. Finally, we measured
shorter x-ray pulse durations by controlling the electron
bunch length using the slotted foil technique [13].
Measured pulse durations obtained by controlling the
unspoiled electron bunch length with the slotted foil
are found in Table I. The shortest pulse duration was
measured for the slotted foil configuration corresponding
to an estimated unspoiled electron bunch length of 10 fs
FWHM [21]. With this setting, the measured average
x-ray pulse duration was 13 fs FWHM. Figure 9(a)
shows a typical measured spectrum for different foil
settings. It is evident from this figure that the shortest
pulses yield spectra with higher fluctuations [Fig. 9(a)]
and larger values of G2ð0Þ [Fig. 9(b)]. This figure also
shows that the analytical model can fit the experimental
data well.
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FIG. 8. (Diamonds) Measured x-ray pulse duration vs different
peak currents, duration expressed as flattop full length. (Solid)
Electrons bunch length for a 250 pC flattop profile as a function
of the peak current.

TABLE I. Electron bunch length controlled using the slotted
foil and measured x-ray pulse duration as FWHM Gaussian.
Electron bunch length is calculated with the formula presented in
[21]. �m=!0 is the relative spectrometer resolution measured for
each data set.

Estimated unspoiled

electron bunch

length FWHM [fs]

Measured x-ray pulse

duration FWHM [fs]

Measured relative

spectrometer

resolution �m=!0

10 13 0:87� 10�4

18 24 0:92� 10�4

28 39 0:87� 10�4

56 50 0:85� 10�4
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V. CONCLUSION

We have developed an effective approach for measuring
the average length of ultrafast x-ray pulses from SASE-
based FEL sources by using the statistical characteristics

not in the time, but in the spectral domain. This technique
was shown to be experimentally applicable not only in the
exponential growth region, but also in the nonlinear region
of the SASE amplification process as confirmed by analyz-
ing simulated data sets. We observed that the extracted
x-ray pulse duration varied consistently with the manipu-
lated electron bunch length. The hypothesized evolution of
the pulse duration as a function of the undulator distance
was also observed for the first time, lending further cre-
dence to our analysis. In addition, this method can be used
to measure the resolution function of a spectrometer as a
cross-check to other direct experimental techniques, such
as using an absorption line. We believe that our method can
be extended to other SASE-based FELs at arbitrary wave-
lengths. This approach can be also considered for the
analysis of any chaotic process where the output signal
originates from a nonlinear, narrow band amplification of a
Gaussian process.
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APPENDIX A: G2 FUNCTION DERIVATION

In this Appendix we derive an expression for the weighted second order correlation G2 function defined as

G2ð�!Þ ¼
Z þ1

�1
Wð!Þ

� hSð!� �!=2ÞSð!þ �!=2Þi
hSð!� �!=2ÞihSð!þ �!=2Þi � 1

�
d! (A1)

with
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is a good approximation to have the same value G2ð0Þ for
both the flattop and the Gaussian models.
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Wð!Þ ¼
Rþ1
�1hSð!þ b=2ÞihSð!� b=2ÞidbRþ1

�1hSð!þ b=2ÞihSð!� b=2Þidbd! ; (A2)

where Sð!Þ is a single-shot spectrum collected after a spectrometer. For a spectrometer with a Gaussian resolution function
having rms width �m, the single-shot spectrum is denoted as

Sð!Þ ¼
Z þ1

�1
e�½ð!0�!Þ2=2s2m�ffiffiffiffiffiffiffi

2�
p

sm
j ~Eð!0Þj2d!0 (A3)

and Eq. (A1) can then be written as

G2ð�!Þ¼
Z þ1

�1
Wð!Þ

� Rþ1
�1

Rþ1
�1e�½ð!a�!��!=2Þ2=2�2

m�e�½ð!b�!þ�!=2Þ2=2�2
m�hj ~Eð!aÞj2j ~Eð!bÞj2id!ad!bRþ1

�1
Rþ1
�1e�½ð!a�!��!=2Þ2=2�2

m�e�½ð!b�!þ�!=2Þ2=2�2
m�hj ~Eð!aÞj2ihj ~Eð!bÞj2id!ad!b

�1

�
d!: (A4)

With a substitution, f!a;!b;!g ! f�;�; !g,!a ¼ !þ�þ �!=2þ �=2,!b ¼ !þ�� �!=2� �=2, and! ¼ !,
we can write Eq. (A4) as

G2ð�!Þ¼
Z þ1

�1
Wð!Þ

� Rþ1
�1

Rþ1
�1e��2=4�2

me��2=�2
mhj ~Eð!þ�þ�!=2þ�=2Þj2j ~Eð!þ���!=2��=2Þj2id�d�Rþ1

�1
Rþ1
�1e��2=4�2

me��2=�2
mhj ~Eð!þ�þ�!=2þ�=2Þj2ihj ~Eð!þ���!=2��=2Þj2id�d��1

�

�d!: (A5)

Let us derive a particular expression forG2 for the exponential growth regime by using the model based on Eqs. (8) and (9).
The Fourier transform of the electric field is evaluated as

~Eð!Þ ¼
Z þ1

�1
ð�eÞXN

k¼1

htiðt� tkÞhtdðtkÞei!tdt ¼ ð�eÞ ~Htið!ÞXN
k¼1

ei!tkhtdðtkÞ; (A6)

where ~Htið!Þ ¼ Rþ1
�1 htiðtÞei!t. First we show the validity of Eq. (10) by following an approach similar to the one

described in [11]. We calculate the first order spectral correlation as

h ~Eð!þ �!=2Þ ~E�ð!� �!=2Þi ¼ e2 ~Htið!þ �!=2Þ ~H�
tið!� �!=2Þ

�XN
k¼1

XN
j¼1

htdðtkÞh�tdðtjÞeið!þ�!=2Þtke�ið!��!=2Þtj
�

¼ e2 ~Htið!þ �!=2Þ ~H�
tið!� �!=2Þ

��XN
k¼1

jhtdðtkÞj2ei�!tk

�

þ
�XN
k¼1

XN
j¼1;j�k

htdðtkÞh�tdðtjÞeið!þ�!=2Þtke�ið!��!=2Þtj
��

: (A7)

By using the hypothesis that the arrival times are independent, and that they are described by the density probability
function fðtÞ, Eq. (A7) yields
h ~Eð!þ �!=2Þ ~E�ð!� �!=2Þi ¼ e2 ~Htið!þ �!=2Þ ~H�

tið!� �!=2ÞN
�

Z þ1

�1
jhtdðtkÞj2ei�!tkfðtkÞdtk þ e2 ~Htið!þ �!=2Þ ~H�

tið!� �!=2ÞNðN � 1Þ

�
Z þ1

�1
htdðtkÞfðtkÞeið!þ�!=2Þtkdtk

Z þ1

�1
h�tdðtjÞfðtjÞe�ið!��!=2Þtjdtj: (A8)

The second term on right-hand side is negligible with respect to the first one. It can be shown by using the same arguments
presented in [15], while discussing the spectral correlation of the first order:

h ~Eð!þ �!=2Þ ~E�ð!� �!=2Þi � e2N ~Htið!þ �!=2Þ ~H�
tið!� �!=2Þ

Z þ1

�1
jhtdðtÞj2fðtÞei�!tdt: (A9)

We now calculate the spectral correlation of the second order:
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hjEð!þ �!=2Þj2jEð!� �!=2Þj2i ¼ e4j ~Htið!þ �!=2Þj2j ~Htið!� �!=2Þj2
�XN
k¼1

XN
j¼1

XN
l¼1

XN
m¼1

htdðtkÞh�tdðtjÞhtdðtlÞh�tdðtmÞ

� eið!þ�!=2Þtke�ið!þ�!=2Þtjeið!��!=2Þtle�ið!��!=2Þtm
�
: (A10)

As clarified in [15], the most contributing terms are ðk ¼ jÞ ^ ðl ¼ mÞ ^ ðk � lÞ, ðk ¼ mÞ ^ ðj ¼ lÞ ^ ðk � jÞ. Since the
arrival times are independent, we have

hjEð!þ �!=2Þj2jEð!� �!=2Þj2i
e4j ~Htið!þ �!=2Þj2j ~Htið!� �!=2Þj2 � XN

k¼1

XN
l¼1;l�k

hjhtdðtkÞj2ihjhtdðtlÞj2i þ
XN
k¼1

XN
j¼1;j�k

hjhtdðtkÞj2ei�!tkihjhtdðtjÞj2e�i�!tji

(A11)

yielding

hjEð!þ �!=2Þj2jEð!� �!=2Þj2i
e4NðN � 1Þj ~Htið!þ �!=2Þj2j ~Htið!� �!=2Þj2 ¼

�Z þ1

�1
jhtdðtÞj2fðtÞdt

�
2 þ

��������
Z þ1

�1

��������htdðtÞj2fðtÞei�!tdtj2: (A12)

Equation (A12) together with (A9) proves Eq. (10).
We now consider the average profile XðtÞ ¼ hjEðtÞj2i and its Fourier transform

~Xð�!Þ ¼
Z 1

�1
hjEðtÞ2jie�i�!t ¼ 1

2�

Z þ1

�1
h ~Eð!a � �!=2Þ ~E�ð!a þ �!=2Þid!a: (A13)

The squared modulus of ~X can be written as

j ~Xð�!Þj2 ¼ 1

4�2

Z þ1

�1

Z þ1

�1
h ~Eð!a � �!=2Þ ~E�ð!a þ �!=2Þih ~E�ð!b � �!=2Þ ~Eð!b þ �!=2Þid!ad!b (A14)

By doing the substitution f!a;!bg ! f!; bg, so that !a ¼ !þ b=2 and !b ¼ !� b=2, one obtains

j ~Xð�!Þj2 ¼ 1

4�2

Z þ1

�1
d!

Z þ1

�1
h ~Eð!þ b=2� �!=2Þ ~E�ð!þ b=2þ �!=2Þi

� h ~E�ð!� b=2� �!=2Þ ~Eð!� b=2þ �!=2Þidb: (A15)

From Eq. (A15) by using Eqs. (A6) and (A9), neglecting e4N2 terms and with �a ¼ 1ffiffi
3

p
�ht

, we have

4�2j ~Xð�!Þj2 ¼
Z þ1

�1
2

ffiffiffiffi
�

p
e�½�!2þ3ð!�!0Þ2=3�2

a�

3�2
a

d!

��������
Z þ1

�1
jhtdðtÞj2fðtÞei�!tdt

��������
2

¼ 2�e�ð�!2=3�2
aÞ

3�2
a

��������
Z þ1

�1

��������htdðtÞj2fðtÞei�!tdtj2: (A16)

Equation (A2) is evaluated as

Wð!Þ ¼ e�½ð!�!0Þ2=�2
aþ�2

m�ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

a þ �2
m

p ; (A17)

and from Eq. (A5) by using Eq. (A12)

G2ð�!Þ ¼
Z þ1

�1
Wð!Þd!

Z þ1

�1
e�f½��2

aþð�þ�!Þ�2
m�2=4�2

a�
2
mð�2

aþ�2
mÞg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

a þ �2
m

p jRþ1
�1 jhtdðtÞj2fðtÞeið�þ�!Þtdtj2

2
ffiffiffiffi
�

p
�a�mj

Rþ1
�1 jhtdðtÞj2fðtÞj2

d�: (A18)

We can substitute Eqs. (A16) and (A17) into (A18) and integrate over ! obtaining

G2ð�!Þ ¼
Z þ1

�1
e�f½��2

aþð�þ�!Þ�2
m�2=4�2

a�
2
mð�2

aþ�2
mÞg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

a þ �2
m

p
e½ð�þ�!Þ2=3�2

a�j ~Xð�þ �!Þj2
2

ffiffiffiffi
�

p
�a�mj ~Xð0Þj2

d�: (A19)

By choosing a particular shape of the average profile, one can find an analytical expression for the G2 function. In the
case of a Gaussian profile, with rms length �t, Eq. (A19) under the condition �t >

1
2
ffiffi
3

p
�a

gives
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e�½�!2�2
að3�2

a�
2
t�1Þ�=fð�2

aþ�2
mÞ½3�2

að1þ4�2
m�

2
t Þ��2

m�gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�2

að1þ4�2
m�

2
t Þ��2

m

3ð�2
aþ�2

mÞ

r : (A20)

Equation (A20) can be simplified when �t � 1ffiffi
3

p
�a
, where �t is the rms duration of the average profile, yielding

G2ð�!Þ ¼
Z þ1

�1
e�ð���!�0Þ2=2�2 j ~Xð�Þj2ffiffiffiffiffiffiffi

2�
p

�j ~Xð0Þj2 d�; (A21)

where � ¼ ffiffiffi
2

p ð�a�m=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

a þ �2
m

p Þ and �0 ¼ �2
a=ð�2

a þ �2
mÞ.

APPENDIX B: COMPARISON BETWEEN GAUSSIAN AND FLATTOP MODEL

We can rewrite explicitly Eqs. (14) and (15) by using the variables

� ¼ �!

�m

; Tg ¼ �t�m; Tf ¼ T�m; (B1)

and we obtain

Gg
2ð�Þ ¼ e�ð�2T2

g=
ffiffiffiffiffiffiffiffiffiffiffi
1þ4T2

g

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4T2
g

q ; (B2)

Gft
2 ð�Þ¼e��2=4

ffiffiffiffi
�

p
2Tf

�
erf

�
Tf� i�

2

�
þc:c:

�
þe�T2

f cosTf�

T2
f

�e��2=4�
ffiffiffiffi
�

p
4T2

f

�
ierf

�
Tf� i�

2

�
�c:c:

�

�2� i�
ffiffiffiffi
�

p
e�ð�2=4Þerfði�2 Þ
2T2

f

: (B3)

Now, we look for the relation between Tf and Tg giving the same number of modes 1
G2ð0Þ within the two different models.

Such value of Tg is found as a function of Tf:

Tg ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2T

2
fT4

f � 1

ð1þ eT
2
f ½ ffiffiffiffi

�
p

TferfðTfÞ � 1Þ�2

vuuut : (B4)

The behavior of
Tf

TgðTfÞ is represented in Fig. 10, together with the values at the extremes of the domain

lim
Tf!0

Tf

TgðTfÞ ¼
ffiffiffiffiffiffi
12

p
lim
Tf!1

Tf

TgðTfÞ ¼ 2
ffiffiffiffi
�

p
: (B5)

It turns out that Tf ¼
ffiffiffiffiffiffi
12

p
Tg is a very good approximation for the condition to have the same number of modes in pulses

described by the above profiles for any value of Tf. When the number of modes is large, the asymptotic expressions for the
G2 functions can be written as

Gg
2ð�Þ ¼ e�ð�2=4Þ

2Tg

þ ð�2 � 2Þe�ð�2=4Þ

32T3
g

þ o

�
1

T4
g

�
; (B6)

Gft
2 ð�Þ ¼

ffiffiffiffi
�

p
e�ð�2=4Þ

Tf

þ�2þ ffiffiffiffi
�

p
erfið�2 Þ�e�ð�2=4Þ

2T2
f

þ o

�
1

T4
g

�
: (B7)

It shows that, for both models, the main contributing terms have Gaussian shapes with the same rms, which depend only on
the spectrometer resolution �m.
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APPENDIX C: G2 DERIVATION WITHOUT USING THE LINEAR AMPLIFIER MODEL

As it was shown by our simulations, and in [15] even in the nonlinear regime, Eq. (10) is nearly valid. We write it in the
form

hj ~Eð!aÞj2j ~Eð!bÞj2i � h ~Eð!aÞ ~E�ð!bÞih ~E�ð!aÞ ~Eð!bÞi þ hj ~Eð!aÞj2ihj ~Eð!bÞj2i: (C1)

This allows us to write Eq. (A5) as

G2ð�!Þ ¼
Z þ1

�1
Wð!Þ

�
Rþ1
�1

Rþ1
�1 eð��2=4�2

mÞeð��2=�2
mÞjh ~Eð!þ�þ �!=2þ�=2Þ ~E�ð!þ�� �!=2��=2Þij2d�d�Rþ1

�1
Rþ1
�1 eð��2=4�2

mÞeð��2=�2
mÞhj ~Eð!þ�þ �!=2þ�=2Þj2ihj ~Eð!þ�� �!=2� �=2Þj2id�d�d!:

(C2)

If the spectrometer resolution function is much narrower than the FEL bandwidth, then we use the following approximation:

Z þ1

�1
e�ðx2=2�2

mÞhjEð!þ xÞj2idx �
Z þ1

�1
e�ðx2=2�2

mÞhjEð!Þj2id�: (C3)

By using this Eq. (C3) and Eq. (A15), we can rewrite expressions (C2) and (A2) as

G2ð�!Þ ¼
Z þ1

�1
Wð!Þ

Rþ1
�1

Rþ1
�1 e��2=4�2

me��2=�2
m jh ~Eð!þ�þ �!=2þ �=2Þ ~E�ð!þ�� �!=2� �=2Þij2d�d�
2��2

mhj ~Eð!þ �!=2Þj2ihj ~Eð!� �!=2Þj2i d!

(C4)

Wð!Þ ¼
Rþ1
�1hjEð!� b=2Þj2ihjEð!þ b=2Þj2i

4�2j ~Xð0Þj2 : (C5)

We introduce g1 formalism as in Eq. (2) and rewrite Eqs. (C4) and (A15) as

G2ð�!Þ ¼
Z 1

�1

Z 1

�1

Z þ1

�1

Z þ1

�1
d!dbd�d�e��2=4�2

me��2=�2
m jg1ð!þ�; �!þ �Þj2

� hj ~E�ð!þ�� �=2� �!=2Þj2ihj ~E�ð!þ�þ�=2þ �!=2Þj2i
2��2

mhj ~Eð!þ �!=2Þj2ihj ~Eð!� �!=2Þj2i
hjEð!� b=2Þj2ihjEð!þ b=2Þj2i

4�2j ~Xð0Þj2 (C6)

j ~Xð�!Þj2 ¼ 1

4�2

Z þ1

�1
d!

Z þ1

�1
g1ð!þ b=2; �!Þg�1ð!� b=2; �!Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj ~Eð!� b=2� �!=2Þj2ihj ~Eð!� b=2þ �!=2Þj2i

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj ~Eð!þ b=2� �!=2Þj2ihj ~Eð!þ b=2þ �!=2Þj2i

q
db: (C7)

Equation (C6) can be simplified by using the approximation (C3) on � and�:

G2ð�!Þ ¼
Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1
e��2=4�2

me��2=�2
m jg1ð!þ�; �!þ�Þj2hjEð!� b=2Þj2ihjEð!þ b=2Þj2i

2��2
m4�

2j ~Xð0Þj2 d!dbd�d�

(C8)

and in a similar way, Eq. (C7) can be simplified when the average spectral spike width is much narrower than the FEL
bandwidth as

j ~Xð�!Þj2 ¼ 1

4�2

Z þ1

�1
d!

Z þ1

�1
g1ð!þ b=2; �!Þg�1ð!� b=2; �!Þhj ~Eð!� b=2Þj2ihj ~Eð!þ b=2Þj2idb: (C9)

Further we approximate
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Z þ1

�1
d!

Z þ1

�1
g1ð!þ b=2; �!Þg�1ð!� b=2; �!Þhj ~Eð!� b=2Þj2ihj ~Eð!þ b=2Þj2idb

�
Z þ1

�1
d!

Z þ1

�1
jg1ð!;�!Þj2hj ~Eð!� b=2Þj2ihj ~Eð!þ b=2Þj2idb: (C10)

The expression is exact for �! ¼ 0 but it is approximated,
in general, for other values of �!. Referring to the ex-
ponential growth model, from Eq. (A9) we have

g1ð!þ b=2; �!Þg�1ð!� b=2; �!Þ

¼ e�ið1=2�2
aÞðb=

ffiffi
3

p Þ�! jRþ1
�1 jhtdðtÞj2fðtÞei�!tdtj2
jRþ1

�1 jhtdðtÞj2fðtÞdtj2
: (C11)

Equation (C11) is not a function of !, and its width in the
variable �! is of the order of 1=T, where T is the charac-
teristic length of the profile. From Eq. (C10), if b is larger
than the FEL bandwidth, then hj ~Eð!� b=2Þj2i�
hj ~Eð!þ b=2Þj2i becomes close to zero. Inside this
bounded region for b and �! the phase of exponential

factor in Eq. (C11) is approximately zero when 1=T � �a,
showing that, within these assumptions, Eq. (C10) is valid.
An important result found in [15] is that the spectral
correlation functions do not change considerably between
the exponential growth and the saturation regime. This
means that g1ð!;�!Þ has a width in �! of the order of
1=T also in the saturation regime. First, the approximation
(C10) requires an assumption that the phase of g1ð!�
b=2; �!Þg�1ð!� b=2; �!Þ is nearly zero for �! being
inside the described region, and for b inside the FEL
bandwidth. Second, it requires that the amplitude of
g1ð!;�!Þ changes slowly in the ! variable. By using
the approximation (C10) we obtain

G2ð�!Þ ¼
Z 1

�1

Z 1

�1

Z 1

�1
e��2=4�2

m jg1ð!;�!þ�Þj2hjEð!� b=2Þj2ihjEð!þ b=2Þj2i
2

ffiffiffiffi
�

p
�m4�

2j ~Xð0Þj2 d!dbd� (C12)

j ~Xð�!Þj2 ¼ 1

4�2

Z þ1

�1
d!

Z þ1

�1
jg1ð!;�!Þj2hj ~Eð!� b=2Þj2ihj ~Eð!þ b=2Þj2idb: (C13)

By substituting (C13) into (C12) we finally obtain

G2ð�!Þ ¼
Z 1

�1
e��2=4�2

m j ~Xð�!þ �Þj2
2

ffiffiffiffi
�

p
�mj ~Xð0Þj2

d�: (C14)

For �a � �m Eq. (A21) gives, as expected, Eq. (C14).
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