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A scaling law for the time dependence of the dynamic aperture, i.e., the region of phase space

where stable motion occurs, has been proposed in previous papers [M. Giovannozzi, W. Scandale,

and E. Todesco, Part. Accel. 56, 195 (1996); M. Giovannozzi, W. Scandale, and E. Todesco, in

Proceedings of the 1997 Particle Accelerator Conference, edited by M. Comyn, M.K. Craddock,

M. Reiser, and J. Thomson (IEEE Service Center, Piscataway, NJ, 1997), p. 1445; M. Giovannozzi,

W. Scandale, and E. Todesco, Phys. Rev. E 57, 3432 (1998)]. This law, based on the analysis of numerical

simulations data, is not entirely phenomenological, but motivated by some fundamental theorems of the

theory of dynamical systems and indicates that the dynamic aperture has a logarithmic dependence on

time. This result is used in turn as a basis for deriving a scaling law for the intensity evolution in hadron

storage rings. This relationship is presented and discussed in detail in this paper. Furthermore, experi-

mental data were compared to the predictions of this law and showed a remarkable agreement.

DOI: 10.1103/PhysRevSTAB.15.024001 PACS numbers: 29.20.db, 29.27.Bd, 05.45.�a, 45.05.+x

I. INTRODUCTION

The prediction of particle stability and hence the
evolution of the beam intensity in a synchrotron is still a
challenge, both from the theoretical and the computational
point of view. Many efforts have been devoted to this topic
and a, certainly underestimated, sample of papers dealing
with this topic can be found as Refs. [1–15], and references
therein.

Different approaches have been applied, depending on
whether the underlying dynamics is symplectic or not. In
the latter case, e.g., for lepton machines where radiation
damping cannot be neglected, it is customary to look for
diffusion models explaining the drift of particles towards
higher amplitudes [1–4,6,8,10,12–14]. These models arise
naturally in all cases in which symplecticity is lacking. On
the other hand, for symplectic systems, e.g., in the case of
most hadron machines, radiation damping is negligible and
hence a global diffusive model is not applicable. Of course,
nonlinear effects, both external, e.g., due to the magnetic
imperfections, or internal, such as space charge effects or
beam-beam interactions, might act as sources of pseudo-
diffusive behavior, thus bringing particles towards higher
amplitudes [5,7,9,11,15]. It is also clear that, due to the
presence of invariants of the symplectic dynamics, it is in
general excluded to have a global diffusive behavior.
Rather, the increase of particles’ amplitude occurs in small
chaotic layers bounded by the invariants of the system.

The nonlinearities of the beam dynamics give rise to the
so-called dynamic aperture (DA), namely, the region in
phase space where stable motion occurs. The concept of
stable motion needs a proper definition of the time frame.
In a mathematical sense, stable motion implies bounded
motion for arbitrary time. In a more physical sense, particle
stability can be linked to a maximum number of turns for
which bounded motion occurs. Such a maximum number
of turns would be defined on the basis of the specific
application under consideration. Assuming this meaning
for the rest of the paper, then the DA can be a function of
time, with an asymptotic value representing the region of
stability for any time.
It is clear that, whenever the dynamic aperture is inside

the phase space region occupied by the beam, then parti-
cles will be pushed towards high amplitudes and hence
lost, which leads to intensity reduction in a real machine.
The concept of DA has been used in many studies in

order to minimize the effects of nonlinearities and hence to
improve the machine performance, in theory and in prac-
tice. However, to the best of our knowledge, a direct
quantitative relationship between intensity evolution and
dynamic aperture is not yet available. It is worth stressing
that such a relationship would be extremely useful, e.g., at
the design study stage, where a link between dynamic
aperture and beam lifetime would permit evaluation of
the impact on performance of DA variation around the
nominal design value.
In this paper we attempt to propose such a relationship.

It is suggested that the time dependence of the beam
intensity is related to the scaling law as proposed in the
analysis of the time dependence of the dynamic aperture
[16–18] obtained from numerical simulations. The key
point is that, in spite of the simple form of such a scaling
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law, it is capable of reproducing many different types of
behavior. Furthermore, a posteriori, a deeper justification
in terms of two fundamental theorems of nonlinear beam
dynamics was found. It must be emphasized here that the
configuration considered throughout this paper is that deal-
ing with a single beam of noninteracting particles under the
influence of external nonlinear fields and for which the
dynamic is symplectic. In particular, beam-beam interac-
tions are neglected. It is also clear that the general problem
addressed in this paper is very complex and the approach
proposed here might not be suitable for all cases. Still, as
will be shown, such an approach proves to be in rather good
agreement with experimental data (see also Ref. [19],
where preliminary results of this study were reported).

In Sec. II the scaling law for dynamic aperture is recalled
and discussed. In Sec. III the proposed scaling law for the
intensity as a function of time is presented assuming a
Gaussian transverse distribution. Experimental data repre-
senting the time evolution of two real machines is analyzed
using the proposed model and compared with the predic-
tions of the standard diffusive models in Sec. IV. Finally,
the conclusions are presented in Sec. V.

In Appendix A the Nekhoroshev theorem is presented
with a discussion of some aspects relevant for this paper,
while in Appendix B two models for the transverse beam
distribution, different from the standard Gaussian, are con-
sidered and the corresponding scaling laws describing the
intensity variation vs time are derived.

II. TIME SCALING OF DYNAMIC APERTURE

The starting point is the computation of the region in
phase space where stable motion occurs. Different ap-
proaches were reviewed in Ref. [20] in order to define
the most effective algorithm and also to associate a nu-
merical error to the DA estimate. It is customary to assume
a polar grid in normalized phase space:

x ¼ r cos� y ¼ r sin� 0 � � � �=2; (1)

where x, y are expressed in units of �x, �y, respectively.

Then, an ensemble of initial conditions defined on such a
grid are tracked for up toNmax turns to assess their stability.
If rð�;NÞ stands for the last stable amplitude for up to N
turns in the direction �, then the dynamic aperture can be
defined as

DðNÞ ¼ 2

�

Z �=2

0
rð�;NÞd� � hrð�;NÞi: (2)

It is worth recalling that more refined algorithms can be
devised, where the different directions in phase space have
different weights.

According to the results of the studies reported in
Refs. [16–18], the following scaling law holds:

DðNÞ ¼ D1
�
1þ b

½logN��
�
; (3)

whereD1 represents the asymptotic value of the amplitude
of the stability domain, while b and � are additional
parameters. These three parameters are obtained by fitting
the results of numerical simulations. In Fig. 1 an example
of the result of the DA computation and of the behavior of
DðNÞ is shown. The numerical simulations are performed
on a model of the LHC machine including the measured
magnetic errors for all classes of magnets. The optics
configuration features three insertions, housing the
ATLAS, ALICE, and CMS detectors, squeezed down to
�� ¼ 2 m, while the fourth one is at �� ¼ 10 m, for the
LHCb detector. The energy is 3.5 TeV, corresponding to the
configuration for the 2010 LHC physics run (see Ref. [21]
for more details on the configuration used). In the left-hand
side of Fig. 1 the stable points in the x� y space are
reported. The red dots refer to the initial conditions that
are stable up to Nmax ¼ 105, while the blue are unstable
and their size has been chosen to be proportional to the
actual stability duration time. Some scattered regions sta-
ble for only short times are clearly visible as is a well-
defined, simply connected stable region. On the right-hand
side the evolution ofDðNÞ is shown. The dots represent the
numerically computed values ofDðNÞ according to Eq. (2),
while the continuous line represents the fitted function
based on Eq. (3), showing an excellent agreement with
the numerical data. The dotted line represents D1, the
asymptote of the inverse logarithmic law. To be precise
the fit provides

D1¼23:74�0:01 b¼0:439�0:005 �¼1:4�0:05;

(4)

where the errors on D1 and b are those associated to the
least square fit. The exponent � is obtained by fixing it to
an arbitrary value ��, computing the best fit parameters
D1ð ��Þ; bð ��Þ and selecting the value of the exponent that
provides the minimum residue of the fit. The associated
error is not the standard error for a least square fit, but
rather the step size in the scan performed over � in order to
minimize the residues.
It is worth noting that the quantity DðNÞ is invariant

under transformation of the type N ! Na, and b ! a�b.
The interesting point is that such a parametrization is

compatible with the hypothesis that the phase space can be
partitioned into two regions: a central core, with r < D1,
where Kolmogorov-Arnold-Moser (KAM) [22] surfaces
confine the motion, thus producing a stable behavior apart
from a set of small measure where Arnold diffusion can
take place; an outer part, with r > D1, where chaotic
motion occurs and the escape rate to infinity is given by
a Nekhoroshev-like estimate [23–25] such as

NðrÞ ¼ N0 exp

��
r�
r

�
1=�

�
; (5)

where NðrÞ is the number of turns that are estimated to be
stable for particles with initial amplitude smaller than r.
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This mathematical description can be translated into a
more physical picture. Up to a certain amplitude, particle’s
motion in a storage ring is stable, i.e., bounded, at the level
of the time scale given by the storage time, which is the
only relevant time scale from a physical point of view.
Beyond such a special amplitude, the nonlinear effects
together with the associated resonances induce a pseudo-
diffusive motion. These phenomena induce a growth of the
particle’s amplitude and eventually lead to reaching the
limiting apertures of the ring, thus producing beam losses.

The parameter b in Eq. (3) is related to the width of the
amplitude interval in which the pseudodiffusive behavior
occurs. The speed of such a pseudodiffusion is given by the
inverse logarithmic dependence on the number of turns and
on the exponent �. A large value of � implies a faster
amplitude growth.

According to the Nekhoroshev-like estimate, the escape
rate of particles located at small amplitude is exponentially
long. Hence, to represent situations in which the size of the
region stable for arbitrarily long number of turns shrinks to
zero, it is necessary to assume that the parameters in the
relationship (3) might undergo some drastic changes. For
instance, instead of assuming thatD1, b, � are all positive,
according to the proposed model based on KAM and
Nekhoroshev theorems, some of them might become
negative.

Alternatively, one could think of extending Eq. (3), well
justified for positive values of the three parameters, also to
negative values, thus going beyond what is the original
justification. Even in this more comprehensive meaning
of Eq. (3), not all possible combinations of signs of D1, b,

� provide meaningful behavior. Interestingly enough, two
regimes were identified [18]: (i) in 4D systems the three
quantities D1, b, � are all positive [16,17] (this corre-
sponds to having a stable region in phase space for an
arbitrarily long time and hence being in the condition of
applicability of the KAM and Nekhoroshev theorems);
(ii) in 4D systems with tune modulation or 6D models,
including off-momentum dynamics, it is possible that there
is no stable region even for a finite number of turns [18].
This corresponds to one of the two cases:

D1>0 �<0 b<0

D1� 0 �>0 b>0:
(6)

The first case represents a situation with global chaoticity
[18]. In particular, the fact that tracking data could be fitted
with negative � has been already observed several years ago
(see discussion in Ref. [18]). The latter is compatible with a
situation in which the stable KAM area shrinks to zero and
the escape to infinity is governed by a Nekhoroshev-like
behavior. Clearly, the possibility of having D1 < 0 goes
beyond the proposed picture based on phase space parti-
tioning into KAM and Nekhoroshev regions.

III. SCALING LAW OF BEAM INTENSITY
AND LOSSES

From the preceding discussion, it is possible to derive a
model for the variation of the beam intensity due to the
particle losses induced by the dynamic aperture. If the
beam distribution is assumed to be Gaussian in x and y,
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FIG. 1. Dynamic aperture of a model of the LHC ring (left) in physical space. The red points represent the initial conditions stable
up to themaximum number of turns (105) used in the numerical simulation. The blue points represent unstable conditions and their size is
proportional to the number of turns bywhich theirmotion is still bounded. The time evolution of theDA is shownon the right. Themarkers
represent the numerical results, while the continuous line shows the fitted inverse logarithmic law. The dotted line represents D1.

PROPOSED SCALING LAW FOR INTENSITY EVOLUTION . . . Phys. Rev. ST Accel. Beams 15, 024001 (2012)

024001-3



�Gðx; yÞ ¼ 1

2��x�y

e�½ðx2=2�2
xÞþðy2=2�2

yÞ�; (7)

then after transforming to polar coordinates and using the
very definition of DðNÞ (2), i.e., assuming that particles
with amplitude beyond DðNÞ at turn N are lost, then the
evolution of the beam intensity IðNÞ can be found as

IðNÞ
I1

¼ 1�
Z þ1

DðNÞ
e�ðr2=2Þrdr ¼ 1� e�D2ðNÞ=2; (8)

where I1 ¼ Ið1Þ and it is assumed that DðNÞ!
N!1

þ1 and

DðNÞ is assumed to be expressed in units of sigma.

A. Positive dynamic aperture

This case corresponds to the situation where all three
parametersD1, b, � are positive. Under this assumption, it
is readily found that

I1 ¼ I1ð1� e�D21=2Þ: (9)

In this scenario, some more insight can be gained by
considering simply the expression for the relative losses
at time N. From Eq. (8) it can be shown that

�I

I1
ðN;D1; b; �Þ ¼ e�D2ðNÞ=2 (10)

and the total relative losses are given by

�I

I1
ð1; D1; b; �Þ ¼ e�ðD21=2Þ: (11)

The scaling law for the total relative losses can be found
easily. In fact, if D1 ! �D1, which corresponds to as-
suming that the dynamic aperture is rescaled or changed
due to a change in the dynamical system under considera-
tion, then the losses will scale as

�I

I1
ðN;�D1; b; �Þ ¼

�
�I

I1
ðN;D1; b; �Þ

�
�2

: (12)

This equation shows that there is a strong dependence of
the losses on the value of the dynamic aperture. In Fig. 2

the functions �I
I1
ðN;�D1; b; �Þ are plotted for four values

of �, illustrating a very strong dependence on this
parameter.
It is also possible to linearize Eq. (12) around the nomi-

nal value of the dynamic aperture, corresponding to � ¼ 1,
obtaining

�I

I1
�

�
�I

I1

�
�¼1

þ 2

�
�I

I1

�
�¼1

log

�
�I

I1

�
�¼1

ð�� 1Þ: (13)

Of course, it could be argued that, in general, not only the
dynamic aperture D1 is affected by a change in the sys-
tem’s parameters, but also the constants in the logarithmic
law, namely b and �. In this case, the scaling (12) is exact
only for the total losses, as these depend only on the value
of D1. Indeed, if Eq. (10) is combined with (3), then no
simple scaling can be found other than the following:

�I

I1
ðN;D1; b; �Þ ! ½I1I�2 I�

2

3 ��2 ¼ �I

I1
ðN;�D1; �b; �Þ;

(14)

with the following definitions:

I1 ¼ e�D21=2 I2 ¼ e�2bD21=ð2log�NÞ I3 ¼ e�b2D21=ð2log2�NÞ:
(15)

The invariance property quoted in the introduction implies
that the general scaling holds:

�I

I1
ðN�=�; �D1; �b; �Þ ¼

�
�I

I1
ðN;D1; b; �Þ

�
�2

; (16)

where the exponent � is always assumed constant as, from
a theoretical point of view, it should be a function only of
the number of degrees of freedom of the system under
consideration. Hence, two systems with the same dimen-
sionality can differ only by D1 and b.

B. Nonpositive dynamic aperture

This case corresponds to the situation where not all of
the three parameters D1, b, � are positive. In this situation
the relevant quantity is the time at which the dynamic
aperture becomes zero, namely,

Dð �NÞ ¼ 0 log �N ¼ jbj1=�: (17)

From the parametrization of the inverse logarithmic law, �N
is a function of only b and �, but not ofD1 which is of less
importance in such a scenario. From Eq. (17) a scaling law
for log �N can be derived and it reads

log �N ! j�j1=ð��Þlog1=� �N (18)

if b ! �b and � ! ��.
FIG. 2. Plot of �I

I1
ðN;�D1; b; �Þ vs �I

I1
ðN;D1; b; �Þ for some

values of � for a Gaussian distribution.
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Similar computations can be carried out for other beam
distributions, providing an analytical estimate for the in-
tensity variation vs time as a function of the dynamic
aperture. These results are given in Appendix B for the
case of quasiparabolic [26,27] and Lévy-Student [28] dis-
tributions. The first can be considered a suitable model for
representing beams collimated at a certain number of
sigmas in the transverse dimensions. The latter is particu-
larly suited to describing beams with heavy tails, i.e., tails
more relevant than those of a Gaussian distribution, or halo
(see, e.g., Ref. [29] for a discussion on halo definition).

IV. EXPERIMENTALVERIFICATION

The verification of the proposed scaling law for the time
evolution of the beam intensity by means of experimental
data is not easy. In particular, the law may not apply to the
existing data sets as the experimental conditions might not
fit the necessary assumptions, such as the absence of non-
linear effects other than magnetic nonlinearities, and beam
intensity low enough to exclude the presence of collective
effects. Furthermore, the few data sets that were found in
the literature do not report the details of the transverse
beam distribution. For this reason, the fit of the scaling law
of the intensity vs time to only a Gaussian transverse beam
distribution will be attempted.

A. Fermilab Tevatron data

After a search in the literature, an interesting data set
was found in Ref. [30]. There, intensity vs time for the
Tevatron machine with the proton beam only at injection
energy was reported. These measurements fulfill the con-
ditions necessary for the application of the approach pro-
posed in this paper. In fact, the only sources of beam losses
are the nonlinear effects due to the magnetic field quality,
and are therefore related to dynamic aperture. No beam-
beam related effect is relevant. Furthermore, the interesting
point is that in the paper [30] the intensity evolution was
analyzed using a diffusive model with properties derived
by matching the model to the experimental observations.
Three functions have been proposed in Refs. [30,31],

namely: (i) pure exponential, IðtÞ / e�t=	 (this corresponds
to a single component of the infinite series representing the
solution of a diffusion equation with a constant diffusion
coefficient representing the beam motion close to the
dynamic aperture); (ii) square root function, IðtÞ /
ð1� ffiffiffiffiffiffiffi

t=	
p Þ (this is shown to be a good approximation

of the solution of the diffusion equation [31]);

(iii) exponential with square root time dependence, IðtÞ /
e

ffiffiffiffiffi
t=	

p
(this is shown to be a good approximation of the

series, truncated to a rather high order, representing the
general solution of the diffusion equation).

The agreement between experimental data and the
proposed diffusive model is very good for the last two
functions presented before.

Of course, as the currently proposed approach assumes a
pseudodiffusive behavior à la Nekhoroshev, it is natural to
believe that a good agreement would be found by the new
approach. Equation (8) is used to fit the data by adjusting
the free parameters D1, b, and �. Indeed, in order to
improve the numerical convergence of the nonlinear fit,
the parameters D1, b were computed for fixed �, which is
then varied and its final value obtained by minimizing the
fit residuals.
The best result gives a residue of 4:6� 10�7. This

should be compared with the residuals for the functions
proposed in Ref. [30] that are of the order of 5:5–6:3�
10�7. This indicates that the proposed approach is at least
as good as the standard diffusive models.
In Fig. 3 the experimental data, the fit functions

proposed in Ref. [30], and that based on the inverse loga-
rithmic law are shown. The agreement is remarkable for all
models, but in particular for the new proposal of this paper.
It is worth noting that the asymptotic dynamic aperture

is positive, thus indicating that the motion is globally
stable. Furthermore, the large value of b indicates that
stochastic motion is occurring in a rather wide region of
phase space. Also, the value of � agrees well with the
theoretical estimate given by the number of degrees of
freedom of the system under consideration.
One might argue the residue depends critically on the

number of free parameters of the time-evolution law, which
is three for the approach based on the inverse logarithmic
scaling of DA, and only two for the case of the diffusive
models proposed in Ref. [30]. However, it was tested that
the numerical dependence of the residue on � is indeed
rather weak: a variation of a factor of 2 around the optimal
� induces a change in the residue of only 10%–20%. This
indicates that the logarithmic time dependence is the key of
the good agreement and the exponent � provides only a
refinement.
A summary of the fit parameters is reported in Table I.
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FIG. 3. Beam intensity evolution for the Tevatron at injection
energy from Ref. [30] (black dots) together with the interpolated
functions proposed therein and the one proposed in this paper.
The agreement is remarkable.
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B. CERN SPS data

A second set of experimental data was taken from beam
measurements performed at the CERN Super Proton
Synchrotron (SPS). Recently, a number of tests were
made in view of assessing whether the beam conditions
at the SPS are suitable for a realistic test of crab cavities
[32]. The idea is to use the SPS as LHC test bed and verify
the impact of crab cavities on the dynamics of a proton
beam. During these tests, a continuous loss of beam inten-
sity for a single-bunch beam during a coast at 55 GeV was
reported [33]. These data [34] have been considered a
useful benchmark for the approach presented here. In
Fig. 4 the experimental data (markers) are shown together
with predictions from diffusive models and the inverse
logarithmic variation of DA. The first interesting feature
is that the second derivative with respect to time of inten-
sity change is negative, while it was positive for the data
from the Tevatron. This characteristic rules out immedi-
ately the diffusive models proposed in Ref. [30]. In fact,
they impose a positive second order time derivative of
intensity and this is clearly seen in Fig. 4. On the other
hand, the proposed approach is capable of fitting the mea-
sured data very accurately. Interestingly enough, both b

and � are negative, thus indicating that no stable region
exists for the SPS. Based on the experience with the
analysis of tracking data, in which negative values of �
and b are found whenever modulational effects are present
(e.g., transverse tune modulation due to either ripple on
quadrupoles or coupling to longitudinal motion via chro-
maticity [18]), one would conclude that the observed SPS
behavior is probably linked to some time-dependent effect
such as tune modulation.
Applying Eq. (17) it is possible to estimate the time

for which DðNÞ ¼ 0 and the intensity will be equal to
zero. This corresponds to � 7:7� 108 turns or equiva-
lently � 4:9 hours of storage time.
Following the initial tests at 55 GeV, new measurements

at higher energy were attempted with the goal of finding a
better situation in terms of beam losses and beam lifetime.
Long coasts at 270 GeV were made with single-bunch
proton beams and the data analyzed using the approach
presented in this paper. The results are presented in Fig. 5.
The experimental data are shown together with the results
of the fit functions based on diffusive models and the
inverse logarithm scaling law. In this case the intensity
reduction is much smaller than for the 55 GeV measure-
ments and also the second order derivative is very much
reduced. This, in turns, makes it possible to have a good
agreement between the fitted functions based on the dif-
fusive models and the data. On the other hand, the pro-
posed fit is providing very good agreement, too. Applying
Eq. (17) it is possible to estimate also in this case the time
for which DðNÞ ¼ 0. This corresponds to � 2:5� 1011

turns or equivalently � 1:6� 103 hours of storage time.
Clearly, the losses at higher energy are much smaller than
at 55 GeV and the overall beam stability is greatly en-
hanced. It is worth emphasizing that the proposed expla-
nation, based on external tune ripple, for the strong losses
and lifetime limitation of the beam at 55 GeV could also
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FIG. 4. Beam intensity evolution for the CERN SPS at 55 GeV
(black dots) during a coast with a single bunch. The same
interpolation functions used for the Tevatron data are used
here. Only the proposed model based on the inverse logarithmic
scaling law for dynamic aperture is in good agreement with the
experimental data.
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FIG. 5. Beam intensity evolution for the CERN SPS at
270 GeV (black dots) during a coast with a single bunch. The
good agreement between the measured intensity evolution and
the proposed model based on the inverse logarithmic scaling law
for dynamic aperture is clearly visible.

TABLE I. Fit parameters for the functions used to model the
Tevatron data (IL stands for the inverse logarithmic scaling law
proposed in this paper).

Fit parameters Residue

Relation a=D1 b � 10�7

ae�ðt=bÞ 0:2814� 3� 10�4 42:1� 0:7 38

ae�
ffiffiffiffiffi
t=b

p
0:2925� 2� 10�4 239� 3 7.3

að1� ffiffiffiffiffiffiffi
t=b

p Þ 0:2916� 2� 10�4 283� 4 8.6

IL—Gaussian 1:10� 0:01 645� 7 3:24� 0:01 5.4
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explain why the harmful effect would decrease with en-
ergy. In fact, the accuracy of the power converters im-
proves at high energy and the beam becomes more rigid
and less sensitive to external perturbations.

The fitted parameters are listed in Table II. It is interest-
ing to note that the values of D1 for the 55 and 270 GeV
cases scale almost perfectly as

ffiffiffiffiffiffiffi
��

p
, which could be

interpreted as a sign that the machine intrinsic behavior,
i.e., its dynamic aperture in millimeters, is constant, while
the external perturbation, i.e., the tune ripple, is improving,
thus making the intensity loss better at high energy.

V. CONCLUSIONS

In this paper an attempt to establish a link between the
value of the dynamic aperture and the beam losses has been
presented. Rather than using a diffusive model to describe
the particle’s motion and, hence, derive the evolution of the
beam intensity, the inverse logarithmic decay of the dy-
namic aperture as a function of turn number is used.

A relationship between the relative losses (total or up to
turn number N) and the dynamic aperture is obtained so
that a scaling law can be derived for the case of positive
dynamic aperture. According to such a scaling law, the
dependence on the dynamic aperture is rather strong and its
variation around the nominal value induces a large relative
variation of the expected beam losses.

For the case of nonpositive dynamic aperture, a scaling
law of the logarithm of the turn number �N at which
Dð �NÞ ¼ 0 is derived. The proposed scaling law can be
generalized to non-Gaussian transverse beam distributions,
namely, quasiparabolic, simulating beams with truncated
tails, and Lévy-Student, simulating beam with heavy tails.

The proposed inverse logarithmic dependence of inten-
sity vs time has been applied to two experimental data sets,
one from Tevatron at injection energy and one from SPS
during coasts at 55 and 270 GeV. In spite of the differences
between the two types of time evolution of the beam
intensity, the proposed model fits the experimental obser-
vations rather well. For the sake of completeness, in the
case of the Tevatron data a similar good agreement is found
with predictions based on diffusive models. The diffusive
models cannot explain the experimental observations for
the SPS at 55 GeV, while a good agreement could be found
at 270 GeV. In both cases, however, the proposed fit with

the inverse logarithm law provides a very good agreement
with the measured data. The fitted parameters clearly show
an improvement of the beam stability, and hence beam
losses, at higher energy.
It is worthwhile emphasizing that the proposed model

for the evolution of the beam intensity is not entirely
phenomenological, but motivated by two fundamental
and very general theorems of nonlinear dynamics and it
could be made even more general.
Such a mathematical picture can be turned into a physi-

cal description of the underlying processes. The interplay
of the nonlinear effects and the resonances generate a
growth of the particle’s amplitude that is similar to a
diffusive process. However, such a growth occurs only
beyond a certain threshold amplitude, below which no
growth is generated and no particle loss observed. Hence,
in case the threshold amplitude happens to be located in the
region occupied by the beam, then losses are produced.
The direct relationship between intensity variation with

time and DA could be used to performmeasurements of the
dynamic aperture in a hadron machine by fitting intensity
curves over a sufficiently long interval of time.
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APPENDIX A: SOME COMMENTS ON THE
NEKHOROSHEV THEOREM

In this Appendix the statement of the Nekhoroshev
theorem [23] is reported and commented. The key result
is expressed as follows.
Theorem 1.—Given a Hamiltonian in the form of

H0ðJÞ þ 
H1ðJ;�Þ, where J and � represent action angle
variables and H0 stands for the integrable part of the

TABLE II. Fit parameters for the functions used to model the CERN SPS data (IL stands for the inverse logarithmic scaling law
proposed in this paper).

Fit parameters Residue

Relation Energy [GeV] a=D1 b � 10�7

IL—Gaussian 55 4:185� 0:006 ð�1:660� 0:006Þ � 10�8 �8:2� 0:1 34

ae�ðt=bÞ 270 0:39604� 3� 10�5 2393� 11 5.2

ae�
ffiffiffiffiffi
t=b

p
270 0:40117� 6� 10�5 42680� 462 6.7

IL—Gaussian 270 8:96� 0:05 ð�331� 2Þ � 10�4 �1:4� 0:1 5.7
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Hamiltonian. Provided thatH0 satisfies certain geometrical
conditions, also called steepness conditions [23], then there
are positive constants a, b, 
0, such that if 0< 
< 
0 the
solutions JðtÞ, �ðtÞ satisfy

jJðtÞ � Jð0Þj< 
b (A1)

for all t 2 ½0; T�, where

T ¼ 1



exp

�
1


a

�
: (A2)

The two constants a, b depend only on H0 and can be
expressed as

a ¼ 2

12� þ 3sþ 14
; b ¼ 3a

2�s�1

; (A3)

where s stands for the number of degrees of freedom and

�¼ ð�1f�2 			½�s�3ð�s�2sþs�2Þþs�3�þ			þ2gþ1Þ
�1: (A4)

The quantities �j are related to the steepness conditions,

thus indicating that the estimates (A1) and (A2) are closely
linked with the geometrical properties of the function H0.
The conditions (A1) and (A2) mean that it is possible to
provide an upper bound to the variation of the action of the
system for an exponentially long interval of time.

It is also worth emphasizing that the two constants a and
b are not independent and that a decreases when increasing
the number of degrees of freedom such that the estimate
(A2) becomes worse as the number of degrees of freedom
increases. In Ref. [23] it is also mentioned that sharper
estimates like

a ¼ 1

3� þ sþ 4
� � (A5)

with � a positive, but arbitrarily small quantity, could be
obtained, but no proof is given. This indicates that various
expressions for the key parameters a and b can be ob-
tained, but it is not obvious to prove mathematically that
any of these forms of the parameters a and b is optimal, in
the sense that no sharper value can be found.

It is also clear that whenever a would become negative
the same would happen for b, and hence the parameter T
would not be exponentially large anymore. Moreover, the
bound to the action variation (A1) effectively would not be
a bound anymore, as 
�b would be an arbitrarily large
quantity. Therefore, under the condition that a is negative
the whole idea behind the Nekhoroshev theorem would
break down and no limit to action variation can be given.
This is indeed compatible with the picture of global diffu-
sion proposed in the paper for negative exponents.

It is worth mentioning that in Refs. [24,25] a different
approach was used, as, instead of flows, maps are used and
the Nekhoroshev theorem [23] is proved for time-discrete
systems. The key point is that a more direct link between

the exponent a and the phase space dimensionality is
established (see also Ref. [35]). In particular, it can be
shown that [24,25]

a ¼ 2

1þ 
; (A6)

where  � s and  is linked to the number-theoretical
properties of the frequencies characterizing H0. Also in
this case, no unique estimate for a is given, but rather a
lower bound based on the system dimensionality.
Therefore, as the link between the parameter � used in
this paper and a is � ¼ 1=a, one can derive an estimate for
� given by

� � sþ 1

2
: (A7)

APPENDIX B: THE CASE OF OTHER
BEAM DISTRIBUTIONS

The case of a Gaussian distribution is the standard and
certainly the most appropriate model for describing the
transverse beam distribution. However, in a number of
situations the tails might feature a special behavior.
Then, the so-called quasiparabolic [26,27] or the general-
ized Lévy-Student [28] distributions will be best suited to
modeling the actual transverse beam distribution. It is
worth stressing that neither of the special classes of beam
distributions are independent, meaning that they cannot be
expressed as the product of two functions each depending
on x and y only.

1. Quasiparabolic

The first model is suited to deal with truncated tails,
satisfying also the additional constraint of providing a
smooth distribution function at the location where it be-
comes zero. The explicit form in standard coordinates is

�QP;nðx;yÞ¼ 1

2��x�y

�
nþ1

n

��
1�1

n

�
x2

2�2
x

þ y2

2�2
y

��
n

(B1)

with the additional condition that

x2

2�2
x

þ y2

2�2
y

� n: (B2)

This form of the quasiparabolic distribution is suggested by
imposing that �QP;nðx; yÞ!n!þ1 �Gðx; yÞ, hence recovering
the standard Gaussian distribution in Eq. (7). It is also easy
to verify that the following holds:

�QP;n;x=y ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n

nþ 2

r
�x=y; (B3)

connecting the sigma of the quasiparabolic distribution to
the one of the standard Gaussian �x=y, and in the limit for

n ! þ1, �QP;n tends to the corresponding value for the
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Gaussian distribution. However, for each finite value n the
two are different. It is then possible to reexpress Eq. (B1) in
terms of �QP;n, giving

�QP;nðx;yÞ¼ 1

2��QP;n;x�QP;n;y

�ðnþ1Þðnþ2Þ
n2

�

�
�
1� 1

nþ2

�
x2

2�2
QP;n;x

þ y2

2�2
QP;n;y

��
n
: (B4)

It is also worth emphasizing that the condition on the
validity of �QP;nðx; yÞ could also be expressed using the

unit step function [defined as �ðxÞ ¼ 1,8x 
 1 and 0 in all
other cases], hence multiplying the expression (B1) by
�fnþ 2� ½x2=ð2�2

QP;n;xÞ� þ ½y2=ð2�2
QP;n;yÞ�g.

Equation (8) can be recast in the following form:

IðNÞ
I1

¼ 1�
�
1�D2ðNÞ

�
nþ 2

2n2

��
nþ1

; (B5)

where a transformation to normalized (with respect to
initial sigma) and then polar coordinates is performed. It
is worth pointing out that expression (B5) tends to (8) in
the limit of large n.

Unlike the case of Gaussian transverse beam distribu-
tion, I1 represents the intensity corresponding to the num-

ber of turns �N satisfying the condition Dð �NÞ ¼ ffiffiffiffiffiffi
2n

p
. In

fact, for shorter times the dynamic aperture is larger
than the extension of the beam distribution and hence no
reduction in intensity is possible. For this new model, the
simple scaling law for total relative losses (12) does not
hold anymore and it is replaced by the more complicated
expression

�I

I1
ðN;�D1; b; �Þ

¼ ð1� �2Þnþ1

�
1þ �2

1� �2

�I

I1
ðN;D1; b; �Þ1=ðnþ1Þ

�
nþ1

(B6)

for the case of positive dynamic aperture. In Fig. 6 the
evolution of the total losses for different values of the
parameter � is shown for two cases of order n. A weak
dependence on n is found, while � is still a crucial pa-
rameter, even if less so than for the Gaussian case.

Finally, it is worth stressing that the condition D1 <ffiffiffiffiffiffi
2n

p
must hold true, otherwise Eq. (B5) is not valid.

Furthermore, �<
ffiffiffiffiffiffi
2n

p
=D1 so that Eq. (B6) is also

meaningful.

2. Lévy-Student

The presence of halo in the beam distribution is nor-
mally linked to the effect of space charge or other collec-
tive effects, such as beam-beam. In this case the tails are
heavier than for a Gaussian model and it was proposed in
Ref. [28] to use generalized Lévy-Student distributions. In
this paper the following form is used:

�LS;�;aðx;yÞ¼ �2

2��x�y

�a�

½a2þx2ð ��x
Þ2þy2ð��y

Þ2�ð�þ2Þ=2 ;

(B7)

where � is a real quantity greater than 2 in order to have a
finite sigma and under these conditions a2 ¼ ð�� 2Þ�2. It
is easy to verify that this form implies that the following
limit holds �LS;�;aðx; yÞ!�!þ1 �Gðx; yÞ. Furthermore, it can

be found that

FIG. 6. Plot of �I
I1
ðN;�D1; b; �Þ vs �I

I1
ðN;D1; b; �Þ for some

values of � and n for quasiparabolic distributions.
FIG. 7. Plot of �I

I1
ðN;�D1; b; �Þ vs �I

I1
ðN;D1; b; �Þ for some

values of � and � for Lévy-Student distributions.
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�LS;�;a;x=y ¼ �x=y; (B8)

independently on the value of � and a.
Finally Eq. (8) can be recast in the following form:

IðNÞ
I1

¼ 1� 1

½1þ D2ðNÞ
a2

��=2
; (B9)

where the customary transformation to normalized and
then polar coordinates are applied.

In this case the tails extend to infinity as for the Gaussian
case and hence I1 ¼ Ið1Þ. Also for this model the simple
scaling law for total relative losses (12) does not hold
anymore and it is replaced by

�I

I1
ðN;�D1; b; �Þ

¼ 1

ð1� �2Þ�=2
1

½1þ �2

1��2
1

ð�I=I1ÞðN;D1;b;�Þ2=��
�=2

(B10)

for the case of positive dynamic aperture.
In Fig. 7 the functions in Eq. (B10) are shown. The

dependence on � is rather mild, while the curves for the
values of � resemble very much those of the corresponding
Gaussian case shown in Fig. 2.
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