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We present an analytical calculation of the theoretical minimum emittance in storage rings with

arbitrary but nonreversing bending magnets. Our derivation is based on a dipole with a short segment of

constant bending radius and linear ramps at the ends, which has been shown to be very close to the optimal

bending profile. The analytical results confirm and extend the previous ones obtained by numerical

optimizations (except for a minor uncertainty on the profile for minimum effective emittance). Simple

approximate formulas are given for calculating the theoretical minimum emittance and the parameters of

the required bending profile and optics functions, which are of practical value for storage-ring designs. To

facilitate designs of linear optics using the optimal bending profiles, we derive a closed expression for the

transfer matrix of a linear-ramp dipole. Besides that, the minimum emittance theory is further refined,

especially with more rigorous proof of the theory and parameter ranges.
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I. INTRODUCTION

The theoretical minimum emittance sets the emittance
limit a storage ring can possibly achieve (without damping
wigglers). It is of both theoretical interest and practical
importance, thus was investigated over the years by many
authors [1–13]. This paper is intended to be the third of our
trio of papers on the theoretical minimum emittances for
common lattices involving arbitrary dipole bending pro-
files. The first one [11] established a general formalism to
compute the theoretical minimum emittance and optimal
lattice parameters for a given dipole bending profile. The
second one [12] used numerical optimization to investigate
the optimal bending profile to yield the lowest possible
emittance. This third paper analytically derives the theo-
retical minimum emittance based on the linear-ramped
bending profile model, which consists of a short segment
of constant bending radius and linear ramps at the ends,
and was found to be sufficiently close to the optimal
profile. Our new analytical work confirms the previous
nondeterministic numerical findings in [12] and covers
the whole range of potentially interesting peak field, com-
plementary to the three isolated data points found by
computation-intensive numerical optimizations. Simple
practical formulas are given for determining the theoretical
minimum emittance, corresponding bending profile pa-
rameters, as well as lattice parameters such as beta function

and dispersion. In addition, the closed-form transfer matrix
of a linear-ramp dipole is given, which is necessary for
linear optics designs that involve the optimal bending
profile.
Since this paper is the third of a trio, here we will skip

introduction on the subject of theoretical minimum emit-
tance in storage rings. However, in the next section, we will
first present a brief review of our refined minimum emit-
tance theory to help readers follow the new development,
especially the discussions in Sec. II B, which provides
critical proofs and bounds on various parameters to make
the theory more rigorous, and in Sec. II C, which clarifies
some complications associated with using a reference point
other than the dipole entrance for computation. Section III
derives the absolute theoretical minimum emittance and
simple formulas for practical applications. Sections IVand
V present similar results for the theoretical minimum
emittance in lattices requiring achromatic arcs and mini-
mal effective emittance, respectively. Section VI gives
the exact transfer matrix for dipoles with linearly changing
field.

II. MINIMUM EMITTANCE THEORY

A. Brief review of theory

The theoretical minimum emittance with arbitrary di-
poles was established [11] as

� ¼ Cq�
2

Jx
F min; (1)

where Cq ¼ 3:84� 10�13 m; � is the Lorentz factor; and

Jx is the horizontal damping partition number, which we
will not consider here. The lattice-dependent factor F is a
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function of bending profile as well as lattice type. Three
commonly interested lattice types have been studied:
(i) lattices with achromatic arcs, which are useful in pro-
viding dispersion-free straight sections for light sources, rf
cavities, injection/ejection, and so on; (ii) lattices without
any constraints except for minimizing the natural betatron
emittance, which is the figure of merit for damping rings of
linear colliders [14]; and (iii) lattices without any con-
straints but minimizing the effective emittance at the
straight sections, which is often the figure of merit for light
sources because it takes into account the effects of disper-
sion and beam energy spread [5]. We label these three
lattice types with AME (achromatic minimum emittance),
TME (theoretical minimum emittance), and EME (effec-
tive minimum emittance), respectively. The minimalF for
these lattices reads

F min ¼ 2
ffiffiffiffiffiffiffi
jEj

p
8>>><
>>>:
1 TMEffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

p
AMEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½1þðqþ3Þqc=2�½1þfð1þ�Þqþ3�qc=2g

ð1�cÞð1þqcÞ
q

EME;

(2)

where jEj, a, and c ¼ a=ðaþ 1Þ are parameters solely
determined by the dipole profile; � ¼ Jx=JE is the ratio
of horizontal to longitudinal damping partition numbers;
and the q parameter is determined by the cubic equation

ð1þ �Þq3 þ 2ð2þ �Þq2 þ ½3þ ð2þ �Þ=c�qþ 2=c ¼ 0:

(3)

For conventional uniform dipoles of bending angle �,

2
ffiffiffiffiffiffiffijEjp ¼ �3=12

ffiffiffiffiffiffi
15

p
, a ¼ 8, and c ¼ 8=9 under the usually

good small-angle approximation.
Equation (2) results from minimizing the following

well-known expression

F ¼ hH =j�j3i
h1=�2i � hhH ii; (4)

where hh� � �ii stands for the bending-radius (�) weighted
average, and the well-known dispersion action H reads

H ¼ ��2 þ 2���0 þ ��02

¼ Trfð�0�
T
0 þ �0�̂

T
0 þ �̂0�

T
0 þ �̂0�̂

T
0 Þ	þ

0 g: (5)

The subscript 0 indicates values at the dipole entrance s0 or
reference with respect to (wrt) the entrance.�,�, and � are
the usual Courant-Snyder parameters; �0 ¼ ½�0; �

0
0�T is

the initial dispersion vector; �̂0ðsÞ is the dispersion gener-
ated in the dipole and projected back to the dipole entrance,
which relates to the dispersion vector � via the linear

transfer matrix M as �ðsÞ ¼ MðsÞ½�0 þ �̂0ðsÞ�; and 	þ
0

is the symplectic conjugate of the initial normalized beam
matrix 	0. More explicitly,

	þ � �J	TJ ¼ � �

� �

" #
;

	 ¼ � ��

�� �

" #
;

J ¼ 0 1

�1 0

" #
:

(6)

Equations (4) and (5) yield

F ¼ TrðG0	
þ
0 Þ; (7)

where

G0 ¼ ���0�
T
0 þ �0hh�̂0iiT þ hh�̂0ii�T

0 þ hh�̂0�̂
T
0 ii; (8)

and �� � hh1ii ¼ h1=j�j3i=h1=�2i ¼ I3=I2.
2 I2 and I3 are

the well-known radiation integrals.
For a given dipole and initial dispersion, G0 is deter-

mined and F is minimized to 2
ffiffiffiffiffiffiffiffiffijG0j

p
with the optimal

lattice parameters given by 	0 ¼ G0=
ffiffiffiffiffiffiffiffiffijG0j

p
at the dipole

entrance. From Eq. (8) it is easy to see that jG0j (thus F )
can be further minimized by choosing the initial dispersion

vector along the average of the projected dispersion hh�̂0ii.
Let �0 ¼ qhh�̂0ii= ��, then G0 reduces to

G ¼ Eþ ðqþ 1Þ2��T; (9)

where the matrix E and vector � are given by

E � hh�̂�̂Tii � hh�̂iihh�̂iiT= �� and � � hh�̂ii � �� �̂ðs0Þffiffiffiffi
��

p :

(10)

We dropped the subscript 0 since these expressions are
valid for any reference point, as discussed in Sec. II C. The
determinant of Eq. (9) can be reduced to

jGj ¼ jEj½1þ ðqþ 1Þ2a�; (11)

where

a ¼ TrðE�1��TÞ ¼ TrðEþ��TÞ
jEj ¼ ðJ� ÞTEðJ� Þ

jEj : (12)

The quadratic form ðJ� ÞTEðJ� Þ ¼ E22

2
1 � 2E12
1
2 þ

E11

2
2 . Note that although the matrix E, G, and vector �

depend on the reference point, their determinants and the
parameter a do not. It can be shown that both jEj and a
are non-negative quantities. Therefore, F min is given by
q ¼ �1 for TME and q ¼ 0 for AME lattices, as shown
in Eq. (2). The derivation for EME is more involved [11].

2This was mistakenly written as I2 instead of I3=I2 after
Eq. (8) in [12]. We take this opportunity to correct a few other
oversights in our previous publications. In [11], the two �0
entries in Table 1 should be switched. In both [11,12], �̂0 stands
for the second component of �̂, which is not the derivative of the
first component �̂. To avoid confusion, we use �̂p for the second
component of �̂ in this paper.
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The expressions in Eqs. (2), (10), and (12) have the
advantage of applying to any reference point. However,
when using the dipole entrance as the reference point, the
original expressions [11] can be more convenient for com-
putation, especially for the AME emittance, which simply
reads

F min
AME ¼ 2

ffiffiffiffiffiffiffi
jAj

p
; where A ¼ hh�̂0�̂

T
0 ii: (13)

The other drawback is that jEj can approach 0, but AME
and EME emittances cannot, which is not obvious in
Eq. (2). Since jEj ¼ jAjð1� cÞ and jAj> 0, jEj ap-
proaches 0 via the factor 1� c, which is canceled by
factors in the right-hand-side expressions in Eq. (2).

B. Parameter ranges

For a more rigorous theory, we show that jEj � 0,
jAj> 0, jGj � 0, a > 0, and 0< c � 1.

We have been using jGj � 0, without proof [11], to

derive F min ¼ 2
ffiffiffiffiffiffiffijGjp

. Here we provide the necessary

proof. Since G ¼ Eþ ��ð�þ hh�̂ii= ��Þð�þ hh�̂ii= ��ÞT , we
will first show that jEj � 0. Consider the dot product �
of any two real integrable functions u and v defined by

u � v � hhuvii � hhuiihhvii= ��: (14)

The linear, symmetric properties of � are obvious. Its
positive-definite property can be shown as

u � u ¼ hhu2ii � hhuii2= ��
¼ 1

I2I3

�Z �
1

j�j3=2
�
2
ds

Z �
u

j�j3=2
�
2
ds

�
�Z u

j�j3 ds
�
2
�
� 0; (15)

where the quantity in the square bracket is non-negative
due to Cauchy-Schwarz inequality. Thus � is a valid inner

product,3 via which and along with �̂ ¼ ½�̂; �̂p�T we can

write

jEj ¼ ð�̂ � �̂Þð�̂p � �̂pÞ � ð�̂ � �̂pÞ2 � 0; (16)

which is again due to Cauchy-Schwarz inequality. Note
that jAj can also be written in the same form with the inner
product defined by u � v ¼ hhuvii. Thus jAj> 0, unless

�̂ ¼ �̂p.

For a general G matrix, it can be written as G ¼ Eþ
vvT where v is some vector. If jEj ¼ 0, the non-
negative symmetric matrix E can also be written as
uuT ; therefore, G ¼ uuT þ vvT ¼ ½u;v�½u;v�T and
jGj ¼ j½u;v�j2 � 0. If jEj � 0, we can use EEþ ¼ jEj
to rewrite jGj as

jGj ¼ jEj
�
1þ TrðEþvvTÞ

jEj
�
¼ jEj

�
1þ vTEþv

jEj
�
: (17)

The quadratic form vTEþv is non-negative since
E, thus Eþ, is a positive-definite matrix (jEj> 0).
Therefore jGj � 0. Setting v ¼ � , it is clear that a > 0,
unless � ¼ 0. Furthermore, c ¼ a=ðaþ 1Þ 2 ð0; 1�. (In
fact, a brute force expansion of Eq. (16) yields the same
result.) The upper bound is reached when jEj ¼ 0.
The bounds on the dipole parameter c lead to bounds on

the optimal q parameter for minimum EME lattices.
Solving the cubic equation in Eq. (3) for c and imposing
the bounds 0< c � 1 yields �4=3 � qopt <�4=5 for the

nominal damping partition � ¼ 1=2. When c � 125=126,
three real solutions exist. However, it can be shown that
this region is not favored for minimum EME emittance
lattices.

C. Reference point

The minimum emittance theory [11] was developed
with the dipole entrance as the implied reference point.
Sometimes it may be desirable to use other locations as the
reference (e.g., using the center of a symmetric dipole as
the reference for easier integration). The refined theory
presented above applies to any reference point. Here we
clarify the details.
At first glance, the original theory seems to apply to any

reference point, as implied in [11]. However, this is true
only for TME lattices, but not for the AME and EME
lattices where the dispersion at the dipole entrance must
satisfy specific conditions. Inside a dipole the dispersion
vector propagates as

� ðsÞ ¼ Mðsjs0Þ�0 þ �0ðsÞ ¼ Mðsjs0Þ½�0 þ �̂0ðsÞ�;
(18)

where �̂ðsÞ � M�1�; the transfer matrix Mðsjs0Þ and the
dispersion-generating vector �0ðsÞ are determined by
the dipole magnet. To use another reference point, say s1,
the dispersion can be rewritten as

� ðsÞ ¼ Mðsjs1Þ½�1 � �0ðs1Þ� þ �0ðsÞ
¼ Mðsjs1Þ½�1 þ �̂1ðsÞ�; (19)

with

�̂ 1ðsÞ ¼ Mðs1js0Þ�̂0ðsÞ � �0ðs1Þ: (20)

Note that �̂0ðs0Þ ¼ 0 and thus �0ðs1Þ ¼ ��̂1ðs0Þ. Using
the average of Eq. (20), the dispersion at s1 resulting from

�0 ¼ qhh�̂0ii= �� can be written as

� 1 ¼ Mðs1js0Þðqhh�̂0ii= ��Þ þ �0ðs1Þ
¼ qhh�̂1ii= ��� ðqþ 1Þ�̂1ðs0Þ: (21)

3Rigorously speaking, � is only a semi-inner product since it
is semidefinite, i.e., there is a nonzero u that yields u � u ¼ 0
(e.g., 1 � 1 ¼ 0). Nonetheless, Cauchy-Schwarz inequality still
holds.

SIMPLE FORMULAS FOR THEORETICAL MINIMUM . . . Phys. Rev. ST Accel. Beams 15, 014001 (2012)

014001-3



Inserting �1 into G1 � ���1�
T
1 þ �1hh�̂1iiT þ hh�̂1ii�T

1 þ
hh�̂1�̂

T
1 ii, after some algebra, we end up with the

reference-point-covariant form in Eq. (9). Note that one

cannot set �1 ¼ qhh�̂1ii= ��, which is true only for TME
lattices with q ¼ �1 or for �0ðs1Þ ¼ 0, which means no
bending between the two reference points.

Note that the projected dispersion-generating vector �̂
wrt any reference point s1 can be computed directly using

�̂0 ¼ �̂0

�̂0
p

2
4

3
5 ¼ M�1

0

1=�

" #
; �̂ðs1Þ ¼ 0; (22)

where M is the transfer matrix starting from s1.

III. THEORETICAL MINIMUM EMITTANCE

In this section we analytically derive the theoretical
minimum emittance (TME) using the linear-ramp model
with bending radius � given by

�ðsÞ ¼ �0 �
�
1 jsj � L0

1þ gðjsj=L0 � 1Þ L0 � jsj � L;
(23)

where g ¼ ðr� 1Þ=ðL=L0 � 1Þ and r � �max=�0. This
symmetric dipole extends from �L to L with a uniform
central segment from �L0 to L0 and linear ramps at the
ends. This profile is of particular interest because it is
sufficiently simple for analytical treatment yet has been
shown to be very close to the optimal profile for TME
emittance, i.e., the absolute theoretical minimum.

The bending angle �ðsÞ ¼ R
s
0 ds=� is given by

�ðsÞ ¼
8><
>:

s
�0

jsj � L0

sgnðsÞ L0

�0

�
1þ 1

g ln �
�0

�
L0 � jsj � L;

(24)

and half of the total bending angle is given by

�max ¼ �0ð1þ lnr=gÞ; (25)

where �0 ¼ L0=�0 is the angle contribution from the cen-
tral constant field. The ratio of maximum dipole field
strength to that of the equivalent uniform dipole with the
same length and bending angle reads

� � Bmax

Bref

¼ �ref

�min

¼ L

L0

�0
�max

¼ gþ r� 1

gþ lnr
: (26)

Since the emittance can potentially reach zero as � ! 1,
we choose � as a given parameter and optimize r 2 ½1;1�
for the minimum emittance. The other parameters can be
rewritten as

L0

L
¼ r� 1� � lnr

�ðr� 1� lnrÞ ;
�0
�max

¼ L0

L
�; (27)

and

g ¼ r� 1� � lnr

�� 1
: (28)

Since r� 1� lnr � 0, L0=L > 0 implies a minimum r for
a given �, which is the solution of r� 1� � lnr ¼ 0, i.e.,

rmin ¼ ��Wð�e�1=�=�Þ, where W is the Lambert W
function.
For computing the TME emittance and optimal lattice

parameters, we take advantage of the symmetry and use the
dipole center as the reference. For simplicity, we ignore the
weak focusing effects of the dipole4 and use Eq. (22) with

M ¼ Mdrfit to compute �̂, which yields �̂p ¼ R
s
0 ds=� ¼

�ðsÞ and �̂ ¼ �R
s
0 sds=�, i.e.,

�̂¼
8<
:
�s2=2�0 jsj �L0

� L2
0

2�0

�
1þ 2

g2

�
ðg� 1Þ ln �

�0
þ �

�0
� 1

��
L0 � jsj � L:

(29)

Inserting �̂ into Eq. (10), we can compute the matrix E as
well as emittance and Twiss parameters at the dipole

center. Thanks to the symmetry, �̂ is an even function

and �̂p is an odd function, thus E reduces to a simple

diagonal matrix

E ¼ diagðhh�̂2ii � hh�̂ii2= ��; hh�̂2
piiÞ: (30)

Carrying out the straightforward integrations (see
Appendix A), we have

E11 ¼ L4
0

�3
0

f1
360g4r½ðgþ 1Þr� 1�½ð2gþ 1Þr2 � 1� (31)

and

E22 ¼ L2
0

�3
0

f2
12g2rðgrþ r� 1Þ ; (32)

where

f1¼16g6r4þ24g4ð2gþ5Þr2ðr2�1Þ
þ60g3r2ðr�1Þð5r�3Þþ45g2ðr�1Þ2ð17r2þ2rþ1Þ
�90gðr�1Þð19r3�9r2þ3r�1Þ
�45ðr�1Þ2ð23r2þ6r�1Þ
�180ðrlnrÞ2ðg�1Þ2ð2gþ1Þ�120r2 lnr½g3þ2g4

þ3ðr�1Þð4g2�r�3Þ�3gð2r2þ2r�1Þ�

and

4Focusing in uniform (including combined-function) dipoles
was found to have small higher-order effect on the minimum
emittance [11], which is probably true for variable bending as
well, although the field can be much stronger (but shorter).
Combined-function dipoles could be more useful in terms of
manipulating partition numbers, implementing a low-beta lat-
tice, and designing more compact lattices.
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f2 ¼ 4g3r2 þ 3ð2g2 þ 2gþ 1Þðr2 � 1Þ
� 6 lnrð2gþ 1þ lnrÞ:

The TME emittance is simply 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E11E22

p
, which reads

F TME ¼ �30
6g3r½ðgþ 1Þr� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1f2

30½ð2gþ 1Þr2 � 1�

s
:

(33)

Normalizing this expression by the TME emittance of a
uniform dipole with the same bending angle, which is

�3=12
ffiffiffiffiffiffi
15

p ¼ 8�3max=12
ffiffiffiffiffiffi
15

p ¼ ð2=3 ffiffiffiffiffiffi
15

p Þ½�0ð1þ lnr=gÞ�3,
we obtain the emittance reduction factor

F̂ TME ¼ 1

rðgþ lnrÞ3½ðgþ 1Þr� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1f2

32½ð2gþ 1Þr2 � 1�

s
:

(34)

It is easy to see that as r ! 1, F̂ TME ! 1, as it should
reduce to the uniform dipole. It is not so obvious but
confirmed that, as L0 ! 0, Eq. (34) reduces to the result
of the symmetric-linearly increasing profile given in the
Appendix of [12]. Note that as L0 ! 0, g ! 0 and L0=g !
L=ðr� 1Þ. It can also be shown that F̂ TME ! 0 as � ! 1,
which is why � has to be given.

Inserting Eq. (28) into Eq. (34) we obtain F̂ TMEð�; rÞ
whose inverse is shown in Fig. 1. The existence of optimal
profiles is evident and can be determined by numerically

solving the equation dF̂ =dr ¼ 0 for a given �. The result-
ing absolute minimum emittance and the required optimal
ropt are plotted in Figs. 2 and 3, respectively. Simple

approximate formulas are also given in the figure captions
for practical applications.

The optimal Twiss parameters at the dipole center are

�c ¼ 0 and �c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E11=E22

p
, which is

�c

Ldipole
¼ 1

gþ r� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1=f2

120½ð2gþ 1Þr2 � 1�

s
; (35)

where Ldipole ¼ 2L is the total length of the dipole. The

optimal �c=Ldipole is plotted in Fig. 4. Note that the re-

quired small beta function represents the intrinsic chal-
lenge for implementing minimum emittance lattice in
practice. We will comment more on this point later.
The dispersion reaches a minimum at the dipole center,

whose value is given by �c ¼ �hh�̂ii= ��, i.e.,
�c

Ldipole�
¼ 2g3 þ 3½1þ gþ g2 � 4

r þ 3�g�g2þ2ð1�gÞ lnr
r2

�
24ðgþ lnrÞðgþ r� 1Þð2gþ 1� 1=r2Þ ;

(36)

where � is the total bending angle. Figure 5 plots the factor
�c=�=Ldipole for the minimum TME lattice.

To close our discussion on the TME emittance, we
consider the increase of beam energy spread due to bend-
ing profile variation. The enlargement factor is given by

FIG. 1. TME emittance improvement factor 1=F̂ TME as a
function of � ¼ Bmax=Bref and r ¼ �max=�0. The obvious ridge
indicates the maximum emittance reduction.
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FIG. 2. Maximum TME emittance improvement factor as a
function of � ¼ Bmax=Bref . The blue dots are the exact values.
The red curve is given by the approximate expression 1=F̂ð�Þ ¼
�1:389þ 2:981�� 0:4428�2 þ 0:040 12�3 � 0:001 437�4.
The values at � ¼ 2, 4, and 6 agree with the results in [12].
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FIG. 3. The optimal bending profile parameter ropt ¼ �max=�0

as a function of �. The red curve is given by the approximate
expression roptð�Þ ¼ �3:21þ 4:36�þ 0:0909�2.
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
��

1=�ref

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ r� 1

gþ lnr

gþ ð1� 1=r2Þ=2
gþ 1� 1=r

s
; (37)

which is plotted in Fig. 6 under the minimum TME
conditions.

IV. MINIMUM AME EMITTANCE

Because of the zero dispersion requirement at the dipole
entrance (or exit), AME lattices require a different optimal
bending profile from that of TME lattices. It is asymmetric
and consists of a constant field followed by a linear ramp.
In other words, it basically is one-half of the TME profile.
Thus, much the computation for the TME profiles can be
used for AME emittance computation. In the above TME
computation, the profile extends from �L to L, and the
center was used as the reference point. For AME compu-
tation, we can simply use the same profile and various
integrals but limit to s � 0 and use the dipole entrance as
the reference point. The major difference is that, due to the

asymmetry, hh�̂�̂pii is not zero anymore and needs to be

computed to obtain the minimum AME emittance 2
ffiffiffiffiffiffiffijAjp

.
The results reads

F̂ AME ¼
ffiffiffiffiffi
f3

p
rðgþ lnrÞ3½ðgþ 1Þr� 1� ; (38)

where

f3 ¼ g8r4 þ 2g6ð2gþ 7Þr2ðr2 � 1Þ þ 4g3½g2r2ð13r� 7Þ
þ 5ð35r3 � 17r2 þ 9r� 3Þ�ðr� 1Þ
þ 5½g4ð43r2 þ 6rþ 3Þ þ 242g2r2

þ 24gðg� 1Þð13r2 � 2rþ 1Þ � 12ð15r2 � 2r� 1Þ�
� ðr� 1Þ2 � 4r lnrfð7gþ 6Þg5rþ 100g4rðr� 1Þ
� 40g3r2 � ð2rþ 1Þ � 60ðr� 1Þ½g2ð2r2 þ 5r� 1Þ
þ 2gðr2 þ 4rþ 1Þ þ r2 þ 7r� 2�g
þ 4ðr lnrÞ2ð16g5 � 35g4 � 20g3

þ 360gþ 180Þ � 480r2ðlnrÞ3:

Again, it is easy to see that F̂ AME ! 1 as r ! 1. As
L0 ! 0 it reduces to the result of the linearly increasing
profile given in the Appendix of [12].
The parametric plot of the AME emittance improvement

factor 1=F̂ AME is similar to Fig. 1 with a flatter ridge. The
maximum enhancement factor for AME emittance and the
corresponding optimal ropt are plotted in Figs. 7 and 8. We

see that the AME improvement factor is about half of the
TME improvement factor.
The Twiss parameters at the dipole entrance are given by

�0 ¼ A11=
ffiffiffiffiffiffiffijAjp

and �0 ¼ �A12=
ffiffiffiffiffiffiffijAjp

, which yields
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FIG. 4. The beta minimum over dipole length for the absolute
minimum emittance. The red curve is given by the approximate
expression �=Ldipole ¼ 0:12=�.
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FIG. 6. Beam energy-spread enlargement factor (	E over 	E

of the reference uniform dipole) for the absolute minimum
emittance lattice. The red curve is given by the approximate
expression 0:655þ 0:365�� 0:0242�2 þ 0:000 885�3.
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FIG. 5. The dispersion minimum over dipole length and bend-
ing angle for the absolute minimum emittance. The red curve is
given by �=�=Ldipole ¼ 0:059=�2 � 0:077=�3 þ 0:059=�4.
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�0

L
¼ 6ffiffiffiffiffiffi

15
p

� 2g5 þ ðr� 1Þz1 � 20 lnrz2 þ 20ðg� 1Þ2ðlnrÞ2
2ðgþ r� 1Þ ffiffiffiffiffi

f3
p ;

(39)

where z1 ¼ 50� 40g� 20g2 þ 10g3 þ 5g4 þ 2g5 þ
ð�110þ 40gþ 20g2 þ 10g3 þ 5g4 þ 2g5Þr and z2 ¼
g3 þ 3þ 4gðr� 1Þ � 2rðrþ 2Þ, and

�0 ¼
ffiffiffiffiffiffi
15

p g4r2 þ 4ðgþ 1Þðr� 1Þ2 þ g2ð3þ 2gÞðr2 � 1Þffiffiffiffiffi
f3

p :

(40)

The optimal values of �0=L and �0 are plotted in
Figs. 9 and 10. Ignoring focusing, the corresponding mini-
mum beta is given by �min ¼ 1=�0 ¼ �0=ð1þ �2

0Þ.
Furthermore, the phase advance �c across the dipole is
given by

�c ¼ tan�1ð�0L� �0Þ þ tan�1�0: (41)

The energy-spread enlargement factor for AME lattices
is still given by Eq. (37), but the optimal r value is some-
what different, which yields a slightly different energy-
spread enlargement factor given by the approximate
expression 0:72þ 0:32�� 0:011�2.

V. MINIMUM EME EMITTANCE

The optimal bending profile for minimum EME emit-
tance is more complicated. Available numerical optimiza-
tions [12] suggest an asymmetric bending profile starting
with a drift, then a fast linear ramp in magnetic field
leading to the main constant bending field, followed by a
linear ramp in bending radius to the end of the dipole. If we
ignore the short segment of linear ramp in magnetic field,
the profile is the same as the optimal AME profile except
for the initial drift, which yields a larger reference bending
radius �ref and thus higher � for the same performance.
Thus, the optimal profile should have no drift, contradict-
ing the numerical optimization. To resolve this, further
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FIG. 7. Maximum improvement factor for AME emittance as a
function of � ¼ Bmax=Bref . The blue dots are the exact values.
The red curve is given by the approximate expression 1=F̂ð�Þ ¼
�0:504þ 2:08�� 0:389�2 þ 0:0383�3 � 0:001 43�4. The val-
ues at � ¼ 2, 4, and 6 agree with the results in [12].
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FIG. 10. The initial � for the minimum AME emittance.
The red curve is given by the approximate expression �0 ¼
2:09þ 1:72=�� 0:029�.
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FIG. 9. The initial beta over dipole length for the minimum
AME emittance. The red curve is given by the approximate
expression �0=Ldipole ¼ 0:383=�þ 1:03=�2.
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FIG. 8. The optimal bending profile parameter ropt ¼ �max=�0

as a function of � for minimum AME emittance. The red curve
is given by the approximate expression roptð�Þ ¼ �4:49þ
5:81�þ 0:101�2 þ 0:003 79�3 � 0:000 364�4.
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investigation is needed to refine both the simulation with
an increased number of slices and the analytical computa-
tion by taking the linear magnetic field ramp into account.
However, since the emittance appears insensitive to such
details, we consider only a constant field followed by a
linear ramp in bending radius for minimum EME emit-
tance computation, i.e., the same profile as in the AME
emittance but with different parameters.

To compute the EME emittance, using the dipole en-
trance as the reference, we need to compute the para-

meter c ¼ �Tr½JAJB�=jAj with A ¼ hh�̂0�̂
T
0 ii and B ¼

hh�̂0iihh�̂0iiT= ��, which gives

c¼ 16g9r6þðr2� 1Þc1þðr� 1Þ2c2þðr� 1Þc3þ c4 lnr

9½ð2gþ 1Þr2� 1�f3
;

(42)

where c1 to c4 are messy polynomials of g and r that are
found in Appendix B. Clearly c reduces to the uniform
dipole value 8=9 as r ! 1.

Using the expression for c, we solve the cubic equation
in Eq. (3) for the optimal dispersion parameter q, assuming
the common damping partition � ¼ 1=2. Then the mini-
mum EME emittance can be determined by Eq. (2). The
parametric plot of the EME emittance improvement factor

1=F̂ EME is again similar to Fig. 1. The maximum EME
emittance improvement as a function of � is plotted in
Fig. 11, while the optimal r parameter is plotted in Fig. 12.

The optimal Twiss parameters can be computed via 	 ¼
G=

ffiffiffiffiffiffiffijGjp
with G given by Eq. (9). We skip the messy

analytical result and simply plot the optimal initial �0=L
and �0 in Figs. 13 and 14. Again, �min ¼ 1=�0, and the
phase advance across the dipole is given by Eq. (41).

The optimal dispersion at the dipole entrance is given by

�opt ¼ qopthh�̂0ii= ��, which yields
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FIG. 11. Maximum improvement factor for EME emittance as
a function of � ¼ Bmax=Bref . The blue dots are the exact values.
The red curve is given by the approximate expression 1=F̂ð�Þ ¼
�0:349þ 1:9�� 0:366�2 þ 0:0364�3 � 0:001 37�4. The val-
ues at � ¼ 2, 4, and 6 agree with the results in [12].
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FIG. 12. The optimal bending profile parameter ropt ¼
�max=�0 as a function of � for minimum EME emittance. The
red curve is given by the approximate expression roptð�Þ ¼
�5:03þ 6:37�þ 0:103�2 þ 0:004 26�3 � 0:000 389�4.
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FIG. 13. The initial beta over dipole length for the minimum
EME emittance. The red curve is given by the approximate
expression �0=Ldipole ¼ 0:593=�þ 1:22=�2.
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FIG. 14. The initial �0 for the minimum EME emittance. The
red curve is given by the approximate expression �0 ¼ 2:23þ
1:48=�� 0:04�.
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�0

qoptL�
¼ � 2g3 þ 3½1þ gþ g2 � 4

r þ 3�g�g2þ2ð1�gÞ lnr
r2

�
6ðgþ lnrÞðgþ r� 1Þð2gþ 1� 1=r2Þ

(43)

and

�0
0

qopt�
¼ 2g2 þ 2gþ 1� ð2gþ 1þ 2 lnrÞ=r2

2ðgþ lnrÞð2gþ 1� 1=r2Þ : (44)

Note that, although the right-hand side of Eq. (43) has the
same expression as that of Eq. (36) except for a �4 factor,
the optimal profile parameters g and r are different for
TME and EME lattices. Figures 15 and 16 plot the optimal
values of initial dispersion for minimum EME lattices.

VI. TRANSFER MATRIX OFA
LINEAR-RAMP DIPOLE

Transfer matrices are essential for lattice designs. To
facilitate investigation of lattices using the optimal dipole
profile with linear ramps, we present the exact transfer
matrix of a linear-ramp dipole whose bending radius

changes linearly inside the dipole. What needs to be solved
is the dispersion equation

d2D

ds2
þ 1

�ðsÞ2 D ¼ 1

�ðsÞ (45)

with �ðsÞ ¼ �0 þ �0s, and the initial condition D0 ¼
D0

0 ¼ 0 at the entrance.

An obvious special solution of this inhomogeneous dif-
ferential equation is D ¼ �. The general solution is a
summation of this special solution with the general solu-
tion of the corresponding homogenous equation. It is in-
teresting to note that this homogeneous equation is the
same as the equation of motion (in the reduced coordi-
nates) for a particle passing an accelerating rf cavity, as
discussed in Appendix D of [15]. The solution is given by
the transfer matrix

M ¼

ffiffiffiffi
�
�0

q �
cosu� 1

2$ sinu

� ffiffiffiffiffiffi
�0�

p
$�0 sinu

� $�0ffiffiffiffiffiffi
�0�

p
�
1þ 1

4$2

�
sinu

ffiffiffiffi
�0

�

q �
cosuþ 1

2$ sinu

�
2
6664

3
7775;

(46)

where u � $ ln �
�0
and$ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
�02 � 1

4

q
. To get the dispersion-

generating vector �, we only need to pick the special
solution with the initial condition �ð0Þ ¼ 0, which is � ¼
½�; �0�T �M½�0; �

0�T and reads

� ¼
�� ffiffiffiffiffiffiffiffiffi

�0�
p �

cosuþ 1
2$ sinu

�

�0
�
1�

ffiffiffiffi
�0

�

q �
cosuþ

�
1
4$ �$

�
sinu

��
2
6664

3
7775: (47)

In case �0 ¼ 2, one has to take the limit $ ! 0 for all
elements in M and � given above.

VII. CONCLUDING REMARKS

Based on simple linear-ramped bending profiles that
have been shown sufficiently close to the optimal for
reaching the minimum emittance, we computed the theo-
retical minimum emittance for TME, AME, and EME
lattices with arbitrary bending profiles. For TME lattices,
the profile is symmetric with a constant field segment at the
center and linear ramps at both ends. For AME and EME
lattices it is asymmetric, starting with a constant field
segment followed by a linear ramp to the end. Suppose
the constant field is � times the reference uniform dipole
field, the optimal lengths of this constant segment for
TME, AME, and EME as a fraction of the dipole length
is given by Eq. (27) and are plotted in Fig. 17. The
corresponding theoretical-minimum-emittance improve-
ment factors over the reference dipole are summarized in
Fig. 18. Analytical formulas as well as approximate ex-
pressions are given for the theoretical minimum emittances
and required optics parameters.
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FIG. 16. Initial dispersion slope �0
0=� for minimum EME

emittance. The red curve is given by the approximate expression
�0:281� 0:122�þ 0:0105�2 � 0:000 389�3 þ 0:276 ln½k�.
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FIG. 15. Initial dispersion �0=ðL�Þ for minimum EME emit-
tance. The red curve is given by the approximate expression
0:298=�4 � 0:448=�3 þ 0:292=�2.
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It is clear that, compared to the conventional uniform
dipoles, a significant reduction in theoretical minimum
emittance can be achieved with optimal bending profiles.
However, there are challenges to implementing theoretical-
minimum-emittance lattices mainly due to the stringent
requirement of small beta function, even for uniform di-
poles. Nonetheless, it is still possible to gain even with
beta function mismatch. For example, if one starts with a
minimum emittance lattice with uniform dipoles, then

replaces them with optimal dipoles but keeps the same
beta function, the gain in theoretical minimum emittance
is over �, but the loss in TME emittance due to beta

function mismatch is given by ð ~�þ 1= ~�Þ=2	 �=2.
Thus, the net TME emittance reduction is about a factor
of 2. Further reduction has to rely on a better matched beta
function. Since the minimum beta is proportional to dipole
length, one may consider increasing dipole length, but
there are costs and other limitations to consider.
This paper explored the emittance reduction for a

given bending angle. The cubic dependence of emittance
on the bending angle motivated the development of multi-
bend-achromat lattice for future light sources using uncon-
ventional magnets [16,17]. It will be interesting to see
whether a combination of both approaches can yield lower
emittance and/or better lattices. Strong natural chromatic-
ity is a challenge for all low emittance lattice and thus
deserves systematic analysis, which is beyond the scope of
this paper.
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APPENDIX A: INTEGRALS USED
IN THE COMPUTATION

The integrals used to compute hh�ii and hh��Tii are listed
here: Z L

0

ds

�2
¼ L0

�2
0

�
1þ r� 1

gr

�
; (A1)

Z L

0

ds

�3
¼ L0

�3
0

�
1þ r2 � 1

2gr2

�
; (A2)

Z L

0

�̂pds

�3
¼ L2

0

2�4
0

�
1þ ð1þ 2gÞðr2 � 1Þ � 2 lnr

2g2r2

�
; (A3)

Z L

0

�̂ds

�3
¼ � L3

0

6�4
0

�
1þ 3½ð1þ gþ g2Þr2 � 4rþ 3� g� g2 þ 2ð1� gÞ lnr�

2g3r2

�
; (A4)

Z L

0

�̂2
pds

�3
¼ L3

0

3�5
0

�
1þ 3½ð2g2 þ 2gþ 1Þðr2 � 1Þ � 2ð2gþ 1þ lnrÞ lnr�

4g3r2

�
; (A5)
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FIG. 18. Summary of improvement factors in the theoretical
minimum emittances for TME (red), AME (blue), and EME
(green) lattices, resulting from the above optimal profiles.
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FIG. 17. Parameters of optimal linear-ramped bending pro-
files. The constant peak field segment is � times the reference
uniform dipole of the same length and bending angle, has a
fractional length L0=L given by the curves (red, blue, and green
for TME, AME, and EME, respectively), and contributes
ðL0=LÞ� percentage to the bending angle. The end field is
weaker by a factor of r, which is plotted in Figs. 3, 8, and 12.
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Z L

0

�̂�̂pds

�3
¼ � L4

0

8�5
0

�
1þ 4ðgþ 1Þðr� 1Þ2 þ g2ð2gþ 3Þðr2 � 1Þ � 2½3g2 þ 4r� 4þ 2ðg� 1Þ lnr� lnr

g4r2

�
; (A6)

Z L

0

�̂2ds

�3
¼ L5

0

20�5
0

�
1� 5fxð1� rÞ þ 4½g3 þ 3þ 4gðr� 1Þ � 2rðrþ 2Þ� lnrþ 4ðg� 1Þ2ðlnrÞ2g

2g5r2

�
: (A7)

where x ¼ 10� 22rþ gð2þ gÞ½g2 � 4þ ðg2 þ 4Þr�.

APPENDIX B: EXPRESSIONS FOR THE c PARAMETER

The c parameter for a dipole starting with a constant bending radius followed by a linear ramp to the end is given by
Eq. (42), where the messy subexpressions are listed here:

c1 ¼ 36f2g8r4 � g7r2ð7r2 � 1Þ � 15ðr� 1Þ2½2gð13r2 � 2rþ 1Þ þ 7r2 � 2r� 1�g (B1)

c2 ¼ 36g2fg3r2ð99r2 þ 18r� 1Þ � 5gð3r� 1Þð41r3 þ 25r2 þ 3rþ 3Þ � 30ð24r4 � 11r2 � 2rþ 1Þ�g (B2)

c3 ¼ 3g4½2g2r2ð151r3 � 49r2 � 21r� 21Þ � 15ð167r5 � 65r4 � 100r3 � 52r2 � 3r� 3Þ� (B3)

c4 ¼ 4320r2ðlnrÞ2 þ 12r2 lnrc5 þ 36rc6 (B4)

c5 ¼ 540ðr2 � 1Þ þ 5gð216þ 216g� 12g2 � 39g3 � 24g4 þ 16g5Þr2 þ 3gð�360þ 20g2 þ 35g3 � 16g4Þ (B5)

c6 ¼ �60ð2� 2gþ g2Þ þ ð510þ 360gþ 360g2 � 100g4 þ 6g5 þ 7g6Þr
þ 20ð�24� 24g� 12g2 þ 2g3 þ 5g4Þr2
� ð60þ 480gþ 840g2 þ 560g3 � 100g4 � 154g5 þ 17g6 þ 12g7Þr3
þ 20ð1þ 2gþ 2g2Þð6þ 6gþ 3g2 � 4g3Þr4 þ 30ð1þ 2gþ 2g2Þ2r5: (B6)
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