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A frequency-dependent impedance model for laminated ferromagnetic cores is presented and analyzed.

The model assumes a multiple-winding ferromagnetic induction core composed of multiple thin layers

with linear material response. This model builds on the analysis presented by Rose et al. [Phys. Rev. ST

Accel. Beams 13, 090401 (2010)], that determined an equivalent time-dependent resistance that was used

to successfully model the loss currents in a linear transformer device cavity containing ferromagnetic

cores. The new core impedance model is more general and has been implemented as a surface-impedance

boundary condition [K. S. Oh and J. E. Schutt-Aine, IEEE Trans. Antennas Propag. 43, 660 (1995)] which

is suitable for use in multidimensional finite-difference time-domain codes.
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I. INTRODUCTION

Linear transformer drivers (LTDs) are a rapidly devel-
oping area of pulsed-power technology capable of deliver-
ing high-power, high-current, 100–300 ns output pulses in
a compact configuration [1–6]. The LTD platform is a type
of induction accelerator that utilizes close packing of pri-
mary energy storage and switching to achieve a short-
duration, high-peak-power pulse. A single LTD cavity is
comprised internally of capacitors, switches, and ferro-
magnetic cores. Within each cavity, a set of two capacitors
and a switch, connected in series, is referred to as a brick.
Individual bricks are typically arranged azimuthally
around the inside of the cavity and are connected in parallel
to a radial transmission line inside the cavity. The parallel
plate radial transmission line is either directly connected to
a load or (more typically) feeds a coaxial transmission line
that joins many similar LTD cavities in serial to form a type
of induction voltage adder [7]. Ferromagnetic cores inhibit
the flow of current along the inside of the LTD cavity.
These cores are constructed from a continuous winding of
thin (50–100 �m thick) ferromagnetic material in a ring
with the individual layers separated by a thin dielectric
material. These cores are critical components of LTD
cavities as well as other accelerator architectures [8].

New accelerators utilizing multiple LTD cavities are
presently being developed for a number of pulsed-power
and high-energy-density physics applications [9].
Triggering these LTD cavities at different times allows

for precise shaping of the output power pulse [10,11].
Recently, electromagnetic (EM), finite-difference time-
domain (FDTD) simulations have been used to model
high-power LTD cavities [11]. These simulations provide
valuable insight into the operation of an LTD cavity, in-
cluding an assessment of EM field stresses that develop at
critical component connections inside a cavity. The mag-
nitudes of these effects can be greatly increased in multiple
cavity accelerators, particularly when power-pulse shaping
is invoked since EM waves entering untriggered cavities
can create dynamic field stresses on critical electrical
components.
In this paper we present a series of models for the

equivalent impedance of the ferromagnetic cores used in
high-power LTD systems in the production of submicro-
second time scale power pulses. The basis for the models
was developed by Lammeraner and Stafl [12] and Grandi
et al. [13], in which the frequency-dependent impedance of
a nonsaturated laminated iron-core inductor was calculated
using a one-dimensional analysis of eddy currents and field
penetration and neglecting hysteresis effects. The physical
representation for the ferromagnetic core described in this
paper is illustrated in Fig. 1. A transmission line driven by a
time-dependent voltage VðtÞ results in current flow along
the conducting path that encloses a volume containing a
finite number of ferromagnetic slabs of thickness � (where
� > �!, the electromagnetic skin depth) and permeability
� (�>�0, the permeability of free space). Eddy currents,
induced by the magnetic field of the current flowing along
the cavity, flow along the slab surfaces. The magnetic field
that diffuses into the core material is an energy sink.
The models presented here complement other recent

analyses of LTD cores including Refs. [11,14]. The equiva-
lent impedance model developed in Refs. [12,13] for a
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laminated ferromagnetic core is reviewed in Sec. II. This
model is used in the analysis of a transmission line termi-
nated by the (time-dependent) core impedance in Sec. III.
Numerical examples demonstrating the use of the trans-
mission line model for different current waveforms are
given. In particular, we demonstrate the equivalence of
this model to the time-dependent core resistance model
of Ref. [11] for the case of a linearly rising current wave-
form. In Sec. IV, we review the implementation of a
surface-impedance boundary condition (SIBC) [15] for
use in EM FDTD simulations. A new set of model coef-
ficients, used by the SIBC algorithm and presented in
Sec. IV, enables the use of this algorithm for frequency
regimes appropriate for the analysis of ferromagnetic
cores. In Sec. V, we show how the fit to the impedance
function can be used to infer an equivalent circuit model
for the ferromagnetic core. In Sec. VI, we compare these
models with 2D EM simulations of an idealized ferromag-
netic core that includes finite thickness slabs of linear
media with prescribed conductivity and permeability.
While these idealized simulations represent only a small
spatial fraction of a core that is typically used in pulsed-
power applications, they demonstrate the applicability of
the SIBC to model the time-dependent response of the core
in large-scale FDTD simulations. A summary of this work
is given in Sec. VII.

II. EQUIVALENT IMPEDANCE MODEL

We consider the frequency response of the core assum-
ing that the core material properties are independent of
frequency (linear media) and that no hysteresis effects are
present (i.e., core saturation is not modeled). Under these
assumptions, Lammeraner and Stafl [12] and later Grandi
et al. [13] developed the following approximate formula

for the frequency-dependent impedance of a ferromagnetic
inductor using a one-dimensional analysis of eddy currents
and field penetration:

Zcð!Þ ¼ i!LðdcÞ
2

1þ i

�!

�
tanh

�
1þ i

2

�

�!

�
; (1)

where � is the material thickness and ! is the angular
frequency. The skin depth is

�! ¼
ffiffiffiffiffiffiffiffi
2�

�!

s
; (2)

where � and � are the material permeability and resistiv-
ity, respectively. The dc inductance is defined as

LðdcÞ ¼ �A

‘
¼ �nq�

‘
; (3)

where (see Fig. 1) q is the sheet width, ‘ is the sheet length,
and A ¼ nq� is the total cross-sectional area of the n
laminations. Equation (1) may be cast in the form

ZcðsÞ ¼
2

ffiffiffiffiffiffiffiffi
��

p
A

‘�

ffiffiffi
s

p
tanh

� ffiffiffi
s

a

r �
; (4)

where s ( ¼ i!) is the Laplace transform variable. The
frequency parameter a is given by

a ¼ 4�

��2
: (5)

III. TRANSMISSION LINE ANALYSIS

We consider the 2D transmission line and iron-core
inductor geometry of Fig. 1 with the following parameters:
n ¼ 5, h ¼ 24 �m, q ¼ 500 �m, and laminate thickness
� ¼ 50 �m. We leave the length ‘ unspecified and give
currents in units of kA=cm. (These particular parameters
are motivated by the 2D EM FDTD simulations described
in Sec. VI.) For the numerical calculations below, we set
� ¼ 80�0 and resistivity � ¼ 10�7 �m.
The response of the core is found by terminating the

transmission line with the impedance of Eq. (4). For a
voltage time history V0ðtÞ with Laplace transform ~V0ðsÞ,
standard transmission line analysis (neglecting very small
transit times) gives the following expressions for the volt-
age and current per unit length at the termination imped-
ance:

VcðtÞ ¼ L�1

�
~V0ðsÞ 2ZcðsÞ

½Z0 þ ZcðsÞ�
�
; (6)

IcðtÞ
‘

¼ 1

Z0

L�1

�
~V0ðsÞ 2Z0

½Z0 þ ZcðsÞ�
�
; (7)

where Z0=‘ ¼ �0ch=‘ is the impedance of the vacuum
transmission line (in�), and L�1 denotes inverse Laplace
transformation.

FIG. 1. Schematic of a core showing slabs of finite thickness �
and magnetic permeability �. Current flow along conductor
enclosing the slabs is driven by a parallel plate transmission
line with a gap spacing h. (This schematic is based on Fig. 2 of
Ref. [14].)
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We consider first a power law voltage ramp of the form

V0ðtÞ ¼ �V

�
t

t0

�
k
; k > 0; (8)

with Laplace transform

~V0ðsÞ ¼ �V
�ðkþ 1Þ

tk0

1

skþ1
; (9)

where t0 is a characteristic time scale. Substitution into
Eqs. (6) and (7) gives

VcðtÞ ¼ �V

t0
L�1

�
�ðkþ 1Þ
tk�1
0

1

skþ1

2ZcðsÞ
½Z0 þ ZcðsÞ�

�
; (10)

IcðtÞ
‘

¼ �V

t0

1

Z0

L�1

�
�ðkþ 1Þ
tk�1
0

1

skþ1

2Z0

½Z0 þ ZcðsÞ�
�
: (11)

The inverse Laplace transforms in Eqs. (10) and (11) may
be evaluated by the standard inversion formula and direct
numerical integration along an appropriate contour in the
complex plane. Carrying out this procedure for a linear
voltage ramp (k ¼ 1) of �V=t0 ¼ 10 kV=ns and the ge-
ometry and material parameters specified above produced
the voltage and current time histories shown in Fig. 2.

Before we consider a more general voltage time history,
we touch base with an approximate formula derived pre-
viously in Ref. [11] which applies to a linear ramp voltage
drive. We first note that for times less than a few tens of
nanoseconds we can ignore the low frequency contribution

to ZcðsÞ and take tanhð ffiffiffiffiffiffiffiffi
s=a

p Þ ’ 1 in Eq. (4). We also note
that except for the very earliest times (highest frequencies)
we may make the approximation ZcðsÞ � Z0 in Eqs. (10)
and (11). The resulting Laplace transforms may then be
inverted analytically to give

RðtÞ ¼ VcðtÞ
IcðtÞ ¼

2
ffiffiffiffiffiffiffiffi
��

p
A

‘�
ffiffi
t

p �ðkþ 1Þ
�ðkþ 1=2Þ ; (12)

which should be valid over some intermediate range of
times which will depend on the value of the parameter a
and the impedance of the transmission line. For k ¼ 1
(linear ramp), �ðkþ 1Þ ¼ 1 and �ðkþ 1=2Þ ¼ ffiffiffiffi

�
p

=2,
and Eq. (12) reduces to

RðtÞ ’ 4
ffiffiffiffiffiffiffiffi
��

p
Affiffiffiffi

�
p

‘�
ffiffi
t

p ; (13)

which is in agreement with Eq. (A8) of Ref. [11]. RðtÞ, for
the �V=t0 ¼ 10 kV=ns linear ramp and full numerical
Laplace transform inversion of Eqs. (10) and (11), is
plotted in Fig. 3, along with the approximate formula of
Eq. (13). Agreement is seen to be excellent down to a few
tenths of a nanosecond.

We also considered a second voltage drive time history
of the form

FIG. 2. Voltage and current as a function of time obtained from
the evaluation of Eqs. (10) and (11) with k ¼ 1, � ¼ 80�0, � ¼
10�7 �m, h ¼ 24 �m, q ¼ 500 �m, � ¼ 50 �m, and
�V=t0 ¼ 10 kV=ns.

FIG. 3. Resistance (times unit length) as a function of
time obtained from the evaluation of Eqs. (10) and (11)
(solid black lines) with � ¼ 80�0, � ¼ 10�7 �m, h ¼ 24 �m,
q ¼ 500 �m, � ¼ 50 �m, and �V=t0 ¼ 10 kV=ns. The dashed
curve corresponds to Eq. (13) using the same parameters.
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V0ðtÞ ¼ �V

t0
t exp½��t�; (14)

with �V=t0 ¼ 90 kV=ns and � ¼ 1=6 ns�1. This choice
of drive voltage serves to illustrate the general applicability
of the various modeling methods presented in this work,
especially when the drive voltage cannot easily be repre-
sented in a power law form. The corresponding Laplace
transform of Eq. (14) is

~V0ðsÞ ¼ �V

t0

1

ðsþ �Þ2 : (15)

Again, the Laplace transforms were obtained from Eqs. (6)
and (7) by numerical integration, and results for the core
current and voltage are shown in Fig. 4. For this more
general voltage drive the approximate expression for RðtÞ
in Eq. (13) is of course no longer applicable.

IV. SIBC FOR FDTD SIMULATION

A model for the impedance of a ferromagnetic core
suitable for implementation in FDTD simulation can be

obtained making use of the SIBC formulation of Oh and
Schutt-Aine [15]. A detailed derivation of the SIBC
method is given in Ref. [15] and a brief summary of its
present implementation in the LSP particle-in-cell simula-
tion code is given below for completeness.
We first note that Eq. (4) may be written in the form

ZcðsÞ¼
2

ffiffiffiffiffiffiffiffi
��

p
A

ffiffiffi
a

p
‘�

ffiffiffi
s

a

r
tanh

� ffiffiffi
s

a

r �
¼K

ffiffiffi
s

a

r
tanh

� ffiffiffi
s

a

r �
: (16)

Defining x ¼ s=a, we next obtain a fit to the dimensionless
function

ffiffiffi
x

p
tanh

ffiffiffi
x

p
in the form

ffiffiffi
x

p
tanh

ffiffiffi
x

p ’ C0

�
1�XN

i¼1

Ci

!i þ x

�
; (17)

where C0 is a constant and Ci and !i are dimensionless
fitting parameters. This form of fitting function implies the
following time-domain relationship between the tangential
electric and magnetic fields at time t ¼ m�t (with m as a
non-negative integer and �t the EM time step) at the
termination impedance:

~E tðm�tÞ ¼ K0½n̂� ~Ht� �
XN
i¼1

~Aiðm�tÞ; (18)

where n̂ is a unit normal vector and

~Aiðm�tÞ¼pi1½n̂� ~Htðm�tÞ�þpi2fn̂� ~Ht½ðm�1Þ�t�g
þpi3

~Ai½ðm�1Þ�t�; (19)

with

pi1¼K0Ci

!i

�
1þexpð�a!i�tÞ�1

a!i�t

�
; (20a)

pi2¼K0Ci

!i

�
1

a!i�t
�expð�a!i�tÞ

�
1þ 1

a!i�t

��
; (20b)

pi3¼ expð�a!i�tÞ; (20c)

for i ¼ 1; N and

K0 ¼ C0

2
ffiffiffiffiffiffiffiffi
��

p
A

ffiffiffi
a

p
h�

; (21)

which follows from Eq. (16). The constants pi1, pi2, and
pi3 are precomputed and the electric field is recursively
computed using Eqs. (18) and (19). As discussed in
Ref. [15], the recursive procedure is very computationally
efficient, requiring only a modest number of additional
operations and memory locations.
Weobtained afit to

ffiffiffi
x

p
tanh

ffiffiffi
x

p
over the range10�6 � x �

104 using a six-term (N ¼ 6) fit and a standard least squares
fitting routine [16]. The constant C0¼3:6780451465�102

and the fitting parameters Ci and !i are shown in Table I.
(The fitting constants as reported to ten decimal places result
in a maximum error of less than 0.1% over the ten order of
magnitude range of the variable x.) For the core material
parameters and lamination thickness considered here, the

FIG. 4. Voltage and current as a function of time obtained from
the evaluation of Eqs. (6) and (7) using the voltage drive time
history given by Eq. (14) with � ¼ 80�0, � ¼ 10�7 �m, h ¼
24 �m, q ¼ 500 �m, � ¼ 50 �m, �V=t0 ¼ 90 kV=ns, and
� ¼ 1=6 ns�1.
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frequency parametera ’ 2� 106which gives a range for the
fit of 2 � s � 2� 1010. The adequacy of the fit was tested
by using the fitting function in the numerical Laplace trans-
form calculations of Sec. III. We found that the fitted imped-
ance function reproduced the voltage and current time
histories to better than 1% after about 20 ps.

V. CIRCUIT MODEL FOR
FERROMAGNETIC CORE

We show below how a simple circuit model can be
deduced from the fit to the core impedance function pre-
sented in Sec. IV. The first step is to rewrite Eq. (17) in the
following form:

ffiffiffi
x

p
tanh

ffiffiffi
x

p ’C0

�
1�XN

i¼1

Ci

!i

þXN
i¼1

Ci

!i

!iþx

!iþx
�XN

i¼1

Ci

!iþx

�

¼C0

�
1�XN

i¼1

Ci

!i

�
þC0

XN
i¼1

ðCi=!iÞx
!iþx

: (22)

We note that since Zcð0Þ ¼ 0, the first term on the right-
hand side of Eq. (22) is zero, and we are left with

ZcðsÞ ¼ KC0

XN
i¼1

ðCi=!iÞs
a!i þ s

: (23)

We now observe that the impedance function is in the form
of a series of N circuit elements, each comprised of an
inductor and resistor in parallel as illustrated in Fig. 5. The
circuit parameters Ri and Li are obtained from Eq. (23) and
are given by

Ri ¼ KC0

Ci

!i

; (24)

and

Li ¼ KC0

Ci

a!2
i

: (25)

VI. COMPARISON OF MODELS AND
FDTD SIMULATIONS

We carried out 2D FDTD simulations of highly idealized
ferromagnetic cores to demonstrate the applicability of the
impedance models discussed in Secs. II and III. We used
the particle-in-cell code LSP [17] to carry out the simula-
tions. An explicit EM field solver was used with uniform
(dx ¼ dy ¼ 1 �m) cell sizes. Two types of simulations
were carried out. The configurations for these simulations
are illustrated in Fig. 6. In Fig. 6(a), a forward-traveling
voltage waveform is injected at the entrance to a parallel
plate vacuum transmission line, with a 24 �m gap. This
transmission line feeds a larger vacuum region containing
five individual slabs of material with permeability�>�0,
permittivity � ¼ �0, and finite resistivity �. The slabs are
50 �m thick and 500 �m long and assumed to be of
infinite extent in the third direction (into and out of the
page). Current flows around the rectangular vacuum region
and generates magnetic field that diffuses into the individ-
ual slabs. This region then looks like a time-dependent
impedance to the transmission line. The top and bottom of
each slab is capped with a one-cell-thick perfect conductor
[indicated by solid black rectangles in Fig. 6(a)] to ensure

FIG. 5. Equivalent circuit for the ferromagnetic core imped-
ance ZcðsÞ.

FIG. 6. Schematic of the 2D simulation models. In both cases,
a forward-traveling voltage waveform is introduced from the
left-hand-side feeding a parallel plate vacuum transmission line
24 �m in width. In (a), a five slab core is explicitly modeled.
The figure indicates the relevant physical dimensions. In (b), the
entire core region is replaced by a surface-impedance boundary
condition.

TABLE I. Dimensionless fitting parameters of Eq. (17) used in
the present calculations.

i Ci !i

1 1:346 295 089 4� 10�2 2:470 121 170 9� 100

2 1:647 020 858 1� 10�1 2:430 802 710 2� 101

3 1:697 787 137 0� 100 1:148 445 828 4� 102

4 2:176 236 928 2� 101 5:999 296 181 3� 102

5 3:803 902 281 0� 102 3:671 359 746 9� 103

6 4:306 800 951 0� 104 5:169 573 491 9� 104
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that the magnetic field diffusion in the slabs is 1D, facili-
tating comparison to the analytic model.

In Fig. 6(b), the entire core region downstream of the
parallel plate transmission line is replaced by the SIBC
described in Sec. IV. In the examples below, we compare
the results of these two simulation models with the numeri-
cal solution to the transmission line equations in Sec. III.

For the case of a linear voltage drive with �V=t0 ¼
10 kV=ns, we compare the voltage obtained from an LSP

core simulation to evaluation of Eq. (10) for k ¼ 1 from
Fig. 2 with � ¼ 80�0 and � ¼ 10�7 �m. The results are
shown in Fig. 7. The simulated voltage has been corrected
for the inductance of the vacuum regions in the core
that are not explicitly accounted for in the other models.
In Fig. 6(a), the impedance of the rectangular current
path region enclosing the core slabs is approximately
2:51� 10�9 H=m. The vacuum space of this region
(the area within the current path minus the area occupied
by the core slabs) is roughly 37.4% of the total current path
area, or L0 ¼ 9:4� 10�10 H=m. We correct the voltage
Vm measured in the parallel plate feed region by this
inductance value according to VðtÞ ¼ VmðtÞ � L0ðdI=dtÞ
to arrive at the voltage shown in Fig. 7.

The numerically calculated voltage and current time
histories from the model described in Sec. III are in ex-
cellent agreement with the FDTD simulation using the
SIBC, even at late times (>100 ns) where the low fre-
quency behavior of ZcðsÞ becomes important and the ap-

proximation tanhð ffiffiffiffiffiffiffiffi
s=a

p Þ ’ 1 is no longer valid. We should
reiterate here that all our results are based on the assump-
tion of a linear material response and so do not include
saturation or hysteresis effects.
At early times in Fig. 7(a), the voltage measured in the

transmission line for the simulation using the five individ-
ual material slabs is slightly lower than the other results.
The finite grid cell size and time step limits the frequencies
that can be represented in the core simulation.
We compare the nonlinear voltage drive examples

shown in Fig. 4 with results of the two types of FDTD
simulations in Fig. 8. Once again, the voltage for the FDTD
core simulation shown in Fig. 8(a) has been inductively
corrected for the finite vacuum space not included in the
transmission line model or the SIBC simulation. The over-
all agreement between the three curves is very good for the

FIG. 7. Voltage as a function of time obtained from the evalu-
ation of Eq. (10) (solid black lines) for the case of a linear
voltage drive (k ¼ 1) with � ¼ 80�0, � ¼ 10�7 �m, h ¼
24 �m, q ¼ 500 �m, � ¼ 50 �m, and �V=t0 ¼ 10 kV=ns.
These results are compared to the results of two different
FDTD simulations.

FIG. 8. Voltage and current as a function of time obtained from
the evaluation of Eqs. (6) and (7) (solid black lines) for the case
of a t expð��tÞ voltage drive [Eq. (14)] with � ¼ 80�0, � ¼
10�7 �m, h ¼ 24 �m, q ¼ 500 �m, � ¼ 50 �m, �V=t0 ¼
90 kV=ns and � ¼ 1=6 ns�1. These results are compared to
the results of two different FDTD simulations.
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time scales considered here. The voltage for the FDTD
core simulation is slightly less than the numerical solution
of Eq. (6) and FDTD simulation using the SIBC over the
first two nanoseconds. As for the linear current ramp case
shown in Fig. 7, this difference is primarily due to the finite
spatial resolution of the FDTD core simulation which does
not correctly resolve the skin depth at the highest frequen-
cies. Nevertheless, this nonlinear voltage drive case clearly
demonstrates the applicability of the SIBC condition to
FDTD simulations of pulsed-power system performance
where the dynamic response of the ferromagnetic cores is
strongly coupled to the time-dependent evolution of the
output power.

Although not shown in Figs. 7 and 8, we have compared
these results to the equivalent circuit model for the core
described in Sec. V. The circuit calculation results are
essentially identical to the SIBC simulation results as
expected.

VII. SUMMARY

Building on the work of Lammeraner and Stafl
[12], Grandi et al. [13], and Oh and Schutt-Aine [15], a
time-dependent core model for use in the analysis of high-
current pulsed-power accelerator cavities has been devel-
oped. The new model is compared to FDTD simulations of
a small, idealized representation of a core composed of five
individual ferromagnetic sheets. The use of a relatively
small ferromagnetic core in these sample calculations
allows the FDTD simulations to resolve (approximately)
the magnetic field diffusion into the core bands along with
the generation of surface eddy currents along these bands.
For the case of a linearly rising current, the new model
reproduces the time-dependent core resistance modeled in
Ref. [11].

Using newly calculated fitting coefficients, a SIBC pre-
viously developed by Oh and Schutt-Aine [15] allows the
complex impedance response of the core to be modeled in
a fast and efficient manner without resolving the individual
ferromagnetic layers of the core. The SIBC implemented in
the LSP code is based on Ref. [15] and also includes a
treatment for EM waves of arbitrary incidence angle and
polarization [18] at the SIBC (although this feature was not
required for the simulations presented here). The SIBC
model is found to be in excellent agreement with the
transmission line analysis using the effective impedance
model of Grandi et al. [13] and the FDTD core simulations.

The main impact of this work will be on future 3D
FDTD simulations of pulsed-power accelerators employ-
ing multiple LTD cavities. The generality of the SIBC
condition to model the time-dependent impedance re-
sponse of the LTD ferromagnetic cores to arbitrary current
waveforms will improve the fidelity of LTD-based accel-
erator design and performance studies. In addition, we
demonstrated that the SIBC can be expressed in terms of
an equivalent circuit representation. This formulation

should prove useful when incorporated into circuit models
of LTD systems [11]. The application of the core imped-
ance model to the analysis of LTD systems will be the
subject of a future study.
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