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Theoretical aspects of stretched wire field integral measurements are investigated. A least square

approach is used for the processing of the measured signal; it can be applied to any wire trajectory and it

allows numerical correction of the wire position errors. Moreover, the signal from some multipoles can be

compensated for in a way comparable to the ‘‘bucked’’ rotating coil method. This can be used for accurate

measurements of field multipole errors. A stretched wire bench has been built at the European

Synchrotron Radiation Facility. This bench has been used for measuring dipole, quadrupole, and sextupole

magnets. The results obtained with various wire trajectories are compared. It is demonstrated that an

accuracy of a few 10�4 of the main multipole can be obtained.
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I. INTRODUCTION

For decades, the magnetic field of multipole magnets has
been measured before their installation in particle accel-
erators or storage rings. Field measurements have several
purposes: to check the quality of magnets and their com-
pliance to specifications, to find the magnetic center of
magnetic lenses and to align them with the other compo-
nents of an accelerator, and to provide inputs to beam
dynamic simulation codes.

Rotating coils have been widely used for measuring
accelerator magnets. Davies [1] gives a brief review of
the development of rotating coils and a detailed theory of
harmonic measurements. Walckier’s and Jain’s lectures
[2,3] describe the theoretical and the practical aspects of
the rotating coil method.

The field errors are usually very small compared to the
main harmonic: measuring these errors with good accuracy
is not trivial. This issue led to the development of
‘‘bucked’’ coils in which several coils are combined in
order to cancel the signal from the main harmonic and
from the feed down terms [4].

Flipping coils have been developed for measuring the
field integral along the longitudinal direction in the gap of
insertion devices [5,6]. These coils are moved by linear
stages; a rotating stage is used to flip the coil by 90 degrees,
for the measurement of the horizontal or the vertical field
integral. The area of these coils is not well known, due to
their small diameter-to-length ratio and their flexibility.
However, insertion devices are shimmed to cancel their
field integral: for this application, there is no need for
absolute accuracy.

Stretched wire measurement benches were built more
recently, owing to progress on linear stages and voltmeters.
These systems were dedicated to insertion device field
integral measurements [7] and to the alignment of quadru-
pole magnets [8,9]. These benches use linear wire motions.
A vibrating wire system was used for magnet alignment

[10,11] and for the characterization of insertion devices
[12]. In this case, the wire is excited with an oscillating
current and its vibration is measured with a wire position
monitor. This method is very efficient for magnet align-
ment. A similar technique based on a pulsed excitation has
been developed for measuring the field of insertion devices
[13]. Vibrating wire systems and pulsed-wire systems can
resolve the longitudinal position of magnets.
In the context of the upgrade of the European

Synchrotron Radiation Facility (ESRF), various kinds of
magnets must be measured: permanent magnet steerers for
canted undulators, high gradient quadrupoles, new sextu-
poles, in-vacuum undulators, etc. All of these magnets
have different bores and different lengths. With a stretched
wire bench, the measurement radius can be optimized for
each case.
The purpose of this article is to extend the use of

stretched wire systems to the accurate measurement of
field multipoles, which is up to now the domain of the
rotating coils. A key point for that is to take into account
the wire position errors. A theory of the stretched wire
measurements is developed in the first part of this paper,
after a short review of existing methods. A least square
approach is used. It is suggested to build a matrix which is
related to the wire trajectory, and to compute the multipole
coefficients from a pseudoinverse of this matrix. The main
advantage of this method is that the trajectory is not
necessarily circular. It allows the correction of position
errors; moreover, wire trajectories which cancel the signal
from some multipoles can be designed.
The accuracy of the measurements obviously depends

on the accuracy of the linear stages and of the voltmeter
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used; it depends also on the trajectory of the wire. The
accuracy of the stretched wire system and its link to
the trajectory is studied in Sec. III. Simulation results are
given.

A stretched wire bench has been built at the ESRF;
details of this bench and its calibration are given in
Sec. IV. Measurement results, for different types of mag-
nets, are shown in the last section.

II. THEORY

A. 2D field multipoles

The theory of 2D magnetic measurements was devel-
oped a few decades ago (see, for instance, Refs. [14,15]).
We recall some basic theoretical aspects below.

1. Field integrals

The first field integrals along the longitudinal direction
are defined as

IX ¼
Z 1

�1
BXds (1)

IY ¼
Z 1

�1
BYds; (2)

where x, y, and s are, respectively, the transverse, the
vertical, and the longitudinal coordinates and B is the
magnetic field. In the following, the field integral along
the longitudinal direction will be simply denoted as the
‘‘field integral.’’

Similarly, the second field integrals are defined as

JX ¼
Z 1

�1

Z s

�1
BXd�ds (3)

JY ¼
Z 1

�1

Z s

�1
BYd�ds: (4)

2. Multipoles

In an iron- and conductor-free region of the magnet, one
can derive the field integrals from a vector potential A or
from a scalar potential V. Since the field integral is a 2D
field, it reduces to

IX ¼ �@V

@x
¼ @A

@y
(5)

IY ¼ �@V

@y
¼ �@A

@x
: (6)

The complex potential is defined as

A ¼ Aþ iV: (7)

From Eqs. (5) and (6), A is an analytic function of the
complex variable z ¼ xþ iy. It can be expanded in a
power series

A ¼ X1
n¼0

cnz
n: (8)

In the above expression, the cn are the complex multipole
coefficients. It is common to express the multipoles with
normal and skew coefficients bn and an, respectively.
These coefficients are linked to the complex multipoles
by cn ¼ �ðbn þ ianÞ=ðn�0

n�1Þ, where �0 is the normal-

ization radius.
From the theory of complex analysis, the series develop-

ment in Eq. (8) is valid only on the larger disk centered at
z ¼ 0 which does not contain any singularity, i.e., current
or magnetic material [16]. The multipole analysis is thus
well adapted to magnets with circular bore, but is of limited
interest for other geometries. A theory of elliptic multi-
poles was proposed recently [17]; it gives better results if
the magnet bore is not circular. For simplicity reasons, we
will use only the classical ‘‘circular’’ multipoles in the
following paragraphs.

B. Basic measurements

1. Linear field measurement

a. Field.—If one moves a long stretched wire inside a
magnet [Fig. 1(a)], the instantaneous voltage measured
at the extremities is eðtÞ ¼ �IðtÞvðtÞ, where IðtÞ is the
component of the field integral which is perpendicular
to the velocity vðtÞ at the point ðxðtÞ; yðtÞÞ. It is usual to
‘‘integrate’’ the signal over a period of time which corre-
sponds to an increment of the position of the stretched
wire. In a signal processing point of view, this operation
corresponds to a convolution with a rectangular function of
width T followed by a sampling at period T. The field
integral is given by

FIG. 1. Stretched wire field integral measurement (a) and
second field integral measurement (b).
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I ¼ �heiT
L

; (9)

where the brackets indicate an average over a time T and L
is the measurement length (typically a few millimeters).
The measurement of the field integral relies on the control
of the wire motion. Assuming that the accuracy of the
measurement is governed by the accuracy of the linear
stages, the relative error on the field is

�I

I
¼ ��L

L
: (10)

Modern linear stages are very precise and systematic errors
can be calibrated with a laser interferometer. This leads to
position errors of a few micrometers and an accuracy of
roughly 0.1% for the measurement of the field integral.

b. Field gradient.—In the case of a pure normal quad-
rupole magnet, the gradient of the vertical field integral is

G ¼ @Iy
@x

¼ b2
�0

: (11)

The field gradient can be computed from linear field
integral measurements. At point k the measured gradient is

Gmeas
k ¼ Imeas

kþ1 � Imeas
k�1

Sk
; (12)

where Sk is defined in Fig. 2. Inserting Eq. (10) in Eq. (12)
gives

Gmeas
k ¼ Gk þ �Gk; (13)

where Gk is value of the gradient and

j�Gkj �
��������Gk

�S

S

��������þ
��������
1

S

�L

L

��������ðjIkþ1j þ jIk�1jÞ: (14)

Owing to the field integral dependence of the error, the
field gradient obtained from the differentiation of linear
field integral measurement is not accurate.

c. Sextupole strength.—The strength of a pure normal
sextupole is linked to the linear field integral measurement
by 2b3=�0

2 ¼ @2Iy=@x
2. At point k, the second derivative

of the field integral can be evaluated by

Hmeas
k ¼ Gmeas

kþ1 �Gmeas
k�1

Sk
: (15)

Inserting Eqs. (13) and (14) in the above equation gives

Hmeas
k ¼ Hk þ�Hk (16)

with

j�Hkj �
��������Hk

�S

S

��������þ
��������
�S

S2

��������ðjGkþ1j þ jGk�1jÞ

þ 1

S2

��������
�L

L

��������ðjIkþ2j þ 2jIkj þ jIk�2jÞ: (17)

2. Multipoles

a. Circular measurements.—

The multipole coefficients can be obtained if the wire
covers a circular trajectory. The integral of the radial
component of the field is

I� ¼ 1

�

@

@�
ReA ¼ X1

n¼1

ðan cosn�þ bn sinn�Þ
�
�

�0

�
n
;

(18)

where � and � are the polar coordinates and ReA is the real
part of A. The normal and skew multipole coefficients bn
and an can be obtained from a Fourier analysis of the
voltage measured with the wire. In this simple case, the
stretched wire is equivalent to a single-turn radial coil. For
a detailed description of rotating coil measurements and a
discussion about the errors encountered on a real device,
see for instance Ref. [1].
This measurement method suffers from two main limi-

tations. The first one is the strong signal from the main
multipole, which makes the measurement of the other
multipoles difficult. The second difficulty is the real tra-
jectory of the wire, which is not perfectly circular because
of the imperfections of the linear stages (position accuracy,
errors of perpendicularity, pitch, etc.).
b. Linear measurements.—Some of the multipole coef-

ficients can be obtained by fitting polynomials to the field
measured on a straight line. In this case, the measured field
can be expressed as

I� ¼ X1
n¼1

ðbn cosn�0 � an sinn�0Þ
�
�

�0

�
n�1

; (19)

where �0 is the angle between the measurement and the
horizontal axis and � is the position. However, the poly-
nomial basis f1; P;P2; . . .g is not orthogonal and the circular
multipole measurement method is much more accurate.

3. Second field integral

The second field integral is usually measured by moving
the extremity of the wire in opposite directions [Fig. 1(b)].
The instantaneous voltage is

eðtÞ ¼ �vðtÞ
LW

Z LW=2

�LW=2
sBYðxðtÞ; yðtÞ; sÞds (20)FIG. 2. Step Sk and integration length Lk for gradient mea-

surement.
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if the wire moves in the XS plane and if the wire is parallel
to the axis S at time t. An integration by parts and the
assumption that the wire is long enough give

JcY ¼ LW

�
e

2v
þ IcY

�
; (21)

where IcY and JcY are the first and the second vertical field
integral along an axis determined by c [see Fig. 1(b)]. The

value of IcY can be obtained from another measurement.
It is common to average the measured voltage over a

small period of time T corresponding to a displacement L
of the wire. In this case, the second field integral is ex-
pressed as

hJcy i ¼ LW

�heiT
2L

þ hIcy i
�
: (22)

As the second field integral is linked to the displacement of
the electron beam passing through a magnet, this measure-
ment method is widely used to characterize insertion de-
vice assemblies [6,7].

4. Fiducialization

Multipole magnets must be positioned accurately for the
operation of accelerators. The fiducialization is the accu-
rate determination of the symmetry axis of the magnets,
and the transfer of this axis to alignment monuments.

The center of a quadrupole magnet can be found by
linear field measurements. In this case, the field passes
through zero at the center.

For sextupole magnets and higher order magnets, the
magnetic field is ‘‘flat’’ in the neighborhood of the center:
this leads to poor precision with the position of the mag-
netic center. In this case, the multipole coefficients give a
better estimate of the center. Optimization methods, like
gradient descent or Newton method, may be used
efficiently.

The rotation of the magnet around its symmetry axis is
determined by the roll (rotation around the longitudinal
axis), the pitch (transverse axis), and the yaw (vertical
axis). The roll is given by a circular measurement: it is
linked to the phase of the measured signal.

An interesting feature of stretched wire benches is the
ability to measure the pitch and the yaw of the magnet.
These angles can be obtained from second field integral

measurements. For a quadrupole, Jcx and Jcy pass through
zero if the wire is positioned at the center and if the magnet
is well aligned. A similar method can be used for sextupole
magnets.

Because of the gravity, the vertical position of the
stretched wire follows a catenary equation. This must
be compensated for. If the bending of the wire is small,
the following relation links the mechanical resonance fre-
quency and the sag of the wire [10,11]:

�y ¼ g

32f2
; (23)

where �y is the sag, g is the acceleration due to gravity,
and f is the fundamental resonance frequency. It is conve-
nient to tune the wire at a frequency which is a multiple of
the power line cycle to reduce the perturbations.

C. Least square multipole estimation

1. Estimation of multipoles with arbitrary trajectories

Let us consider a stretched wire measurement at point
ðx; yÞ, with a wire velocity v and an angle � between the
speed of the wire and the x axis (Fig. 3). One defines the
complex field integral

I xy ¼ Iy þ iIx (24)

which can be expressed in the frame ðuk;u?Þ attached to

the wire:

I k? ¼ I? þ iIk ¼ ei�Ixy: (25)

Only the real part of this field integral is measured by the
wire. From Eqs. (5)–(8) and if only the first N multipoles
are considered, this complex field integral can be expressed
as a vector dot product:

I k? ¼ �ei�ð1; . . . ; zN�1Þðc1; . . . ; NcNÞT: (26)

A set of M field measurements can be written as

I1k?
..
.

IMk?

0
BB@

1
CCA ¼

ei�1 . . . ei�1
�
z1
�0

�
N�1

..

. ..
.

ei�M . . . ei�M
�
zM
�0

�
N�1

0
BBBBBB@

1
CCCCCCA

b1 þ ia1
..
.

bN þ iaN

0
BB@

1
CCA:

(27)

The measured field corresponds to the real part of the
above equation. Rearranging the terms and introducing
new notations, it can be written as

FIG. 3. Definition of parameters for a stretched wire measure-
ment.
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I1?
..
.

IM?

0
BB@

1
CCA ¼ ðReZ;�ImZÞ

..

.

bn
..
.

an
..
.

0
BBBBBBBBB@

1
CCCCCCCCCA
; (28)

where the coefficients of the matrix Z are defined by

Z mn ¼ ei�m
�
zm
�0

�
n�1

: (29)

One introduces the notations I ¼ ðI1?; . . . ; IM?ÞT for the

measurements, C¼ðb1; . . . ;bN;a1; . . . ;aNÞT for the multi-
pole coefficients and T ¼ ðReZ; ImZÞ for the matrix:

I ¼ TC: (30)

This expression can be used to simulate the measure-
ments obtained for an arbitrary wire trajectory, described
by the matrix T, in a magnet described by the multipole
coefficients C. Any imperfections of the trajectory can be
simulated easily.

More interestingly, the field multipoles can be obtained
by inversing Eq. (30). In the general case, T is not a square
matrix. The least square solution for the multipole coef-
ficients is given by

Ĉ ¼ ðTTTÞ�1TTI (31)

if the matrix TTT is invertible. If rank ðTTTÞ ¼ n < 2N,
one can estimate n multipole coefficients by calculating a
pseudoinverse of TTT.

The multipole estimator given by Eq. (31) is a general-
ization of the classical analysis methods. If the field is
measured on a circle at M ¼ 2N equally spaced points, it
is equivalent to Fourier analysis. If the wire trajectory is a
straight line, Eq. (31) gives the same results as the poly-
nomial fitting method. In this case, the matrix TTT is not
invertible and some of the multipole coefficients cannot be
estimated.

In any case, the matrix Tþ ¼ ðTTTÞ�1TT can be eval-
uated from the singular value decomposition of T. This can
be done easily with various softwares. On a modern com-
puter, the estimation of the multipole coefficients is very
fast.

In practice, the measurements are averaged over finite
path length. This artifact can be corrected easily. Let us
consider two cases: a linear trajectory [Fig. 4(a)] and
circular trajectory [Fig. 4(b)]. If the trajectory is linear,
Eq. (26) becomes for the mth measurement

Imk? ¼ �ei�m
�
. . . ;

1

Lm

Z Lm=2

�Lm=2
ðzm þ lei�mÞn�1dl; . . .

�

�
..
.

ncn

..

.

0
BBBB@

1
CCCCA: (32)

This gives a new value for the matrix coefficients:

Zmn ¼ 1

nLm�0
n�1

��
zm þ Lm

2
ei�m

�
n

�
�
zm � Lm

2
ei�m

�
n
�
: (33)

If the trajectory is circular, we introduce the angle �m ¼
�m � �=2 such as zm ¼ z0 þ � expi�m [see Fig. 4(b)]. In
this case, the matrix coefficients are

Zmn ¼ 1

2��m

Z ��m

���m

eið�mþ�Þ
�
z0 þ �eið�mþ�Þ

�0

�
n�1

d�

¼ 1

2n�0
n��m

½ðz0 � i�eið�mþ��mÞÞn

� ðz0 � i�eið�m���mÞÞn�: (34)

If z0 ¼ 0 and � ¼ �0, this expression reduces to

Z mn ¼ ð�iÞn�1ein�msincn��m; (35)

where sincx ¼ sinx=x for x � 0 and 1 for x ¼ 0.

FIG. 4. Parameters of finite length measurements: (a) linear
trajectory; (b) circular trajectory.
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2. Compensation of a multipole

The users of rotating coil measurement benches are
familiar with bucked coils: the signal of the main harmonic
and the feed down terms are canceled by auxiliary coils in
order to obtain a better accuracy on the other multipoles.
Bucked coils decrease the vibrational coupling between the
harmonics, and it allows more sensitive voltmeters to be
used.

The classical bucked coil solution is not suitable for
stretched wire systems: it is not possible to move indepen-
dently two wires in the same magnet. However, it is
possible to search for a trajectory for which the wire is
not sensitive to one field component. One wants to elimi-
nate the multipole n rotated by an angle ’n. The field lines
of this multipole can be expressed in polar coordinates
ð�;�Þ:

� ¼ Kj cosðn�þ ’nÞj�1=n; (36)

where K is a parameter of the field line.
Any trajectory which satisfies Eq. (36) at each point is

not sensitive to the multipole n. In the following, this kind
of trajectory will be denoted as ‘‘n-pole compensated
trajectory’’ or nPCT. One can imagine different families
of nPCT. The most ‘‘natural’’ nPCT is probably the set of n
arcs of hyperboles obtained with a constant K parameter.
This trajectory is continuous except at n points correspond-
ing to the poles of the magnet. Unfortunately, the corre-
sponding TTTmatrix is not well conditioned and leads to a
poor accuracy. Discontinuous nPCT are much more
interesting.

Computing the measurement angles of an arbitrary
nPCT from Eq. (36) is not trivial. It is more suitable to
express the complex field as

I ¼ X1
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an

2 þ bn
2

q �
�

�0

�
n�1

ei½ðn�1Þ�þ’n� ¼ X1
n¼1

In;

(37)

where �bn � ian ¼ jbn þ ianj expði’nÞ. The angle be-
tween the field of multipole n and the horizontal axis is
given by

tan� ¼ ReIn
ImIn

¼ cot½ðn� 1Þ�þ ’n�: (38)

This gives the value for the angle of an nPCT, for the mth
measurement:

�m ¼ �ðn� 1Þ�m þ ’n � �

2
: (39)

Equation (39) is very useful to determine the wire angles
for an arbitrary trajectory. One can also compensate for an
arbitrary mixture of multipoles. In this case, the measure-
ment angles are given by

�m ¼ ArgI: (40)

However, it is important to note that Eqs. (36), (39), and
(40) ensure the compensation of the main multipoles, but
not a good conditioning of the TTT matrix.
At a given measurement point, the field multipole n� k

measured with the multipole compensation method can be
seen as the projection of the field vector In�k ¼
ðImIn-k;ReIn-kÞT on the vector I?n ¼ ð�ReIn; ImInÞT
which is perpendicular to the field multipole n:

I
comp
n�k ¼ In�k � I

?
n

I?n
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an�k

2 þ bn�k
2

q �
�

�0

�
n�k�1

sink�:

(41)

The field measured at all the measurement points can be
expressed as a vector Icomp

n�k / ðð�1=�0Þn�k�1 sink�1; . . . ;
ð�M=�0Þn�k�1 sink�MÞT. For k 2 f1; ::; n� 1g and �m ¼
�0, the vectors Icomp

n�k and Icomp
nþk are collinear. If, for

instance, the magnet is a quadrupole, the contributions
from the dipole and the sextupole are linearly dependent:
it is not possible to separate the signal of these two
components.
A simple solution consists in making compensated mea-

surements at two radii at least (Fig. 5). Measuring the field
on the full radius and at the center of the magnet is the
simplest solution for quadrupole compensated measure-
ments (4PCT). The field is null at the magnet center: if
this point is well known, one can pad theTmatrix and the I
vector with zeros and measure the field at the nominal
radius only. However, this makes the estimation of the
multipoles dependent on the estimation of the magnetic
center. Moreover, the field measured at the center is not
null due to the finite measurement length.
Measuring the field at � ¼ �0 and � ¼ �0=2 gives

similar results for the 4PCT, but it is much more efficient
for the 6PCT: in this case one must separate the quadrupole
and the octupole components whose contribution is null at
the center of the magnet.
At the beginning of this section, we mentioned that

bucked rotating coils are not sensitive to the main har-
monic and to the feed down terms. The cancellation of the
feed down terms can be obtained on compensated trajec-
tories, by subtracting measurements performed at different
radii. As an example, let us take a normal quadrupole
magnet and a 4PCT with measurement radii �0 and 0.
The measurement length is assumed to be infinitesimal.
For the measurement m, it gives

FIG. 5. Circular 4PCTs with two radii: �0 and 0 (left), �0 and
�0=2 (right).

G. LE BEC, J. CHAVANNE, AND CH. PENEL Phys. Rev. ST Accel. Beams 15, 022401 (2012)

022401-6



Imk?ð�0Þ � Imk?ð0Þ ¼
�
0; ei�m

zm
�0

; . . . ; ei�m
�
zm
�0

�
N�1

�

�
..
.

bn þ ian

..

.

0
BBBB@

1
CCCCA: (42)

The multipole coefficients, for n � 2, can be obtained
from Eq. (42). Moreover, the coefficients of the trajectory
matrix are identical for Imk?ð�0Þ � Imk?ð0Þ and for Imk?ð�0Þ,
except for the first and the N þ 1th column. The pseudoin-
verse trajectory matrix and the estimated multipoles are
thus the same in both cases. In other words, this two radii
4PCT measurement contains enough information to nu-
merically cancel the feed down terms.

3. Accuracy

The field of an accelerator magnet is usually dominated
by one multipole component. In this case, Eq. (32) reduces
to

I m
k? ¼ �ncnhei�m½zm þ z1ðlÞ�n�1i; (43)

with

z1 ¼ x1 þ "X þ iðy1 þ "YÞ ¼ x1 þ iy1 þ "Z; (44)

where "X and "Y are the position errors and

�m ¼ arctan
dy1 þ d"Y
dx1 þ d"X

: (45)

If the wire moves along a straight trajectory,

dx1 ¼ cos�m0dl dy1 ¼ sin�m0dl: (46)

It gives

ei�m � ei�m0 þ fXð�m0Þd"Xdl
þ fYð�m0Þd"Ydl

; (47)

where

fXð�Þ ¼ 1� cos2�þ i cos� sin�

fYð�Þ ¼ � cos� sin�þ ið1� sin2�Þ:
(48)

In Eq. (43), the second part in the brackets is

ðzþ z1 þ "ZÞn�1 � ðzþ z1Þn�1 þ ðn� 1Þðzþ z1Þn�2"Z
(49)

if jzþ z1j � j"Zj. It can be rewritten as

Imk? � �ncnhei�m0ðzm þ Lme
i�m0lÞn�1i

� fXð�m0Þ
�
ðzm þ Lme

i�m0 lÞn�1 d"X
dl

�

þ fYð�m0Þhðzm þ Lme
i�m0 lÞn�1 d"Y

dl

�

� nðn� 1Þcnei�m0hðzm þ Lme
i�m0 lÞn�2"Zi

� Im0
k? þ �Imk?: (50)

Using�
d"X
dl

�
¼ � sin�m0��m

�
d"Y
dl

�
¼ cos�m0��m; (51)

the error on the measurement m can be approximated by

�Im? � �Re½ncniei�m0zn�1
0 ��m

þ nðn� 1Þcniei�m0z0
n�2h"X þ i"Yi�: (52)

In the case of a compensated trajectory, it yields

�Im? � �Re½ncn�0
n�1��m þ nðn� 1Þcn�0

n�2ei�m

� h"X þ i"Yi�: (53)

From the above equations, the errors on the measure-
ments are driven by the average of the position error and
the average of the angular error, which is linked to the
derivative of the position error.
Circular and compensated measurements are both af-

fected by position errors. Experiments with a real magnet
have shown that compensated measurements give a better
accuracy, due to the voltmeter accuracy. Details are given
in Secs. III and V.
Let us take an example. We assume that the accuracy of

the linear stages is 1 �m after calibration, the measure-
ment length is 2 mm, and the radius is 30 mm. The magnet
is supposed to be a pure normal quadrupole. The error is
then

�Im? � �b2

�
��m þ�m

�0

�
; (54)

here �m ¼ Re½expði�mÞh"X þ i"Yi�. It gives
j�Im?j � 5:3� 10�4 jb2j (55)

for each measurement point. If we assume that the position
and the angular errors are white noises, the spectral density

of the vector �I? is j�Im?j=
ffiffiffiffiffi
M

p
for each frequency. If the

trajectory contains 128 points, the contribution of the
errors to each multipole n is then

jn�cnj � 4:7� 10�5 b2: (56)

If there is a systematic angular error, i.e., if the
linear stages are not perpendicular, it results in a skew
quadrupole:

�an ¼ b2��: (57)
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4. Extension to rotating coils

The extension of this analysis method to the classical
rotating coils is straightforward. For a coil with an infini-
tesimally small conductor cross section, the coefficients of
the T matrix can be computed from

Zmn ¼ X
k

iskN ke
ið�m�’kÞ

�
z0 þ �ke

i�m

�0

�
n�1

; (58)

where z0 is the position of the center of the rotating coil,
�m is the angle of the coil at point m, sk ¼ 	1 depending
on the sign of the current in the conductor k, N k is its
number of turns, �k its radius, and ’k its angle (see Fig. 6).
The Zmn coefficients for conductors with finite cross sec-
tions are obtained by integration:

Zmn ¼ X
k

skN ke
�ið�m�’kÞ

4nðnþ 1Þ�0
n�1�k��k��k

X1
p¼0

X1
q¼0

eið�1Þp��k

� ½z0 þ ð�1Þq��ke
i½�m�ð�1Þp��k��nþ1: (59)

This method is more complicated than the Fourier methods
commonly used for the analysis of the rotating coil signals.
However, it may have one interest: combining several
rotating coil measurements, at several positions, in order
to measure the magnetic field at a radius which exceeds
the coil radius (Fig. 7). One has to concatenate all the
measurements in the I vector and all the Zmn parameters
in a global T matrix, and compute the pseudoinverse Tþ.

III. TRAJECTORIES AND ACCURACY

On a stretched wire measurement bench, any 2D wire
trajectory can be implemented. Yet, the quality of the
measurement depends on the trajectory. Two main parame-
ters have an impact on the multipole measurements:
the shape of the trajectory, and the angles of the
measurements.
The shape of the trajectory can be a line, a circle, a box,

an ellipse, etc. It has an influence on the conditioning of the
TTT matrix. The signal-to-noise ratio is better if the wire
passes close to the poles, even if it may lead to accuracy
issues in case of linear trajectories [see Eqs. (14) and (17)].
If the trajectory is not continuous, the measurement

angles can be set independently at each point: this allows
one to compensate the strong signal created by the main
harmonic.
One considers that measuring the multipoles with a high

precision is not a major issue: the duration of the magnetic
measurement is much shorter than the thermal constant of
the magnet, thus averaging several values has a low impact
on the overall measurement time. Evaluating the multi-
poles with a high accuracy is more delicate.

A. Sensitivity analysis

Two main sources of systematic errors have been iden-
tified: the linear stages and the voltmeter. Let us express the
measured magnetic field as I ¼ T1Cþ nI, where the
matrix T1 is affected by position noise and nI is the error
introduced by the voltmeter. The estimated multipoles are

Ĉ ¼ Tþ
2 I, where the matrix T2 is defined from the ideal

positions x and y, the measurement lengths L normally
equal to a constant L and the measurement angles �. A
block diagram of this model is shown in Fig. 8.
The position errors of the linear stages have been mod-

eled by the random vectors nX, nY, nL, and n�. One
assumes that these errors are distributed as NX 

N ð0; �Pos

2Þ, NY 
N ð0; �Pos
2Þ, NL 
N ð0; �Pos

2Þ, and
N� 
N ð0; ��

2Þ, where N ð�;�2Þ denotes a normal law

with mean � and standard deviation �, and where the

FIG. 6. Definition of the geometric parameters for a rotating
coil.

FIG. 7. Combination of several rotating coil measurements. FIG. 8. Block diagram of the measurement model.
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standard deviation of the position error and the angular
errors are �pos and �� ¼ �pos=L, respectively.

The accuracy of the voltmeters depends commonly on
two terms: one term is related to the reading and the other
to the range of the voltmeter. The reading term is modeled
by a noiseNread 
N ð0; I2�read

2Þwhere I is the magnitude

of the field integral, and the range term is assumed to be
distributed as Nrange 
N ð0; �range

2Þ.
The modelization of the voltmeter accuracy by addi-

tional random noise leads to some comments. First, it is
assumed that the probability of having two exactly equal
readings is neglected. In practice, this is the case if
the voltmeter has enough digits. Second, there is no reason
to assume that the distribution of the accuracy errors
follows a normal law. This distribution depends obviously
on the voltmeter used. Yet, the aim of this model is
to obtain a rough estimate of the sensitivity of the esti-
mated multipoles to various parameters, and the simple
distributions described above are suitable for that. These
remarks are valid also for the modelization of the position
errors.

A simple sampling-based method has been used for the
analysis of the sensitivity of the estimation to the position
and the voltmeter errors [18]. For a set of multipole co-
efficients C ¼ ð. . . ; bn; . . . ; an; . . .ÞT and for a given trajec-
tory defined by x, y,L, and �, one generates several sets of
error vectors. The multipoles are estimated from the field,
for each set of error vectors. The standard deviation of each
multipole can be computed from the results.

In the next paragraph, this method is used to evaluate the
sensitivity of the measurement to different types of errors,
with a perfect magnet. It can also be used for the estimation
of the accuracy of one real measurement, putting all the
errors together. In this case, the input vector C is the
measured multipoles. This will be covered in the Sec. V.

B. Simulation results

Elliptic and rectangular trajectories have been simu-
lated. These trajectories have been parametrized by the
aspect ratio w=l, where w is the width and l is the length
of the smaller box which contains the trajectory. Multipole
compensated circular trajectories were simulated also.

The sensitivity of the estimated multipole coefficients to
the position errors have been evaluated with the method
described above, for an ideal normal quadrupole magnet.
The figure of merit is the average of the standard deviation
for all the multipole coefficients except the normal quad-
rupole:

�ab ¼ 1
2ðh�anin þ h�bnin�2Þ: (60)

Figure 9 shows the evolution of this figure of merit, versus
the standard deviation of the position errors. It shows that
the quality of the multipole estimation depends mostly
on the aspect ratio, i.e., on the isotropy of the trajectory.

The best accuracy is obtained with circular or square
trajectories. If one considers position errors only, the com-
pensation of the main multipole has no effect on the
accuracy. The reasons for that have been given in
Sec. II C 3.
The impact of the voltmeter accuracy on the figure of

merit is shown in Fig. 10. From this curve, compensated
measurements are interesting if the accuracy of the volt-
meter is dominated by the read value. For instance, the
accuracy of a Keithley 2182A nanovoltmeter is 50 ppm of
the reading and 4 ppm of the range, one year after calibra-
tion. In this case, using compensated trajectories leads to a
gain of 1 order of magnitude on the accuracy.
These simulations show clearly that the accuracy

is optimum if w=l ¼ 1 and if the main multipole is
compensated. The multipole compensation is particularly
beneficial if the measured signal is large, i.e., at large
magnetic field integral and at high speed of the wire.

FIG. 9. Estimated sensitivity to position errors. The numbers
on the curves are for the aspect ratio. For each point, the standard
deviation was obtained from 100 samples.

FIG. 10. Estimated sensitivity to the accuracy of the voltmeter.
For this simulation, the value of the normal quadrupole signal
was equal to the range. For each point, the standard deviation
was obtained from 100 samples.
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There is a fundamental difference between the ‘‘buck-
ing’’ implemented on rotating coils and the compensated
trajectories described here. Rotating coils are subject to
vibrations and geometrical errors. The effect of these
errors on the measured harmonics is reduced by canceling
the signal from the main harmonic and the feed down
term. It allows also to use a more sensitive voltmeter. With
a stretched wire bench, the problem is different: the order
of magnitude of the repeatability of linear stages is 1 �m,
and systematic position errors can be calibrated with a
laser interferometer or a laser scanner. These small posi-
tion errors are compatible with multipole measurements.
However, the measured signal is weaker: there is only one
wire and it is moved at relatively low speed, as compared
to rotating coils. In this context the cancellation of the
main harmonic signal facilitates the measurements of the
small signals coming from the other harmonics, because
the accuracy of nanovoltmeters depends on the range and
on the amplitude of the readings.

IV. STRETCHED WIRE BENCH

A. General description

The stretched wire bench developed at the ESRF
is based on two groups of Newport linear stages
M-ILS250CC driven by a Newport XPS motion controller.
The typical on-axis accuracy of these linear stages is
	1:25 �m. The wire voltage was measured with a
2182A Keithley nanovoltmeter. The accuracy given by
the manufacturer is 50 ppm of the reading and 4 ppm of
the range, one year after calibration.

The linear stages and the voltmeter have been interfaced
with the IGOR software (developed by Wavemetrics). The
data processing is also performed with IGOR.

The linear stages and the measured magnet are sup-
ported by a 60� 60 cm2 cross section granite table.

Titanium or beryllium copper wire can be used. The
resonance frequency of the wire is tuned to a harmonic
of the power line cycle, i.e., 50, 100, or 150 Hz. The
typical wire length and diameters are 1.4 m and
100 �m. If the wire is made of Ti90Al6V4 alloy, a
resonance frequency of 150 Hz can be reached; with
beryllium copper, the resonance frequency must be tuned
to 50 Hz. Since the sag of the wire depends on the
square of the resonance frequency, one expects better
results with the titanium wire.

A 4 feet FARO platinum measuring arm can be fastened
onto the bench for mechanical measurements. The volu-
metric accuracy of this measuring arm is 	18 �m and the
single point repeatability is	13 �m. It can be used for the
fiducialization of multipole magnets.

B. Calibration

The calibration of rotating coils is a classical issue
when measuring multipole magnets; it is common to use

well-known reference magnets for this purpose. This ap-
proach can also be used for the calibration of a stretched
wire measurement bench. However, a mechanical calibra-
tion of the linear stages is an alternative.
The angle between the horizontal linear stages and the

granite table has been shimmed with a resolution of
10 �m=25 mm. Even if the on-axis accuracy of the stages
is very good, the wire motion is affected by the pitch of the
horizontal stage. The typical value for the rms pitch angle
is 32 �rad, at a distance of roughly 15 cm. These angles
and the horizontal displacements induced have been
measured with Renishaw ML-10 laser interferometer. A
correction table has been implemented in the XPS motion
controller, and one takes the pitch into account when
computing the T matrix.
The angle between the horizontal and the vertical linear

stages can be measured by a laser interferometer using a
perpendicularity kit. From Eq. (52), the perpendicularity
error induces a roll error which does not depend on the
magnet position. The perpendicularity error can be ob-
tained by measuring the roll of a magnet, turning the
magnet by 180� around the vertical axis, and measuring
the roll again. This angle can be corrected numerically
when building the T matrix.

C. Fiducialization

Once magnetic measurements have been performed, the
position of the magnetic center must be transferred to the
fiducials of the magnets. One simple solution is to place
some reference spheres on the measurement bench, at
positions such that these spheres are out of the magnet
aperture but can be touched by the wire when the magnet is
removed from the bench. One needs at least two spheres
giving reference transverse and vertical positions and ref-
erence yaw and pitch angles; the granite table gives the
reference tilt angle.
The calibration of the position of the reference spheres

must be done before the magnetic measurement, with no
magnet on the bench. The position of a sphere in the
linear stages coordinate system can be found by ap-
proaching the wire to the sphere until electrical contact
is made. The wire must be moved in the direction of the
radius of the sphere. Any oxidation layer on the wire
must be removed: in practice, this was done with very
fine sandpaper. Good contact was obtained by cleaning
the sphere and the wire with ethanol. The resistance was
measured with a Keithley 2701 data acquisition system.
With all these precautions, a repeatability of a few
micrometers was obtained. The accuracy of this calibra-
tion method depends on the wire cross section, which is
not perfectly circular.
Once these reference spheres have been calibrated, it is

easy to compute their position in a coordinate system
linked to the magnetic symmetry planes of a magnet. The
transfer of coordinates between the reference spheres of
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the bench and the fiducials of the magnet is performed with
the FARO measuring arm.

V. MAGNETIC MEASUREMENTS

Stretched wire measurements have been performed on
dipole, quadrupole, and sextupole magnets at the ESRF.
The results obtained with the different methods described
above are compared in this section.

In all the graphs shown below, the error bars indicate
the standard deviation of the multipoles, related to the
linear stages and the voltmeter accuracies. These
errors have been estimated with the method described
in Sec. III A, with a standard deviation of 1:5 �m
for the position accuracy, 60 ppm for the reading
accuracy of the voltmeter, and 4 ppm for the range
accuracy.

In all cases, the repeatability of the multipole measure-
ments was better than 10�4 of the main harmonic: the errors
are dominated not by the precision but by the accuracy.

A. Dipole

1. Magnet

Magnetic measurements have been performed
on a permanent magnet steerer which will be installed
on an ESRF canted undulator. The minimum magnetic
gap is 36 mm, the pole width is 85 mm, and its
length is 83 mm. The on-axis nominal field integral is
5.40 Tcm.

2. Measurements

Different wire trajectories have been used for measuring
this magnet: a circular trajectory, a dipole compensated
trajectory (2PCT), a square box, and a linear motion.

The parameters for the circular trajectory were: a radius
�0 ¼ 15 mm, 64 points, an integration time of 60 ms, the
measurement length to step ratio was 0.9 and 8 measure-
ments have been averaged.

The 2PCT parameters were: a radius �0 ¼ 15 mm, 64
points, 4 averages per point, a measurement length of
1 mm, a maximum speed of 20 mm=s and an acceleration
of 200 m=s2.

A linear measurement of the vertical field was per-
formed in the horizontal symmetry plane: 32 points were
measured between �15 mm and 15 mm. The integration
time was 40 ms and the measurement length was 0.8 mm.

Figure 11 shows a comparison of the multipole content
measured by different methods. The two methods give
similar results.

Figure 12 shows the field measured linearly on the
horizontal symmetry plane of the magnet, and the
field computed from the multipoles. The accuracy is
much better for the multipole methods, as expected from
Eq. (10).

FIG. 11. Measured normal multipole content of a dipole mag-
net: (a) circular trajectory; (b) 2PCT. The dipole component has
been normalized to one.

FIG. 12. Field integral computed from the multipoles and
measured linearly.
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B. QUADRUPOLE

1. Magnet

The quadrupole magnet used in this section is a new high
gradient ESRF quadrupole. Its yoke length is 53 cm and its
bore diameter is 66 mm. The nominal gradient is
12:8 Tm=m and the nominal current is 140 A.

2. Measurements

The following parameters were set for the circular mea-
surements: �0 ¼ 30 mm, 128 points, the measurement
length was 0.9 times the step length, the integration time
was 60 ms for each point and 16 measurements were
averaged. With these parameters, the angular speed of
the wire was 0:117 turn=s.

The compensated measurements (4PCT) were done with
the following parameters: measurement radii �1 ¼ 15 mm
and �2 ¼ 30 mm, 64 points per measurement radius, 4
averages per point, a measurement length of 2 mm, a
maximum speed of 20 mm=s, and an acceleration of
200 m=s2.

For the linear measurements, 31 points have been taken
with � ¼ f�30; . . . ; 30g, the measurement length was
1.6 mm, the integration time was 40 ms, and 16 averages
were performed.

The current was set to 140 A for all the measurements.
The voltmeter range was 10 mV. The maximum
voltage measured with the circular trajectory was close to
9 mV.

The measured normal multipoles are shown in Fig. 13.
The field quality of this quadrupole is affected by some
‘‘expected’’ harmonics, mainly the 12-pole and the 20-pole
which are odd multiples of the 4-pole. The yoke of the
ESRF quadrupole magnet is open in the horizontal plane;
this asymmetry generates an 8-pole component. The upper
and the lower parts of the magnets are not perfectly parallel
and the field gradient is slightly stronger on one side than
on the other: this creates a sextupole component.

All of these multipole components appear clearly on the
4PCT measurements, whereas the circular measurement
does not show the 8-pole and the 12-pole. Since both
measurement methods are sensitive to position errors, the
discrepancies come from the accuracy of the nanovolt-
meter, which is better for compensated trajectory.

Figure 14 shows the field gradient computed from the
measured multipoles, and measured linearly. The error bars
of the linear measurements have not been plotted for a
better clarity of the graph. These errors can be computed
from Eq. (14) and are roughly 5 times higher than the errors
of the 4PCT. The linear measurements show the field
dependence predicted from Eq. (14). As expected, the
gradient computed from multipole is more accurate than
the gradient measured linearly. The difference between the
circular measurement and the 4PCT is significant if the
radius is large (� > �0=2).

FIG. 13. Measured normal multipole content of a quadrupole
magnet: (a) circular trajectory; (b) 4PCT. The quadrupole com-
ponent has been normalized to one.

FIG. 14. Gradient computed from multipoles and measured
linearly.

G. LE BEC, J. CHAVANNE, AND CH. PENEL Phys. Rev. ST Accel. Beams 15, 022401 (2012)

022401-12



C. Sextupole

1. Magnet

The magnet used in this section is a new ESRF short
sextupole. Its yoke length is 20 cm and its bore diameter is
82 mm. The nominal sextupole strength is 76:7 Tm=m2

and the nominal current is 160 A.

2. Measurements

Most of the measurement parameters were the same as
the parameters used for the quadrupole magnet. The only
difference was the compensated trajectory: a 6PCT was
carried out. The current was set to 160 A. The maximum
voltage measured with the circular trajectory was close to
0.8 mV.

Figure 15 shows the multipole content measured
with a circular trajectory and a 6PCT. Both measurements
show the 12-pole, the 18-pole, and the high 30-pole. The
main difference between these measurements and the
quadrupole measurement is the maximum voltage, which

is 10 times lower: this has a direct influence on the volt-
meter accuracy. The accuracy analysis shows that the
6PCT gives better results than the circular trajectory.

D. Discussion

The measurements performed on three different kinds of
magnets have demonstrated that the multipole based meth-
ods are more accurate than the linear measurements. The
multipole methods are less sensitive to the accuracy of the
linear stages.
For the quadrupole and the sextupole magnets, the mul-

tipole compensated trajectories give better results than the
classical circular trajectories. This is not the case for the
dipole magnet: all the multipole based methods give simi-
lar results.

VI. CONCLUSION

A least square method for the analysis of stretched wire
multipole measurements has been developed. This method
can be applied to any wire trajectory: the Fourier analysis
of measurements done on a circular trajectory and the
polynomial fitting of linear measurements appear as par-
ticular cases. It does not mean that any trajectory may be
used for the measurement of any multipole: a bad choice of
trajectory may lead to issues in numeric computation,
i.e., ill-conditioned matrix and to an increased sensitivity
to systematic errors.
There is a stretched wire equivalent of the widely used

bucking coils: one can design wire trajectories which are
insensitive to some harmonics. The basic idea of the multi-
pole compensated trajectories (denoted as nPCT) is to
move the wire in a direction which is parallel to the field
lines of the main harmonic.
Simulations have been used for studying the accuracy of

the measurement method. It has been shown that the
sensitivity to position errors is similar for circular trajecto-
ries and nPCT. However, the nPCT is less sensitive to the
voltmeter accuracy. A similar simulation method can be
used a posteriori for the estimation of the accuracy of a
multipole measurement.
A stretched wire measurement bench has been built at

the ESRF. The bench is based on two groups of linear
stages; the wire voltage is measured by a nanovoltmeter. A
FARO measuring arm is used for the fiducialization.
Multipole measurements have been made on three dif-

ferent magnets: a dipole, a quadrupole, and a sextupole.
Accuracies of a few 10�4 of the main harmonic have been
obtained in each case. Multipole compensated trajectories
give better results for the quadrupole and sextupole mag-
nets. The field computed from the multipoles was com-
pared to the field measured with a linear motion of the wire.
It has been demonstrated that the accuracy of multipole
based methods is much better than the accuracy of linear
measurements.

FIG. 15. Measured normal multipole content of a sextupole
magnet: (a) circular trajectory; (b) 6PCT. The sextupole compo-
nent has been normalized to one.
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One of the limits of this method comes from the theory
of analytic functions. The extension of this method to
elliptic multipoles may give a solution for field measure-
ments in anisotropic magnet bores.
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