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This paper presents a theoretical investigation on the multipole moments of charged particle beams

in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a

single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all

single-particle results. This paper also presents an analysis and design method for a beam position monitor

(BPM) that detects higher-order (multipole) moments of a charged particle beam. To calculate the electric

fields, a numerical analysis based on the finite difference method was created and carried out. Validity of

the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with

circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the

SPring-8 linac. The results of the numerical calculations show that the second-order moment can be

detected for beam sizes ^ 420 �m (circular) and ^ 550 �m (elliptical).

DOI: 10.1103/PhysRevSTAB.15.012801 PACS numbers: 29.20.�c

I. INTRODUCTION

Today, beam position monitors (BPMs) are not only
used in ring accelerators but also in linear accelerators
(linacs) for essential beam diagnostics purposes.
Typically a symmetric arrangement of four pickup elec-
trodes serves as a BPM detector to obtain the position of
the beam centroid (beam position). Recently, a BPM with
eight electrodes has been developed and tested to obtain
the second-order moments of the beam charge distribution
[1,2] in a beam duct with circular cross section.

To design a BPM pickup, an analytical or numerical
calculation of the electric field is essential. In the case of a
four-electrode BPM, this is rather simple, because the
beam can be treated as a point charge. In the case of a
BPM with more electrodes, as used for the measurement of
higher-order moments, the field calculation must be per-
formed considering the beam charge distribution in the
two-dimensional transverse plane.

Traditional two-dimensional nth-order charge moments
were obtained by convolution integrals of a charge distri-
bution �ðx; yÞ with an extraction function xjyn�j [2,3] in
Cartesian coordinates. This calculation yields the indepen-
dent moments in general, but requires extensive algebra.

Because there are only two independent elements of
two-dimensional nth-order moments, we propose two
moments that are orthogonal in the polar coordinates.
Consequently, the nth-order cosine and sine charge

moments are obtained by convolution integrals of charge
distribution �ðr; �Þ with extraction functions rn cosn� and
rn sinn� (see the Appendix):Z 2�

0

Z 1

0
�ðr; �Þrn cosn�rdrd�;

Z 2�

0

Z 1

0
�ðr; �Þrn sinn�rdrd�:

(1)

Another theoretical feature of this paper is its consid-
eration of discrete charge distribution, which consists of
infinitely small particles instead of continuous distribution
[1]. Because a charged particle beam is a system that
consists of multiple particles, the higher-order (multipole)
moments of a multiparticle beam are considered the sum of
the multipole moments of the individual particles.
Furthermore, the electric field is considered a superposi-
tion of the fields generated by each particle. Therefore, we
calculate the multipole moments of each single particle of
the beam (single-particle system) and total them to get the
multiple moments for the entire beam (multiparticle sys-
tem). The electric field is computed in a similar way: first
for each single particle (single-particle system) and then
taking the superposition of the results to acquire the elec-
tric field generated by the complete multiparticle distribu-
tion (multiparticle system). Applying these procedures, the
analysis of multipole moments and multiparticle systems
are clearly separated and distinguishable.
In the SPring-8 linac, four-electrode BPMs of two differ-

ent apertures are currently installed to fit the transverse
beam envelope. One has a circular cross section and is used
in the nondispersive section of the linac [4]; the other one
has a quasielliptical cross section and is used in the dis-
persive section [5]. A BPM with a quasielliptical cross
section ensures that the lowest beam-duct cutoff frequency
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at the BPM is well above the detection frequency of the
readout system.

Some of these BPMs will be replaced by six-electrode
BPMs to measure the second-order moments of the trans-
verse beam charge distribution. Using six electrodes is
sufficient to detect the second-order moments, while the
signals of the third-order moments might be too small to
detect because the signal strength of the nth-order moment
is inversely proportional to the nth power of the duct radius.

II. ANALYSIS OF MULTIPOLE MOMENTS WITH
RESPECT TO BEAM CHARGE DISTRIBUTION

Multipole charge moments are quantities associated
with beam charge distribution. In this section we define
charge distributions and extract multipole moments from
these distributions. Finally, we discuss the relation between
second-order moments and beam sizes.

A. Charged particle distribution and
multipole moments

First, we derive the charge moments from the charge
distribution of a single-particle system. Because the calcu-
lation is performed in a two-dimensional transverse plane,
a charged particle is not expressed as a point but as an
infinitely long line charge. Assume a point charge with line
charge density �, located at position ðr; �Þ ¼ ðb; �Þ using
polar coordinates, as shown in Fig. 1.

The single-particle distribution �singleðr; �Þ can be ex-

pressed by a delta function:

�singleðr; �Þ ¼ �

�r
�ðr� bÞ�ð�� �Þ: (2)

The delta function along the � axis can be expressed as a
series of cosine functions by modifying Eq. (2):

�singleðr; �Þ ¼ �

�r
�ðr� bÞ

�
1

2
þ X1

n¼1

cosfnð�� �Þg
�
: (3)

Using the definition given by Eqs. (1) and (3), the nth-
order cosine and sine charge moments are obtained:Z 2�

0

Z 1

0
�singleðr;�Þrncosn�rdrd�¼�bncosn�¼�pn;Z 2�

0

Z 1

0
�singleðr;�Þrn sinn�rdrd�¼�bn sinn�¼�qn;

(4)

where

pn ¼ bn cosn�; qn ¼ bn sinn�: (5)

In this paper we define pn, qn as the nth-order cosine and
sine moments instead of nth-order cosine and sine charge
moments �pn, �qn.
Now we derive the nth-order charge moments for a

multiparticle system. A multiparticle distribution
�multiðr; �Þ can be expressed as a sum of single-particle
distributions �single Nðr; �Þs:

�multiðr; �Þ ¼
XM
N¼1

�single Nðr; �Þ: (6)

In Eq. (6) N is the suffix of the Nth particle and M is the
number of particles (M ^ 2). For beam with particles of
higher charge states, we consider multiple single charged
particles exist at the same transverse position.
Similar to pn, qn, we define nth-order cosine and sine

moments Pn, Qn by convolution integrals of �multiðr; �Þ
with corresponding extraction functions rn cosn�, rn sinn�,

Z 2�

0

Z 1

0
�multiðr;�Þrncosn�rdrd�¼�

XM
N¼1

pNn¼�Pn;

Z 2�

0

Z 1

0
�multiðr;�Þrnsinn�rdrd�¼�

XM
N¼1

qNn¼�Qn;

(7)

where

pNn¼bnN cosn�N; qNn¼bnN sinn�N; �¼M�;

Pn¼anncosn	n¼ 1

M

XM
N¼1

pNn;

Qn¼ann sinn	n¼ 1

M

XM
N¼1

qNn;

ann¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
nþQ2

n

q
; n	n¼ arctan

Qn

Pn

ð0 n̂	n<2�Þ:

(8)

B. Absolute and relative moments

A multiparticle system has a center of charge, and the
characteristics of this centroid can be expressed by multi-
pole moments.
The previous expressions for Pn, Qn are not useful in

this context, since we want to know the multipole moments
with respect to the centroid of the multiparticle system, not
for the origin of the coordinate system. However, since Pn,
Qn are measured quantities using BPMs, we extract rela-
tive moments with respect to the centroid from measured
absolute moments Pn,Qn and the moments of the centroid.
To obtain the relative moments we use the following
geometric procedure.
Figure 2 shows a multiparticle system. Shown are three

particles and their centroids, with the position of the Nth
particle at ðbN cos�N; bN sin�NÞ. The location of the

FIG. 1. Configuration of a single-particle system in the two-
dimensional transverse plane.
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centroid is at ðbG cos�G; bG sin�GÞ, and the relative
position between the Nth particle and the centroid is
ðbNg cos�Ng; bNg sin�NgÞ, which allows us to express the

relative position of the Nth particle as

bNg cos�Ng ¼ bN cos�N � bG cos�G;

bNg sin�Ng ¼ bN sin�N � bG sin�G:
(9)

Using Eq. (9) and the addition and subtraction theorems
of the trigonometric function, the nth-order relative
moments pNgn, qNgn can be expressed by the absolute

moments pNn, qNn and the moments of centroid pGn, qGn:

pNg1 ¼ pN1 � pG1; qNg1 ¼ qN1 � qG1; (10)

pNg2 ¼ pN2 � pG2 � 2bGbNg cosð�G þ �NgÞ;
qNg2 ¼ qN2 � qG2 � 2bGbNg sinð�G þ �NgÞ;

(11)

pNg3 ¼ pN3 � pG3 � 3b2GbNg cosð2�G þ �NgÞ
� 3bGb

2
Ng cosð�G þ 2�NgÞ;

qNg3 ¼ qN3 � qG3 � 3b2GbNg sinð2�G þ �NgÞ
� 3bGb

2
Ng sinð�G þ 2�NgÞ;

(12)

where

pGn ¼ bnG cosn�G; qGn ¼ bnG sinn�G;

pNgn ¼ bnNg cosn�Ng; qNgn ¼ bnNg sinn�Ng:
(13)

Here, the fourth-order and higher moments are omitted. In
Eq. (10), the left side terms are the relative first-order
terms. In the right side of Eqs. (11) and (12), the third
terms involve the relative first-order terms. These terms
consequently vanish in a multiparticle system, as their
moments sum to

XM
N¼1

pNg1 ¼ 0;
XM
N¼1

qNg1 ¼ 0: (14)

Before summing all moments of the single-particle sys-
tem, we define the nth-order relative moments of the multi-
particle system with respect to centroid Pgn, Qgn, which

resemble absolute moments Pn, Qn in Eqs. (8):

Pgn ¼ angn cosn	gn ¼ 1

M

XM
N¼1

pNgn;

Qgn ¼ angn sinn	gn ¼ 1

M

XM
N¼1

qNgn;

angn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
gn þQ2

gn

q
;

n	gn ¼ arctan
Qgn

Pgn

ð0 n̂	gn < 2�Þ:

(15)

After summing all moments, we finally obtain the
relative moments as the following equations that resemble
Eqs. (10)–(12):

Pg1 ¼ P1 � pG1 � 0; Qg1 ¼ Q1 � qG1 � 0; (16)

Pg2 ¼ P2 � pG2; Qg2 ¼ Q2 � qG2; (17)

Pg3 ¼ P3 � pG3 � 3bGa
2
g2 cosð�G þ 2	g2Þ;

Qg3 ¼ Q3 � qG3 � 3bGa
2
g2 sinð�G þ 2	g2Þ:

(18)

Again, moments of fourth order and higher are not taken.
The procedure shows that moments of third order and
higher cannot be simply expressed solely by the moments.
Cross products appear, however, if the centroid is located at
the origin of the coordinate system, i.e., bG ¼ 0; these
cross terms vanish and the relative moments equal the
absolute moments, e.g., Pgn ¼ Pn, Qgn ¼ Qn.

C. Second-order relative moments and beam sizes

Now we discuss the relation between second-order rela-
tive moments and transverse beam sizes. First, we define
axes u, v rotated by 	g2 from axes x, y (Fig. 3).

For an Nth particle, argument 
Ng can be defined as


Ng ¼ �Ng � 	g2: (19)

Using Eqs. (15) and (19) we obtain the following system
of identities:

FIG. 2. Example configuration of a typical three-particle system.

FIG. 3. Definition of rotated axes u, v.
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a2g2 cos2	g2 � 1

M

XM
N¼1

b2Ng cos2�Ng

� cos2	g2

M

XM
N¼1

b2Ng cos2
Ng

� sin2	g2

M

XM
N¼1

b2Ng sin2
Ng;

a2g2 sin2	g2 � 1

M

XM
N¼1

b2Ng sin2�Ng

� sin2	g2

M

XM
N¼1

b2Ng cos2
Ng

þ cos2	g2

M

XM
N¼1

b2Ng sin2
Ng:

(20)

The solution to the system is

a2g2 ¼
1

M

XM
N¼1

b2Ng cos2
Ng

¼ 1

M

XM
N¼1

ðu2Ng � v2
NgÞ

¼ hu2gi � hv2
gi � �2

u � �2
v;

0 ¼ 1

M

XM
N¼1

b2Ng sin2
Ng

¼ 1

M

XM
N¼1

2uNgvNg ¼ 2hugvgi;

(21)

where

uNg ¼ bNg cos
Ng; vNg ¼ bNg sin
Ng: (22)

This solution means that the beam charge distribution,
which only has second-order relative moments, is an el-
lipse with a long radius along the u axis and a short radius
along the v axis. Consequently, a2g2 is expressed as the

difference of the squares of beam sizes �u and �v.

Figure 4 shows three examples with equivalent second-
order relative moments whose charge distributions are
expressed by contour lines. This comparison suggests
that different charge distributions can result in identical
properties ag2 and 	g2 of the second-order relative mo-

ments. However, emittances and Twiss parameters can be
deduced using more than six ag2s and 	g2s in combination

with a focusing-defocusing (FODO) magnetic array [6].

III. ANALYTICAL ANALYSIS OF
A SIX-ELECTRODE BPM WITH CIRCULAR

CROSS SECTION

In this section we derive an analytical formulation that
describes the relation between the multipole absolute mo-
ments and the electrode output signals of a six-electrode
BPM with circular cross section. Before, we briefly review
the electric field inside a metallic duct with circular cross
section.

A. Analysis of electric field inside metallic
duct with circular cross section

Again, assume a point charge is located at ðr; �Þ ¼
ðb; �Þ in the polar coordinates inside a metallic duct with
a circular cross section. The origin is the center of the duct
(Fig. 5).
The two-dimensional electrostatic potential �ðr; �Þ of

this configuration is evaluated by applying a method of
images, using a mirror point charge [7]:

�ðr;�Þ¼ �

2�"0

(
ln

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þb2�2rbcosð���Þp

� ln
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þðR2

b Þ2� 2rR2

b cosð���Þ
q þ ln

b

R

9=
;: (23)

Term lnðb=RÞ is a constant to ground the metallic duct.
The first term of the right-hand side is generated by the
charged particle, and the second term is generated by
the mirror particle. Using the addition and subtraction
theorems of the trigonometric functions, Eq. (23) can be
approximately expanded to the Taylor series under as-
sumption b � r� R:

FIG. 4. Three examples of beam charge distributions with equivalent second-order relative moments when ag2 ¼ 7 and 	g2 ¼
2�=3. Three parameters of ð�u; �vÞ are (7.16, 1.49), (7.43, 2.48), and (7.96, 3.78).
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�ðr;�Þ¼ �

2�"0

�
ln
R

r
þX1

n¼1

bn

n

�
1

rn
� rn

R2n

�
cosfnð���Þg

�
:

(24)

The electric field components are given as the differen-
tial of Eq. (24):

Erðr;�Þ¼ �

2�"0

�
1

r
þX1

n¼1

bn
�

1

rnþ1
þrn�1

R2n

�
cosfnð���Þg

�
;

E�ðr;�Þ¼ �

2�"0

X1
n¼1

bn
�

1

rnþ1
�rn�1

R2n

�
sinfnð���Þg: (25)

Because we are interested in the field at the inner surface of
the duct, R is substituted for r in Eqs. (24) and (25):

�ðR; �Þ ¼ 0; (26)

ErðR; �Þ ¼ �

2�R"0

�
1þ 2

X1
n¼1

pn cosn�þ qn sinn�

Rn

�
;

E�ðR; �Þ ¼ 0: (27)

Consequently, the potential and angular components of the
electric field vanish at the inner surface of the duct.

For a multiparticle system, electric field EMrðR; �Þ is
expressed as a superposition of ENrðR; �Þs in Eq. (27):

EMrðR;�Þ¼
XM
N¼1

ENrðR;�Þ

¼ �

2�R"0

XM
N¼1

�
1þ2

X1
n¼1

pNncosn�þqNn sinn�

Rn

�

¼ �

2�R"0

�
1þ2

X1
n¼1

Pncosn�þQn sinn�

Rn

�
: (28)

B. Derivation of multipole moments from BPM outputs

To derive multipole absolute moments from the BPM
electrode signals, we apply a known method that calculates
the signal differences between symmetrically arranged
BPM electrodes. The choice which differences to use is

not arbitrary, therefore we have to find those that return the
best measurement resolution. The selected difference has
to be sensitive to the specific components of a particular
order of that moment but insensitive to other parameters
(orthogonality). Since we are interested in second-order
moments, we limit our analysis to second orders from
now on.
The configuration of the model BPM with a circular

cross section is shown in Fig. 6. The number of electrodes
is six, and the duct radius is 16 mm. Their shared radius
is �=6, and the center of the electrodes is located at
ð2d� 1Þ�=6 (d ¼ 1; . . . ; 6) in an angular direction.
The output signals of the BPM electrodes are propor-

tional to the surface integral of the electric field in Eq. (28)
on each electrode:

Vd/R
Z fð4d�1Þ�g=12

fð4d�3Þ�g=12
EMrðR;�Þd�; ðd¼1; . . . ;6Þ: (29)

From the integral of formula (29), we obtain each output of
electrode Vd with geometrical factors cdn and sdn as fol-
lows:

Vd / �

12
þ X2

n¼1

cdnPn þ sdnQn

Rn ; (30)

where

cdn ¼
Z fð4d�1Þ�g=12

fð4d�3Þ�g=12
cosn�d�;

sdn ¼
Z fð4d�1Þ�g=12

fð4d�3Þ�g=12
sinn�d�; ðd ¼ 1; . . . ; 6Þ: (31)

The geometrical factors can be expressed using the follow-
ing four coefficients f1, h1, f2, and h2 from the integrals of
Eqs. (31):

FIG. 6. Configuration of a specific six-electrode BPM with
circular cross section.

FIG. 5. Configuration of a single point charge in a metallic
duct with circular cross section in the 2D transverse plane (polar
coordinates).
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f1¼c11¼�c31¼�c41¼c61;

h1¼ s11¼ s31¼�s41¼�s61;

0¼c21¼c51;

2h1¼ s21¼�s51;

f2¼c12¼c32¼c42¼c62;

h2¼ s12¼�s32¼ s42¼�s62;

2f2¼�c22¼�c52;

0¼ s22¼ s52:

(32)

With the help of formulas (30) and (32) we chose signal
differences Cn and Sn, which provide the best resolution
for our measurement:

C1¼V1�V3�V4þV6

V1þV3þV4þV6

¼ 12Rf1P1

�R2þ12f2P2

�12f1
�R

P1;

S1¼V2�V5

V2þV5

¼24h1
�R

Q1;

C2¼V1þV3þV4þV6�2ðV2þV5Þ
V1þV3þV4þV6þ2ðV2þV5Þ¼

18f2P2

�R2�6f2P2

�18f2
�R2

P2;

S2¼V1�V3þV4�V6

V1þV3þV4þV6

¼ 12h2Q2

�R2þ12f2P2

�12h2
�R2

Q2:

(33)

The approximated results of Eqs. (33) allow us to define
ratios Pn=Cn and Qn=Sn, which are the normalized mo-
ments:

P1

C1

¼ �R

12f1
;
Q1

S1
¼ �R

24h1
;
P2

C2

¼�R2

18f2
;
Q2

S2
¼�R2

12h2
: (34)

Equation (34) shows simple geometric factors between Pn

and Cn as well asQn and Sn. The dimension of the first and
second-order normalized moment values are in units of nth
powers of meters (length).

The nth root of the normalized moments is larger than
the half of the duct radius R, as well as for an arbitrary
electrode configuration and other signal difference defini-
tions for a metallic circular BPM:ffiffiffiffiffiffi

Pn

Cn

n

s
*

R

2
;

ffiffiffiffiffiffiffi
Qn

Sn

n

s
*

R

2
: (35)

Formula (35) indicates that the nth-order normalized mo-
ments can be roughly estimated as Rn=2n.

For certain Pn and Qn of the particle distribution, a low
value of the normalized moment results in large values for
the signal differences and enables us to measure Pn andQn

with better resolution. If we define a dimensionless differ-
ence measurement accuracy w, the following smallest
detectable cosine and sine components of beam sizes Dn

and Fn are obtained:

Dn ¼
ffiffiffiffiffiffiffiffiffiffiffi
Pn

Cn

w
n

s
; Fn ¼

ffiffiffiffiffiffiffiffiffiffiffi
Qn

Sn
w

n

s
: (36)

IV. NUMERICAL ANALYSIS OF A BPM WITH
CIRCULAR CROSS SECTION

A numerical software routine was developed to calculate
the two-dimensional electrostatic field generated by a
single line charge in a BPM of a circular or elliptical cross
section. In a multiparticle system, the electric field is
computed as a superposition of the fields generated by
individual particles; the method is based on the field cal-
culation of a single-particle system. To confirm the soft-
ware validity and accuracy, the numerically computed
values for the normalized moments were compared with
the values of the analytical analysis for the same circular
BPM, as described in the previous section.
We applied the well-known finite difference method of

successive over-relaxation for the numerical field analysis
to solve the Laplace equation in two dimensions. Its soft-
ware routine uses a square mesh with 50-�m distance 

between the mesh lines, as shown in Fig. 7. The following
was the calculation technique. The single point charge was
located at a stationary node to a constant potential, while
all the nodes of the metallic duct were set to zero volts
(ground). With these initial conditions the electrostatic
potential was successively calculated for each node, based
on the known finite difference iteration algorithm:

�I;J;Kþ1¼�I�1;J;Kþ�Iþ1;J;Kþ�I;J�1;Kþ�I;Jþ1;K

4
: (37)

In Eq. (37), I and J are the spatial mesh indices and K
denotes the iteration index. The electric field ExIJ, EyIJ was

obtained by taking the spatial difference of the potential:

ExIJ¼�Iþ1;J��I�1;J

2

; EyIJ¼�I;Jþ1��I;J�1

2

: (38)

To reduce the error of the electric field vectors, grounded
nodes were set outside by one or more nodes (Fig. 8),

FIG. 7. Nodes for numerical calculation. The mesh was square.
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avoiding the neighboring nodes around r ¼ 16 mm in
Eqs. (38) to be grounded. This decreased the nth-order
radial field amplitude bnð1=rnþ1 þ rn�1=R2nÞ in Eq. (25)
by �0:5%=n because 16 and 16.075 mm (typically) were
substituted for r and R. Therefore the numerical calcula-
tion of the normalized moments were increased by
�0:5%=n compared to the analytical results. However,
this difference could be reduced by decreasing 
 (
 ! 0).
Numerical calculations were performed using 25 test

charges placed in a symmetric 2� 2mm square around
the origin (Fig. 9).
Figures 10 and 11 show the results of the numerical

calculation. The ordinates represent the absolute moments
pn and qn, the abscissas represent the signal differences Cn

and Sn. The normalized moments, which appear as linear
coefficients in the figures, are summarized in Table I.
In Table I, the numerically calculated normalized mo-

ments are about 0:5%=n larger than the analytically calcu-
lated normalized moments. This phenomenon was
predicted in this section. Therefore, it was foreseeable
that the numerically calculated normalized moments agree
well with the analytically calculated, thus confirmed by
comparing the results.

V. NUMERICAL ANALYSIS OF A BPM WITH
ELLIPTICAL CROSS SECTION

In this section, we analyze a BPM with elliptical cross
section using the numerical method. The elliptical BPM
with six electrodes and its geometric parameters are shown
in Fig. 12. It has similar dimensions as the four-electrode
SPring-8 linac BPM with a quasielliptical cross section.
The long and short radii are 31 and 15 mm, and the shared
angle of the electrodes is �=6, and their centers are angu-
larly located at ð2d� 1Þ�=6 (d ¼ 1; . . . ; 6).
For this configuration we apply the same differences, as

discussed in Eq. (33), except for

C2 ! C0
2 ¼

kðV1 þ V3 þ V4 þ V6Þ � 2ðV2 þ V5Þ
kðV1 þ V3 þ V4 þ V6Þ þ 2ðV2 þ V5Þ ; (39)

where k is a constant that corrects C0
2 to zero, if a charged

particle is located in the beam-duct center:

kðV1þV3þV4þV6Þ�2ðV2þV5Þ¼0;

when a charged particle is located in the beam-duct center:
(40)

FIG. 8. Grounded nodes set outside by one or more nodes.

FIG. 9. Location of 25 test charges.

FIG. 10. Relation between p1 and C1, q1 and S1 of the nu-
merically calculated BPM with circular cross section.

FIG. 11. Relation between p2 and C2, q2 and S2 of the
numerically calculated BPM with circular cross section.

TABLE I. Normalized moments: Circular BPM.

Normalized moment Analytically Numerically

p1=C1 9.346 9.394

q1=S1 8.093 8.165

p2=C2 13:372 13:422

q2=S2 12:442 12:502
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For this analysis we used the same particle locations, as
in the previous circular example (Fig. 9). Figures 13 and 14
show the numerical calculation results. The normalized
moments are summarized in Table II; a correction constant
of k ¼ 2:162 was used in Eq. (39).

Comparing the results of the BPMs with circular and
elliptical cross section, the normalized moments are larger
in the elliptical case. This makes sense, because the chosen
elliptical aperture (average beam-duct radius) is larger than
the circular.

VI. DISCUSSION

Finally, we discuss the practical applications of the BPM
configuration for the measurements of second-order mo-
ments in the SPring-8 linac. The measurement accuracy
of the difference signals, which is limited by the noise level
of the signal processing electronics, is estimated as
w� 1� 10�3 [4]. For this value, based on the results in
Table I, we conclude from Eq. (36) that the smallest
detectable cosine and sine components of the beam sizes
are D1 � 9:4 �m, F1 � 8:2 �m, D2 � 420 �m, and
F2 � 400 �m for a BPM with a circular cross section.
The emittance of the SPring-8 linac is �5�

10�8� mrad at a beam energy of 1 GeV [8]. If the value
of the beta function at the BPM location is estimated to be
5 m, the beam size is 500 �m. In areas of lower beam
energy along the linac, i.e., <1 GeV, the beam size con-
sequently exceeds 500 �m. This means the second-order
moments can be measured in all locations along the linac.
For a BPM with an elliptical cross section used in the

dispersive section, the smallest detectable cosine and
sine components of the beam sizes are D1 � 9:7 �m,
F1 � 9:4 �m, D2 � 440 �m, and F2 � 550 �m with the
results shown in Table II.
The BPMs with an elliptical cross section, located in the

dispersive sections of the linac, are also used for the
measurement of the energy spread of the beam. The beam’s
energy spread was measured to be �0:15% (half width at
half maximum) behind the energy compression system [8].
The nominal dispersion at these BPM locations is around
0.5 m, and thus the beam size is estimated to be 750 �m,
which also allows us to use these BPM locations for a
measurement of second-order moments.

VII. CONCLUSIONS

We presented a comprehensive theoretical discussion of
the multipole moments of a charged particle beam in two-
dimensional polar coordinates. The charge distribution was
considered as a discrete distribution that consists of infi-
nitely small particles instead of a continuous distribution.
The multipole moments of the beam were evaluated as the
sum of the multipole moments of the charged particles.
The electric field generated by the beam was evaluated as
the superposition of the electric fields generated by indi-
vidual particles.
This paper also provides the expressions for the nth-

order absolute cosine and sine moments Pn, Qn that were

FIG. 13. Relation between p1 and C1, q1 and S1 of the nu-
merically calculated BPM with elliptical cross section.

FIG. 14. Relation between p2 and C0
2, q2 and S2 of the nu-

merically calculated BPM with elliptical cross section.

FIG. 12. Configuration of a specific six-electrode BPM with
elliptical cross section.

TABLE II. Normalized moments: Elliptical BPM.

Normalized moment Numerically

p1=C1 9.691

q1=S1 9.417

p2=C2 14:022

q2=S2 17:522
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orthogonal in a two-dimensional plane. The absolute mo-
ments were measured quantities using a beam position
monitor (BPM). The relative moments with respect to the
centroid of beam Pgn, Qgn, which we were interested in,

were presented using the moments of the centroid pGn,
qGn. Second-order relative moments Pg2, Qg2 were asso-

ciated with the beam sizes of long and short radii �u, �v of
the elliptical beam shape.

We defined normalized moments Pn=Cn, Qn=Sn, which
are important parameters to estimate the smallest detect-
able cosine and sine components of beam sizes Dn, Fn.

Metallic BPMs with a symmetric arrangement of six
electrodes of circular, as well as elliptical cross sections
were scrutinized. A numerical analysis, solving the two-
dimensional electrostatic field problem, validated the ana-
lytical analysis for a BPM with a circular cross section. For
a six-electrode BPM with elliptical cross section, a correc-
tion constant k was necessary for accurate measurements
of the second-order moments.

We finally discussed the practical limitations due to the
measurement accuracy for the SPring-8 linac. The beam
sizes in all areas, including the dispersive sections, are
large enough (^500 �m for nondispersive, ^ 750 �m
for dispersive section) to allow accurate measurements of
the second-order moments with six-electrode BPMs with
circular and elliptical cross sections.

APPENDIX

Two-dimensional charge distributions are identically
presented in both Cartesian and polar coordinates. They
are explicitly expressed as charged particle distributions
using the following delta functions:

�ðx; yÞ ¼ �
XM
N¼1

�ðx� xNÞ�ðy� yNÞ;

�ðr; �Þ ¼ �

�r

XM
N¼1

�ðr� rNÞ�ð�� �NÞ;

xN ¼ rN cos�N; yN ¼ rN sin�N;

(A1)

where � is the line charge density,N is the suffix of theNth
particle, and M is the number of particles (M ^ 2). For
beam with particles of higher charge states, we consider
multiple single charged particles exist at the same trans-
verse position.

Let us define two-dimensional nth-order complex
charge moment Ln:

Ln ¼
Z 1

�1

Z 1

�1
�ðx; yÞðxþ iyÞndxdy;

¼
Z 2�

0

Z 1

0
�ðr; �Þrnein�rdrd�;

(A2)

where i ¼ ffiffiffiffiffiffiffi�1
p

. The nth-order complex moments are
written as follows:

L0 ¼ M� ¼ �;

L1 ¼ m10 þ im01 ¼ �P1 þ i�Q1;

L2 ¼ m20 �m02 þ 2im11 ¼ �P2 þ i�Q2;

L3 ¼ m30 � 3m12 þ ið3m21 �m03Þ ¼ �P3 þ i�Q3;

L4 ¼ m40 � 6m22 þm04 þ 4iðm31 �m13Þ ¼ �P4þ i�Q4;

(A3)

where

mjðn�jÞ ¼
Z 1

�1

Z 1

�1
�ðx; yÞxjyn�jdxdy;

�Pn ¼
Z 2�

0

Z 1

0
�ðr; �Þrn cosn�rdrd�;

�Qn ¼
Z 2�

0

Z 1

0
�ðr; �Þrn sinn�rdrd�:

(A4)

Here, the fifth-order and higher moments are omitted.
Notation mjðn�jÞ is a traditional expression of the charge

moment in Cartesian coordinates [2].
From Eqs. (A3) we obtain the following relations of the

charge moments in Cartesian and polar coordinates:

m10¼�P1; m01¼�Q1; m20�m02¼�P2;

2m11¼�Q2; m30�3m12¼�P3; 3m21�m03¼�Q3;

m40�6m22þm04¼�P4; 4m31�4m13¼�Q4: (A5)

Again, moments of fifth order and higher are not taken.
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