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Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and

experimentally for use as laser driven accelerator structures. The hollow core functions as both a

longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the

charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes

to confine the mode, forming a photonic crystal fiber in which modes exist in frequency passbands,

separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called

defect, or trapped modes having frequencies in the band gap will only propagate near the defect. We

describe the design of 2D hollow-core PBG fibers to support TM defect modes with high longitudinal

fields and high characteristic impedance. Using as-built dimensions of industrially made fibers, we

perform a simulation analysis of prototype PBG fibers with dimensions appropriate for speed-of-light TM

modes.
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I. INTRODUCTION

Because of electrical breakdown of metals in the pres-
ence of high electric fields, conventional particle accelera-
tors, which consist of metal cavities driven by high-power
microwaves, typically operate with accelerating fields of
20 to 40 megavolts=meter (MV=m). Charged particle de-
vices are often large and expensive due to the accelerator
length and total stored energy needed to achieve high
energy. Size and cost reductions are required for many
applications. By comparison, the maximum surface fields
of dielectric materials exposed to pulsed laser light are
fluence limited to the order of a joule=cm2 below two
picosecond pulse lengths and are expected to exceed
109 volts=meter (gigavolt=meter ¼ GV=m) [1]. These
fields are an order of magnitude above metallic structures,
making a laser-powered, dielectric waveguide an attractive
medium for particle acceleration [2–4].

Transverse magnetic (TM) modes are used for particle
acceleration and are so named because they have a longi-
tudinal electric field on the accelerator axis and no longi-
tudinal magnetic field on axis. To achieve particle
acceleration in the absence of conducting boundaries, a
dielectric structure must be designed to support a TMmode
with a uniform longitudinal electric field, slow the accel-
erating wave’s phase velocity to be synchronous with the

relativistic particle (v � c), and confine the field energy
near the particle beam. The refractive index of dielectrics
like silica (SiO2) is greater than one and will naturally
reduce the wave phase velocity vp ¼ c=neff ¼ !=kz. Here

c is the speed of light, neff is the mode’s effective index, kz
is the propagation constant (wave number) in the material,
! ¼ ck0 ¼ 2�c=� is the frequency, and � is the free-
space wavelength. Silica is highly resistant to radiation
damage, has a damage threshold of about 2 GV=m for
picosecond pulse lengths [1], and is highly transmissive
from about 0.2 to 2 �m [5], making this the natural wave-
length range for an optical particle accelerator. Optical
fiber technology is well developed and adaptable to draw-
ing dielectric waveguides in the form of an accelerator.
Efficient pulsed lasers have been developed by the tele-
communications industry for these wavelengths so power
sources are also available.

Field confinement without metal boundaries can be

achieved by optical interference through the creation of a

so-called photonic crystal, a dielectric structure arranged in

a periodic geometry [6,7]. Solutions to the Maxwell equa-

tions in a periodic system exhibit the symmetry of the

periodic array, and allowed modes are those which scatter

coherently from the distributed inclusions. Light waves

travel as Bloch waves, characterized as a product of a

periodic function and a plane wave with characteristic

wave vector. These Bloch waves have a dispersion relation

similar to free photons, but modified by the Fourier com-

ponents of the variation of the dielectric structure, particu-

larly near the Brillouin zone boundaries (given by half of

the unit reciprocal lattice vectors). This results in frequency
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passbands and stop bands, or photonic band gaps, through

constructive and destructive interference. The frequencies

in the band gap correspond to modes with periodicity

unmatched to the lattice and unable to propagate. The

photonic band gap (PBG) structure acts like a perfectly

reflecting mirror at these frequencies. Trapped modes,

also referred to as defect modes in optics terminology,

can be obtained by breaking the symmetry with the intro-

duction of a defect into the lattice. These modes cannot

propagate in the crystal and are spatially confined to the

defect, becoming evanescent in the extended crystal.
In this paper we consider two-dimensional (2D) PBG

fibers similar to the holey fibers motivated many years ago
for long-haul telecommunications [8], and today used for
high-power pulse delivery, gas-optic, and optofluidic ex-
periments. The longitudinal defect in a 2D PBG fiber acts as
an optical waveguide with trapped modes propagating
along the axis but confined transversely. For telecom or
pulsed power transport, the defect confines TEM-like
(transverse electric-magnetic) modes in the air core to
minimize absorption loss, and dB=km losses have been
demonstrated [9]. For an accelerator the central hole simul-
taneously provides a clear path for charged particles as well
as an optical waveguide for the TM mode. Because of the
scale invariance of the Maxwell equations, this PBG can be
tuned to any wavelength of interest, given appropriate
materials that can be treated as continuous dielectric media.

PBG confinement of TMmodes for particle acceleration
was first described by Kroll et al. [10] in 11 GHz radio
frequency (rf) structures composed of sapphire and metal-
lic boundaries. The combined advantages of slow-wave
confinement and gigavolt per meter gradients in all-
dielectric structures led to the proposal by Lin to form an
accelerator with a single glass fiber permeated by a lattice
of vacuum holes surrounding a central defect hole of larger
diameter [4]. The geometry of the original Lin concept is
shown in a quarter cross section in Fig. 1. The operating
frequency of the accelerator lies inside a band gap crossing
the light line near kza ¼ 8:2 (lattice period a), which is
illustrated in Fig. 2. In this figure, the interior regions
enclosed by the colored lines are band gaps, and outside
of these are the regions where modes of the perfect crystal
can freely propagate. The defect size is tuned to give a
trapped TM mode in the center of the band gap with a
dispersion relation crossing the light line. In this special
case, the phase velocity equals the speed of light (SOL),
giving rise to the nomenclature TM SOL mode.

Fiber accelerator design is generally very different from
that for telecommunication fibers in which a confined
TEM-like mode is desired, and other modes are suppressed
by design of the fiber defect region. Another difference is
the length of continuous fiber needed. A fiber accelerator
will be made up of many short sections, most likely inte-
grated with laser input couplers on a microfabricated chip.
The accelerator section length L is determined by the time

duration it takes the particle bunch moving near c to slip
past the wave packet with its lower group velocity, L ¼
cvg�p=ðc� vgÞ. The pulse length �p is about 10�12 sec

consistent with the damage limit at 1 �m wavelength, and
the fiber group velocity vg is typically about 0:6c, implying

a length of 450 �m. Hence, our accelerator sections are
envisioned to be of order a millimeter long, each producing
about 1 MeV energy gain, after which a rephasing must
occur between the particle bunch and the laser pulse.

FIG. 1. Quarter cross section of the Lin PBG structure, con-
sisting of a lattice of vacuum holes (white) in a glass substrate
(gray) with lattice period a and hole radii r ¼ 0:35a. The
periodic lattice holes serve to confine the accelerating mode,
and the particle beam is accelerated within the central defect,
radius R ¼ 0:52a, propagating perpendicular to the page.

FIG. 2. The lowest band gaps near the light line (v ¼ c) for the
Lin fiber plotted on the frequency vs wave number dispersion
plane as calculated with BANDSOLVE. When a defect hole of the
correct size is introduced, a TM mode with dispersion line
crossing the light line appears in the band gap.
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This paper will focus on numerical simulations of fiber
TMmodes, the design of the defect and surrounding matrix
to obtain an efficient accelerating mode, and the analysis of
as-built prototype fibers. Our scope is limited to the elec-
tromagnetic properties of the PBG accelerating modes
without consideration for input power coupling [11] and
beam-interaction issues [12], both of which are parallel
works in progress. We use a publicly available code based
on the multipole method [13] as well as the commercial
software BANDSOLVE from R-Soft [14] for the simulations.
The multipole method uses Fourier-Bessel expansions cen-
tered on each fiber hole and solutions matched at the
vacuum-dielectric boundaries [15]. The multipole method
has frequency as the input parameter, which is supplied as
the free-space wavelength � ¼ 2�c=!. The code searches
for modes with different propagation constants (longitudi-
nal wave number as distinguished by different neff) at this
frequency within a specified range. The code generally
searches for modes with complex propagation constants,
the imaginary part accounting for longitudinal attenuation
of the leaky mode as power diffracts transversely from the
finite-layer fiber. The R-Soft BANDSOLVE code uses a
plane-wave expansion [16] to solve for fiber eigenmodes
on a supercell lattice with periodic boundary conditions. In
fact what is mathematically calculated is a periodic array
of defects, and with a large enough supercell, this geometry
approximates an isolated defect. Provided that the super-
cell is large enough so the field cross talk at the edges is
limited, the defect modes can be faithfully calculated. This
is verified by repeating the calculation with supercells of
different sizes and comparing the results. This feature of
the code can be exploited to explore multidefect fibers
which have been proposed for so-called parallel or
lattice-beam accelerators [17]. We have also used the
multipole method to calculate the accelerating modes of
multidefect fibers, and this will be discussed in a future
publication.

The studies reported here are motivated to improve our
understanding of the physics of acceleration modes in PBG
fibers, inform the engineering and fabrication by our in-
dustrial partner of micron-scale capillary fibers for relativ-
istic electron acceleration, and to calculate the mode
spectrum of commercial telecom fibers that will be used
in our first beam-driven, wakefield experiments. Recently,
the first prototype fibers with dimensions designed for TM
SOL modes were successfully made through our collabo-
ration with Incom Inc. [18] The manufacture of TM-mode
fibers operating in the range of 1 to 2 �m wavelength is in
progress. The different fibers are being tested with an
electron beam as part of the ongoing experimental program
to develop all-dielectric, compact laser accelerators at the
SLAC National Accelerator Laboratory [12]. A detailed
exposition of the engineering, fabrication, and beam test-
ing of these fibers will be the subject of a forthcoming
publication.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the reader to the special properties of
TM modes near the light line in hollow-core fibers. The
fiber geometry proposed by Lin [4] is employed as an
example. These theoretical fiber dimensions are the start-
ing point for our design of borosilicate prototypes fabri-
cated by our industrial partner but with modifications
intended to increase the acceleration gradient and reduce
the high fields that can damage the glass. In Sec. III, we
present a numerical analysis of the first prototype TM
fibers drawn to micron-scale dimensions by Incom and
discuss our simulation results. In Sec. IV we show how
to significantly improve the accelerating mode properties
of a hollow-core fiber by modifying the defect, adjusting
the hole radii in the first layer, and adding small capillaries
to the lattice. In Sec. V, we discuss the TM modes in
commercial telecommunication fibers and give an example
of a TM mode predicted in R-Soft/BANDSOLVE simula-
tions. This mode can be generated in wakefield experi-
ments when a relativistic beam passes down the fiber core,
thus serving as a calibration of the codes. A summary of the
results is given in the last section.

II. TRANSVERSE MAGNETIC DEFECT
MODE IN PBG FIBER

A. Key parameters and mode properties

The three basic requirements for a traveling wave parti-
cle accelerator are a longitudinal electric field on axis
(electric field parallel to particle velocity vector), synchro-
nization of particle and wave phase velocity, and confine-
ment of field energy. The first two are needed to ensure
energy transfer to the particle over long distances. The final
requirement is one of efficiency, ensuring that input power
overlaps strongly with the region where particles will
absorb energy and be accelerated. As discussed in the
Introduction, a TM-like SOL mode is necessary for rela-
tivistic particle acceleration. The dielectric structure must
be designed to support a confined mode with a high longi-
tudinal field on axis, called the acceleration gradientG, and
a low stored power P. There will always be a maximum
field Emax in the structure where breakdown damage will
occur, and the structure is designed with as large a ratio of
G=Emax as possible. The usual accelerator figure of merit
relating gradient to stored power is defined by the so-called
characteristic impedance, Zc ¼ G2�2=P, where � is the
mode wavelength. This is the square of the voltage gain in
one wavelength divided by the mode stored power, follow-
ing the conventional electric circuit analogy.
Design of a two-dimensional PBG fiber for particle

acceleration involves a specification of both the lattice
and the defect. Since the transverse confinement of the
accelerating mode is due to an interference effect over
many lattice layers, the transverse scale of the structure
is many wavelengths. This is a major design difficulty
compared to a metallic structure, which is typically only
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about a wavelength in size transversely. The fiber fields are
spread out over a large area which must be accurately
simulated, and the fields are subject to perturbations in
the surrounding matrix. Two of the most serious effects of
structure perturbations are loss of synchronous accelera-
tion, due to change in the wavelength and phase velocity of
a wave (driven at a fixed frequency), and the radiation of
mode power. Mode confinement is never perfect as this
would require an infinite number of lattice layers. The
finite number of layers gives rise to transverse diffraction
of light out of the fiber at the boundary and decay of the
Poynting flux. For long hollow-core fibers, it is now under-
stood that the main source of power loss is scattering from
roughness at the surface of the hollow core, originating
from capillary waves frozen in during the drawing process
[19]. This is less of a problem over a millimeter accelerator
section where geometric dimensions are essentially con-
stant in the draw, and normally diffractive power loss is the
main problem. Power loss due to material absorption is no
longer an issue in pure silica fibers. Modern fibers operate
at the silica clarity limit of <1 dB=km in the 1 to 2 �m
range, which is determined by absorption and scattering
loss on SiO2 molecules, described by Rayleigh scattering
(���4) [20]. As a result, kilowatt average power is now
routine in fibers.

For a simple round-hole, hexagonal lattice, the four
constants that determine the PBG geometry are the trans-
verse hole spacing or lattice period, a, which sets the scale
of the system, the ratio of hole radius to lattice spacing,
r=a, the ratio of central defect radius to lattice spacing,
R=a, and the relative permittivity (dielectric constant) of
the matrix, �r. Because of the high degree of symmetry,
hexagonal lattices exhibit the widest band gaps (good
mode separation) compared to other regular lattices, and
their natural close-packing makes them the simplest array

to manufacture. The band diagram in dimensionless units
of ka is determined by the ratio r=a and the permittivity.
Generally as the relative amount of dielectric increases
(smaller air holes) or the permittivity increases (higher
�r), the bands shift lower in frequency with the band
diagram consisting of several well separated gaps at rela-
tively smaller values of k0a ¼ !a=c. The group velocity
of modes also decreases with smaller holes and higher
permittivity. The theoretical fiber of Lin [4] discussed in
the Introduction is an example with about half the matrix
volume being glass, as shown in Fig. 1. In this case, the
particular hole size r=a ¼ 0:35 was chosen so that a band
gap crosses the light line at about the point where the gap is
the widest, which generally improves mode confinement
(Fig. 2).
The defect hole radius R is specifically chosen so that a

TM-like defect mode crosses the light line near the center
of the band gap, ensuring good confinement and mode
separation. When the defect of size R=a ¼ 0:52 is intro-
duced, the accelerating mode shown in Fig. 3 resides in the
band gap crossing the light line near k0a ’ 8:2, corre-
sponding to � ¼ 0:77a. For example, the choice of lattice
spacing a ¼ 1:3 �m yields an accelerating mode with a
wavelength � ¼ 1 �m. This mode is reasonably efficient
for acceleration with an impedance Zc ¼ 19 �, an axial
gradient to maximum field ratio G=Emax ¼ 0:48, and a
group velocity of 0:58c. This is the smallest defect size
for which a TM mode appears in this gap. A larger defect
would be better for beam transport, but as the defect size
increases the TM mode shifts to higher frequency and out
of the gap. New TM modes may enter the band gap from
below, but they will typically have lower characteristic
impedance and gradient for reasons we discuss next.
The longitudinal and radial electric field intensities are

shown in Fig. 3 for the defect mode with phase velocity

FIG. 3. (a) Longitudinal and (b) radial electric field intensity of the defect mode crossing the light line in the PBG fiber as calculated
with the multipole method. The white circles indicate the hole boundaries. Note that a rainbow color scheme (the legend) is used to
represent magnitude with the red and blue colors being the maximum and minimum, respectively. This color scheme will be used
throughout the paper for color plots from the multipole code.
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equal to c. The longitudinal field is radially uniform
within the defect. This uniformity is a direct result of the
SOL condition (vp=c¼k0=kz¼1) since the Maxwell

equation for the longitudinal field reduces to r2
?Ez¼

ðk20�k2zÞEz¼0, implying EzðrÞ ¼ constant for the azimu-

thally symmetric solution (m ¼ 0). The mode is like a
TM01 circular waveguide mode. Strictly speaking, this
applies to an azimuthally symmetric geometry (which the
hollow core approximates), but for the hexagonal geometry
this results in the condition that in the lattice dEz=d� ¼ 0
at intervals of �=6 for the TM mode [15]. This field
behavior is evident in the regions outside the defect in
Fig. 3. A consequence of Ez being radially constant is
that both Er and H� are proportional to r in the central
vacuum region for the TM mode because Ez � k�1

z r?E?.
The impedance Zc scales approximately like ðkRÞ�4 since
the power P in the denominator is proportional to the
integral of

R
E�Hrdr. For a metallic pillbox cavity

where fields terminate at the boundary, this scaling relation
is very good. For a PBG dielectric fiber, the scaling is only
approximate since much field energy is outside the defect,
and this leads to an exponent of between 3 and 4 for
geometries we have studied. Because of this strong depen-
dence, the value of Zc for a TMmode is mainly determined
by kR when the mode is centered in the gap. Other geome-
try changes lead to second order improvements.

Regions of high electric field exist both at the defect
boundary and outside the defect as seen in Fig. 3, and this
can lead to electrical breakdown damage in the glass. The
so-called damage factor ratio DF ¼ Emax=G of the accel-
erator is simply the ratio of the maximum field in the glass,
Emax, to the accelerating field G. It determines the maxi-
mum achievable unloaded gradient in the structure when
Emax reaches the damage threshold of the material.
Because of the complicated arrangement of air holes and
dielectric, enhanced electric fields can occur at so-called
hot spots in the matrix, both in the transverse and longitu-
dinal components. Certain hole sizes and locations can be
engineered to reduce these fields and displace the hot spots
partially from dielectric into air holes, as we discuss in
Sec. IV. In spite of the details, an approximate scaling of
DF with defect radius is empirically found in the TM fibers
we have studied, specifically the ratio Emax=G is roughly
proportional to kR. A physical explanation for this scaling
is that the transverse fields increase linearly as E? � kRG
in the central defect until they contact the first dielectric
surface, after which they oscillate, and then decrease be-
yond the first layer of holes. In the matrix the oscillating
transverse and longitudinal fields are of similar magnitude
and, regardless of which component is actually larger, the
ratio is Emax=G� kR. Smaller values of kR are preferred
for better gradient, although a compromise with particle
beam aperture has to be made in an operating accelerator.
For the Lin TM mode, the maximum field is in the radial
direction and occurs with nearly equal magnitude at both

the defect edge and in the hot spots in the first layer of
holes, giving G=Emax ¼ 0:48 or DF � 2:1. For a laser
pulse length of 1 ps operating at � ¼ 1 �m, Emax �
2 GV=m for silica glass. Hence, the maximum gradient
in the example isG0 � 1 GV=m, a full order of magnitude
higher than metallic rf structures.

B. Dispersion and confinement

We generate a dispersion relation, or frequency of the
defect mode as a function of the propagation constant
(wave number), by repeating the multipole simulation for
different input frequencies. The dispersion curve is shown
in Fig. 4, from which the frequency of the synchronous
mode propagating at the speed of light is found to be
8:15c=a, approximately the same as that obtained in
Ref. [4]. The longitudinal field distribution changes rapidly
with mode wave number and, hence, phase velocity. At
longer wavelengths (kza ¼ 6:9), the mode actually exits
the band gap, becoming unconfined, and the field in the
core is highly peaked. With less field energy in the matrix,
the mode index is less than one, and the phase velocity is
greater than the speed of light (vp ¼ 1:08c). At short

wavelengths (kza ¼ 9:8), the mode is still in the band
gap, but the core field weakens and more field energy is
in the glass, increasing the mode index above one.
Although the phase velocity is less than the speed of light
(vp ¼ 0:93c), the mode becomes useless for subrelativistic

particle acceleration due to the vanishing longitudinal field.
It is instructive to see how the defect mode is confined by

studying the falloff of its Poynting flux (E�H) as we

FIG. 4. The TM mode dispersion curve near the light line
(v ¼ c) as calculated with the multipole method. Insets show
Ez field for modes at long wavelength (kza ¼ 6:9) where vp ¼
1:08c, and short wavelengths (kza ¼ 9:8) where vp ¼ 0:93c.
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move outward from the defect hole. Figure 5 shows the
intensity of the longitudinal and radial components of
the Poynting flux of the defect mode. The fiber region is
the same as in Fig. 3, but the hole boundaries are not
explicitly shown to clearly display the flux distribution.
The flux is concentrated in the glass surface regions of the
first two hole layers surrounding the defect, and histori-
cally this led to the nomenclature surface defect mode
being applied to any mode exhibiting this Poynting flux
pattern. The Poynting flux extends to the outer boundary of
holes, and results in power leaking out of the structure,
accounting for the diffractive decay of this mode in a real
fiber with a finite number of layers. As more layers of holes
are added, the confinement improves and less radial
Poynting flux escapes the fiber. The flux pattern exhibits
the hexagonal symmetry of the lattice, and this gives a clue
as to the preferred directions to couple laser light into the
structure and maximize energy transfer to the core. Power
coupling to the fiber is not discussed in this paper, although
work has begun on this topic [11].

The defect modes in hollow-core PBG fibers have be-
come recognized as belonging to two classes: core modes
with Poynting flux almost entirely contained within the
central hole and surface modes which are localized at the
boundary separating the defect and matrix [21,22]. Core
defect modes in hollow-core fibers exhibit properties simi-
lar to TM, TE, and TEM-like eigenmodes of circular
waveguides, since most of their field energy is within the
circular defect region, which mimics a finite, copper cavity
structure. An optical communication mode is an example
of a TEM core defect mode which has a transversely
polarized, dipolelike field pattern, and its Poynting flux is
almost entirely within the central hole. This gives a low
attenuation with distance as desired for long-distance com-
munication. Core modes are distinguished by the fact that
their dispersion relation never crosses the speed of light
line. Their effective index, neff ¼ ckz=! is always less
than one, and the phase velocity vp ¼ c=neff is greater

than the speed of light. The physical reason for this is the
predominance of field energy in the air core and limited
overlap of the mode fields with the surrounding high index
material, which keeps the effective index from being raised
above one. Of course the group velocity d!=dkz is always
less than c so, although the phase velocity is superluminal,
no information is transmitted faster than the speed of light.
Core defect modes are the dielectric analogs of eigen-

modes in a conducting waveguide. The number of core
modes Ncð!Þ in a gap follows a simple analytic formula
obtained by Digonnet [23], which can be written in the
simplified form Ncð!Þ � ðKaÞ2ðR=aÞ2�k=K, where K is
the average value of kz in the gap region above the light line
at frequency !, �k is the gap width in kz above the light
line, R is the defect radius, and a is the lattice period. This
estimate yields Nc � 0:4 for the Lin band gap due to R=a
being small, and consistent with this, no core modes are
found in our simulations. For accelerators, one should
ideally design the fiber such that Nc < 1 to ensure no
competing core modes. There are other competing modes
at the same frequency as the accelerating mode but outside
the band gap which are not included in this estimate. These
are the so-called lattice or cladding modes which have
fields throughout the matrix and often spatially overlap
with the defect as well. These modes are especially prob-
lematic since they may be excited by our drive laser and
not decay away in the millimeter length of fiber. The
challenge for input coupler design is to only select the
desired TMmode and not launch these competing cladding
modes.
Unlike a core mode, the dispersion relation of a surface

defect mode can cross the light line, exhibiting an effective
index that can be greater than, equal to, or less than one.
The TM accelerating mode is an example of a surface
defect mode [24]. The fields and Poynting flux tend to be
concentrated in the matrix surrounding the defect. There is
a large overlap of the fields with both lattice air holes and
glass, which can result in the phase velocity being shifted

FIG. 5. (a) Longitudinal and (b) radial Poynting flux of the TM defect mode in the PBG fiber. The fiber region is the same as in
Fig. 3, but the hole boundaries are excluded to clearly show the extended flux distribution.
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significantly above or below the speed of light. Surface
modes generally occur whenever a periodic lattice is ter-
minated at a boundary [25,26]. They are in fact lattice
modes of the perfect structure with frequencies that have
been sufficiently perturbed by the defect to lie in the band
gap [27,28]. The amount of glass around the defect tunes
the mode frequency. Increasing the amount of glass around
the core, for example by decreasing the defect size, couples
the defect mode more strongly into the lower valence band
and lowers its frequency. A larger defect has the opposite
effect, and with less glass being present, the mode moves
higher in the band gap.

Within the hollow defect region, surface modes do ex-
hibit properties of TM, TE, and TEM modes, but outside
the defect their spatial pattern does not conform to that
simple behavior, being greatly affected by the matrix
structure. The distributed fields lead to diffractive loss in
any real fiber with a finite number of layers. Figure 6 shows
the real and imaginary parts of the accelerating mode’s
effective index versus free-space wavelength for the Lin
geometry, using a six-layer multipole model and scaled to a
1:3 �m lattice period. Over this limited frequency range
we use a constant material permittivity (�r ¼ 2:13) for the
silica. The imaginary part of the effective index represents
only the diffractive loss due to Poynting flux escaping at
the matrix edge and is very sensitive to the number of
layers, being about 2� 10�4 for six layers. Confinement
improves with each added layer of holes, and the imaginary
part of neff decreases by about a factor of 2.5 for each layer
added to the Lin fiber. But every mode decays differently
according to its Poynting flux distribution. The loss
coefficient � ¼ 2kz ImðneffÞ determines the decay of
the longitudinal Poynting flux with distance traveled,

Sz ¼ S0 expð��zÞ. Fields are proportional to the square
root of the Poynting flux, so for example, if we require the
accelerating field of the Lin mode to decrease by no more
than 1% over 1 mm, then the fiber must have at least 12
layers (rounded up) corresponding to ImðneffÞ ¼ 8� 10�7.
Figure 7 shows the phase velocity, group velocity, and

dispersion parameter for this mode as calculated with the
multipole method, using a constant material permittivity
(�r ¼ 2:13). One of the important features of photonic
crystal fibers is the powerful control that their geometry
exerts over the dispersion characteristics of modes
compared to what can be accomplished with normal
bulk dielectric. The dispersion parameter D ¼
�ð!=�Þdð1=vgÞ=d! ¼ �ð�=cÞd2neff=d�2 measures the

arrival time difference per unit bandwidth per unit distance
traveled (units of nsec=nm=km in Fig. 7), relative to the
central reference wavelength, and essentially gives the
longitudinal spread of a wave packet relative to its central
value. The group velocity exhibits an extremal value when
D ¼ 0 since wave packet components on either side of the
reference wavelength must have the same group velocity if
the packet is not to spread. It is a useful property of the Lin
mode that the group velocity is maximal and D � 0 near
the light line (see Fig. 7). For a long accelerator this
solitonlike behavior will keep the wave packet from
spreading during the time it overlaps with the particle
beam, maintaining a constant accelerating field. For milli-
meter long fibers, the spreading does not accumulate as
much so D does not have to be strictly zero.

C. Matrix errors

Finally, we mention that wave synchronism with the
particle beam will be broken if the mode phase velocity

FIG. 6. (a) Real part and (b) imaginary part of the defect mode’s effective refractive index as a function of free-space wavelength for
a six-layer PBG fiber (a ¼ 1:3 �m) as calculated with the multipole method.
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changes along the accelerator length. This will occur if the
mode effective index neff changes due to randomness in
lattice hole size and position as well as defect size varia-
tion. We assume that the structure is driven at a fixed laser
frequency. If the structure geometry changes, then the
dispersion line shifts, and the mode will be excited at a
different wave number. This shifts its phase velocity away
from the speed of light. The change in phase velocity
vp=c ¼ 1=neff is related to the change in neff according

to dvp=vp ¼ �dneff=neff . We note that in the 1 mm long

prototype Incom wafers, the lattice geometry with any
randomness is nearly constant over the wafer length be-
cause the smooth draw process suppresses any short-scale
variations in the glass. For an accelerator, we expect phase
velocity changes to occur after a centimeter (�10 000�) or
more (without active adjustments) when we change to a
different set of cut wafers.

We have used the multipole method to study the shift in
neff due to changes in the defect size as well as random
lattice variations. Near the light line (neff ¼ 1), we find that
dneff=dðR=R0Þ ¼ �0:13, where R=R0 is the defect radius
normalized to its design value R0, and the variation has a
sign corresponding to the change moving the mode fre-
quency up or down. This number means that for a 1%
change in defect radius R, the mode effective index
changes by 1:3� 10�3 when driven at the same laser
frequency. The first layer of holes surrounding the central
hole are mechanically well coupled by the large surface
area of the defect. Rather than random variations, these
holes tend to move together during the draw process, and
the effective index variations due to changes in the first
layer are dneff=dðr=r0Þ ¼ �0:12 and dneff=dpos ¼ 0:05,

where r=r0 is the hole radius relative to its design value r0,
and pos denotes the position of the hole in the lattice
normalized to its design value. If the first layer is then
considered fixed to the central defect, we find that random
variations of all other lattice holes give on average
j dneff=dðr=r0Þ j¼ 0:08 and j dneff=dpos j¼ 0:08. The in-
dividual contributions to �neff from randomness in each
layer decreases as we move outward, and most of the effect
on neff is from randomness in the second layer. Any hole
randomness at the percent level beyond the seventh layer
yields insignificant changes to neff from our simulations,
presumably due to the exponentially small fields of the
confined mode.
The dispersion relation of a fully synchronous, TM

accelerating mode for a relativistic acceleration must cross
the SOL line, and consequently it must be a surface mode.
The recognition of synchronous accelerating modes as
surface defect modes implies that the details of the bound-
ary separating the defect from the surrounding matrix are
the critical ingredients which determine the accelerator
mode properties. As a consequence, the designs of PBG
fibers for telecom applications and particle acceleration
actually have opposite goals. Telecom fibers are ideally
designed with no surface modes (or a limited number)
since these have higher diffractive losses, and by mixing
with core modes due to perturbations, they can degrade the
fiber performance. A particle accelerator fiber is optimized
to support a particular surface mode, and core modes are
deleterious in that they may absorb input power near the
operating frequency. One does not expect industrially pro-
duced telecom fibers to normally support any useful accel-
erating modes, so we have had to design our fibers

FIG. 7. (a) Phase velocity, group velocity, and (b) dispersion parameter of the TM defect mode as a function of free-space
wavelength for Lin PBG fiber (a ¼ 1:3 micron) as calculated with the multipole method.
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specifically for this new purpose. This has been the focus of
our collaboration with Incom Inc., and the simulation
analysis of prototype TM fibers is discussed in the next
section.

III. ANALYSIS OF PROTOTYPE PHOTONIC
TM STRUCTURES

A. Custom defect fibers

To realize 2D PBG accelerating structures, the prototyp-
ing of TM mode fibers down to the 1–10 �m scale was
carried out between SLAC and Incom Inc. [18], a maker of
micron-scale capillary arrays, light guides, and fiber opti-
cal faceplate products used in medical and scientific appli-
cations. The prototypes are made from borosilicate glass in
an industrial draw station to dimensions provided by our
numerical simulations. The goals are to perfect the draw
process, demonstrate dimensional control, and thereby
produce a fiber accelerator that approaches gradients near
the dielectric breakdown limit. These fibers serve as
scaled-up models for our electromagnetic simulations us-
ing the multipole method and BANDSOLVE, and we assume
the cross sections can be scaled down faithfully. Recall that
the lattice period a is the only dimensional quantity which
sets the wavelength scale, and the dimensionless ratios
R=a, r=a, and the material permittivity then determine
the band gap and mode properties. Actual laser accelerator
sections will be realized using pure SiO2 drawn down to
the final dimensions of 1 to 2 �m lattice periods. In this
section we focus on the simulation of as-built geometries
produced by Incom and the physics results we obtained.
A detailed exposition of the engineering, fabrication,
and beam testing will be the subject of a future joint
publication.

The Incom fibers are made using an established stack-
and-draw technique starting with centimeter size, glass

tube stock which is heated and pulled down to micron
dimensions. The larger hollow core was obtained by sub-
stituting specially sized tubes in the central region.
Figure 8 shows an example of a fiber drawn down to a
lattice period of about 11 �m. The central defect at this
stage of the draw was approximately 12 �m in diameter.
The large hexagonal unit on the left panel of the figure is
about 60 lattice periods across, or about 0.7 mm. Fiber
samples are sliced from meter-long strands and then pol-
ished to about 1 mm thick wafers, making up our accel-
erator sections. Some polishing compound remains in two
lattice holes in the lower right detail of Fig. 8 prior to final
rinsing of this sample.
The prototypes were intended to be the first fibers with

dimensional ratios designed for TM SOL modes as well as
to demonstrate how to increase the accelerating field
strength relative to the maximum field in the glass, where
damage will occur at the highest fields. Our early simula-
tions [24] indicated that modifying the first layer of holes
could change the field strengths and distributions. For these
prototypes, the defect and surrounding capillaries were
sized to ensure a smooth match to the surrounding lattice.
Basically the central region of capillaries becomes a com-
plicated defect which we can tune to improve our accel-
eration mode.

B. Successful prototypes

The first prototypes were sampled at defect diameters
from 12 �m down to about 3 �m as the fiber draw pro-
gressed. The manufacturer varied the process controls
during the draws to determine their effect on hole dimen-
sions. During the draw, the round tubes may take on a
slightly polygonal shape as the glass flows. This is seen in
Fig. 8. But owing to the large volume of glass to air, we find
that computationally the slightly hexagonal holes can be
approximated as round holes in BANDSOLVE with no

FIG. 8. Photographs showing (a) 700 �m-wide cross section of an Incom Inc. capillary fiber drawn from borosilicate glass, and (b)
detail of the 12-micron central defect (source: Incom Inc.).
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change in the calculated band gap. The round-hole ap-
proximation is a major simplification and is used in both
our multipole and BANDSOLVE calculations. This is differ-
ent from the simulations of the honeycomb telecom fibers
to be discussed in Sec. V where the hexagonal holes
bordered by thin glass walls must be correctly modeled
in BANDSOLVE owing to the glass to air ratio being less
than 10%.

In our electromagnetic calculations, we only need the
ratios of the hole sizes relative to the lattice period from
the larger scaled models. Dimensions and positions of the
holes and defect were measured by the manufacturer from
photomicrographs of the fibers. These fibers had about 1%
variation in the lattice period and 2% to 4% variation in

hole size across the transverse sample, small enough to not
modify the band gap. We use the relative permittivity �r ¼
2:13 in all our calculations, appropriate for silica at wave-
lengths of 1 to 2 �m, since our primary goals are to test
manufacturing capabilities and determine the PBG prop-
erties of scaled down fibers at short wavelengths. The PBG
behavior at longer wavelengths is not under study here.
Silica is highly transparent from about 0.2 to 2 �m wave-
length, but exhibits various absorption bands at longer
wavelengths due to molecular vibrational states [5].
Absorption and the reduced permittivity of silica at longer
wavelengths will change the shape and location of band
gaps. The scaled-up prototype fibers probably do not trans-
mit accelerating modes well in the absorption bands,
although transmission may occur at wavelengths where
there is less absorption.
Of the several samples made by Incom in the first

experimental draws, two fibers have parameters suitable
for TMmodes. We present numerical analyses of these two
fibers which have lattice periods of 9.8 and 4:9 �m, re-
spectively. The 9:8 �m fiber has matrix parameters r=a ¼
0:363 and R=a ¼ 0:463. Its defect was slightly smaller
than desired and demonstrated how the TM mode can be
detuned to lie at the bottom of the band gap, as illustrated
by Fig. 9, calculated with BANDSOLVE, when scaled to a
permittivity �r ¼ 2:13. The 4:9 �m fiber has parameters
r=a ¼ 0:33 and R=a ¼ 0:53, which are remarkably close
to the theoretical Lin model. From our numerical analysis,
this fiber has dimensional ratios appropriate for a TM SOL
mode properly tuned to the band gap, the first such proto-
type realized to our knowledge. This fiber only needs to be
scaled down about a factor of 2 to achieve the accelerator
structures we desire, a demagnification factor that should
be achievable with the Incom draw process.
We discuss the 9:8 �m-period fiber first. The ratio r=a

for the lattice holes was 0.363 at this stage of the draw. The
dimensions were intended to be near a so-called Incom-D
design that was achievable for the tube stock available at

FIG. 9. Band gap diagram of the 9.8-micron period fiber
(defect R=a ¼ 0:463, lattice hole r=a ¼ 0:363) fabricated by
Incom Inc. showing location of TM accelerating mode as calcu-
lated with BANDSOLVE.

FIG. 10. (a) Longitudinal and (b) radial electric field intensities calculated with the multipole method for the TM defect mode of the
9.8-micron fiber.
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the time. This fiber attempted an improvement in gradient
divided by maximum field in the glass, compared to the Lin
conceptual design [4]. The holes of the first layer around
the defect have radii r1=a ¼ 0:33, slightly smaller than the
lattice holes. The central defect was intended to have
R=a � 0:52, but it tended to close during this stage of
the draw, resulting in a ratio 0.463, about 11% less than
desired. Figure 9 shows the band gap for this lattice as
calculated with BANDSOLVE. The smaller defect means that
the TM defect mode frequency is lowered, crossing the
light line at about kza ¼ 8:2. This phenomenon was dis-
cussed in Sec. II as being a natural detuning that occurs for
surface modes when the increased amount of glass couples
the mode more strongly into the lower valence band.

In spite of this detuning, the TMmode is still identifiable
in our simulations as a partially confined mode, as shown
in Fig. 10. The gradient is G=Emax ¼ 0:54 for this mode
compared to 0.48 for the Lin design. The plot of the radial
electric field gives physical insight into why this ratio is
improved. The highest fields are in the radial direction with
a maximum at the six hot spots in the first layer of holes
(radial position 1:1a). Longitudinal fields remain well
confined, but radial fields are more distributed and weak-
ened compared to the Lin mode. This reduces the radial
fields at both the defect edge and in the lattice while the
longitudinal field is maintained. Unfortunately, with the
mode at the bottom of the band gap, the Poynting flux is
less localized around the defect, and the higher integrated
power results in the impedance (�G2=P) being reduced to
about 8 ohms compared to 19 ohms for the Lin mode. This
suggests a possible trade-off in impedance and maximum
field value, but further prototyping is needed to clarify this.
The 4:9 �m-period fiber was similarly modeled numeri-

cally, and a properly confined TM mode was identified in
our simulations. This fiber has matrix parameters r=a ¼
0:33 and R=a ¼ 0:53, while the holes of the first layer
around the defect have radii r1=a ¼ 0:3, again giving us
some control of modal properties. Figure 11 shows the
band gap diagram of the 4:9 �m fiber calculated with
BANDSOLVE, scaled to a permittivity of 2.13. A portion of

the dispersion line for the TM mode crossing the light line
at kza ¼ 7:9 is shown. It is clearly localized in the gap,
demonstrating that the manufacturer can control dimen-
sions at the micron-scale adequately to tune the accelerat-
ing mode. This mode is found in both the multipole and
BANDSOLVE calculations, and it has a field ratio of

G=Emax ¼ 0:48, an impedance of 19 ohms, and a group
velocity of 0:57c.
The longitudinal and radial electric fields of this TM

mode are plotted in Fig. 12, and a lineout plot of the
longitudinal field along the two transverse dimensions is
shown in Fig. 13 when scaled to the same 1:3 �m lattice

FIG. 11. Band gap diagram of the 4:9 �m-period fiber (defect
R=a ¼ 0:53, lattice hole r=a ¼ 0:33) fabricated by Incom
Inc. showing location of TM accelerating mode as calculated
with BANDSOLVE.

FIG. 12. (a) Longitudinal and (b) radial electric field intensities calculated with the multipole method for the TM defect mode of the
4:9 �m-period fiber.
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period as the Lin example discussed in Sec. II. The longi-
tudinal field is uniform in the defect as desired for a TM
SOL mode. The highest fields are in the radial direction
and located on the defect edge, while the radial fields at the
hot spots in the first ring are reduced in this geometry
compared to the Lin mode in Fig. 3. This demonstrates
that the maximum fields can have their positions shifted in
the matrix by defect modification, while maintaining the
same impedance and ratio of G=Emax.

The phase velocity, group velocity, and dispersion pa-
rameter of the mode as a function of free-space wavelength
� ¼ !a=c are plotted in Fig. 14 using the multipole
method when scaled to the same 1:3 �m lattice period as
the Lin example. The mode crosses the light line at
1:037 �m, but at this point the group velocity is not
a maximum, and the dispersion parameter is about

D ¼ �1:2 nsec=nm=km. This should be compared with
the behavior for the Lin mode which hasD ¼ 0 at the light
line. We find that nonzero values of D (and nonmaximal
group velocity) occur at the light line when the TMmode is
not centered in the band gap. We emphasize that this
example corresponds to a real, as-built fiber as opposed
to an ideal fiber. In the next section we describe briefly
some improvements to the basic geometry that one can
explore to optimize future prototype fibers.

IV. MATRIX MODIFICATIONS TO IMPROVE
TM MODES

In the foregoing, we discussed our analysis of the Incom
fibers and the first attempts to improve the design. During
prototyping it was decided in the interest of time to use
existing capillary stock to see whether an acceptable fiber
accelerating mode could be made to verify our calcula-
tions. The fiber with 4:9 �m period survived the simula-
tion tests showing a good TM mode in the gap, and this is
the one we have focused on. In this sense, the first test was
a remarkable success. Here we briefly discuss a few ex-
amples of design changes that we have studied numerically
to improve the benchmark Lin design. There are many
options still to be investigated. We explored reducing or
eliminating holes, changing their permittivity, and making
lattice perturbations such as aperiodic inclusions or other
holey insertions. These modifications will change the dis-
tribution of fields and can potentially improve the gradient
and impedance.
In Sec. II we noted that when the TM mode is well

centered in the band gap, the value of kR had the strongest
effect on the impedance. Our analysis of the 4:9 �m Incom

FIG. 14. (a) Phase velocity, group velocity, and (b) dispersion parameter of the TM defect mode as a function of free-space
wavelength for the 4:9 �m-period fiber when scaled to a 1:3 �m lattice period.

FIG. 13. Lineout plot of the TM mode longitudinal field
(arbitrary units) calculated with the multipole method along
the two transverse dimensions (in microns) for the 4:9 �m fiber
when scaled to a 1:3 �m lattice period.
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fiber indicated that the TM mode was in the band gap but
not centered. The defect radius is R=a ¼ 0:53 and is
slightly larger than ideal, which moves the mode up in
the gap. Reducing the defect radius to R=a ¼ 0:51 tunes
the mode to the gap center at kza ¼ 7:8 and reduces the
value of kR by about 5%. The impedance increases sig-
nificantly to 24 ohms, and the gradient ratio is improved to
G=Emax ¼ 0:51 according to our simulations. With the
mode centered in the gap, the dispersion parameter D � 0.

As a second example, we show in Fig. 15 a fiber design
intended to reduce the field concentration in the lattice. We
added six microholes between the first and second layers at
the location of the hot spots in the longitudinal field and

reduced the hole radii of the first layer to keep the mode
crossing the light line (neff ¼ 1) at about the same kza.
Such microcapillaries in the PBG lattice are the analogs of
dopants in semiconductors acting as small interstitial
atoms to modify the crystal properties, and in this case
they are at the level of 5% by capillary number. This
modification resulted in the ratio of the accelerating field
in the defect to the maximum longitudinal field in the glass
increasing from 0.62 to 0.82. We note that the field uni-
formity in the defect is retained here while the pockets of
strong Ez and Er field in the lattice have become more
distributed and weaker when compared to the Lin geome-
try in Fig. 3. The radial fields are still the highest overall but
only on the defect edge, being reduced in the lattice. The
ratio ofG=Emax is 0.48, and the characteristic impedance of
this mode is 15 ohms.
Finally, we present an example of a TM fiber design with

significantly higher impedance and gradient compared to
the Lin example. The strong dependence of Zc andG=Emax

on kR means we should aim for a confined mode in a band
gap which is lower in ka but still crosses the light line. We
reduce the lattice hole size of the Lin geometry to r=a ¼
0:31, and the gap now crosses the light line near ka � 7:5
as shown in Fig. 16. This gap moves below the light line if
the hole size is reduced further. Adjusting the defect size to
R=a ¼ 0:478 we find a TM mode crossing the light line at
the gap center kza ¼ 7:54, as indicated in the figure. The
kR value of the mode is 14% less than the Lin example, and
this has a major effect on the mode properties. The char-
acteristic impedance is 28 ohms, approximately a 50%
increase over the Lin design. The field intensities are
shown in Fig. 17. The highest fields are radial and at the
defect edge. The gradient ratio is G=Emax ¼ 0:55, having
increased linearly with 1=kR. One negative attribute is that
because this gap is narrower, the confinement is 6 times
poorer than the Lin mode. We would need to add two more
layers of holes in an operational fiber to recover the same
ImðneffÞ.

FIG. 15. (a) Longitudinal and (b) radial electric field of the TM mode calculated with the multipole method for a Lin-type fiber with
extra microholes in the defect region.

FIG. 16. Band gap diagram calculated with BANDSOLVE

of a high-impedance TM mode fiber, showing the location
of the SOL mode for the matrix parameters r=a ¼ 0:31 and
R=a ¼ 0:478.
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V. TM SURFACE MODES IN TELECOM FIBERS

The designs of PBG fibers for telecommunication appli-
cations and for particle acceleration have opposite goals.
Telecom fibers are designed to support a TEM core mode
with few or no surface modes. A particle accelerator fiber
is optimized to support a particular surface mode, and core
modes are deleterious in that they may absorb input power.
We do not expect industrially produced telecom fibers to
support useful accelerating modes. But we can use these
fibers to benchmark our codes and investigate the nature of
fiber modes for laboratory experiments. Telecom fibers are
not totally free of surface modes, and some of these can be
TM modes.

We have numerically modeled the HC-1060 fiber made
by NKT Photonics (formerly Crystal Fibre) [29] using
R-Soft BANDSOLVE to search for TM SOL modes. The
HC-1060 fiber is made of silica glass (�r ¼ 2:13) and its

cross section is shown in Fig. 18(a). The lattice has a period
of 2:75 �m in the horizontal plane, the matrix is more than
90% air by volume, and the hollow defect is about 9:5 �m
in diameter. The defect region is complicated with de-
formed cells in the two layers surrounding the central
hole. The lattice was constructed in the R-Soft program
using electron microscope photographs as a guide. The
glass wall thickness sets the gap central value of k0a ¼
!a=c. Thinner webs push the gap diagram to higher fre-
quencies. The glass vertex size (the point where three walls
meet) determines the band gap width. Larger vertices widen
the band gap. The band gap is shown in Fig. 18(b). To
model the defect in BANDSOLVE, the central portion of the
lattice was removed, and a customized defect was con-
structed with triangular glass vertices and rectangular walls.
Supercell computation domains of 10� 10, 12� 12, and
14� 14 lattice periods were used to test the faithfulness of
defect mode calculations. The 12� 12 supercell usually

FIG. 17. (a) Longitudinal and (b) radial electric fields of the high-impedance TM SOL mode calculated with the multipole method.

FIG. 18. (a) Cross section of commercial HC-1060 telecom fiber (NKT Photonics [29]) and (b) band gap diagram showing location
of telecom modes (dashed line) and TM defect mode (solid line) relative to the light line (v ¼ c) as calculated with R-Soft
BANDSOLVE.
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gave a consistent determination of the effective index and
mode pattern. Typically larger supercells are needed for
larger defects to avoid field cross talk at the periodic
boundaries of the calculation domain.

In our simulation we found the expected telecom TEM
core modes with no other adjustments to the model. Being
core modes, their effective index remains less than one, and
their phase velocity is always greater than c (about 1:004c).
The dispersion lines run along the top of the light line from
kza ¼ 15:4 to 17.1 (or � ¼ 1:12 to 1:01 �m) with a nearly
constant group velocity of 0:93c. The simulation also
yielded about a dozen other core modes and many surface
modes. The number of core modes is consistent with
Digonnet’s formula [23], which gives Nc � 15 at the
widest part of the HC-1060 band gap, mainly due to the
large defect size, R=a ¼ 1:73.

The code found four TM-like surface modes crossing the
light line, but only one mode near kza ¼ 16 (1:08 �m) had
any significant accelerating field. Its location is noted in the
band gap diagram of Fig. 18(b). This accelerating mode is
very weak and has a longitudinal field on axis divided by
the maximum field in the glass of G=Emax ¼ 0:006. The
longitudinal electric field is shown in Fig. 19(a). In the
BANDSOLVE convention, the transverse directions are x and
z, and the longitudinal direction is denoted by the y coor-
dinate (which we normally designate by z in accelerator
applications). The metric called imag ratio in the plot
header is a measure of how well BANDSOLVE orthogonal-
ized the eigenmode. The quadrupole pattern of the TM
mode is an artifact of the rectangular boundaries. This
splits the true mode into two, and a second TM-like
mode (with Ez ’ 0 on axis) is found nearby in frequency,
also shown in the figure. When superimposed the two
modes exhibit the correct hexagonal symmetry. A simula-
tion with a larger 14� 14 supercell resulted in the two

modes getting closer in frequency and less coupled to the
boundary, so we expect with a large enough supercell the
true single mode would emerge. Cleanly separating surface
modes is a major computational difficulty with large-defect
fibers.
The TM SOL mode is extraordinarily inefficient for

acceleration with a characteristic impedance Zc ¼
0:005 �. The low impedance is attributable to the large
defect radius relative to the wavelength. Taking the ratio of
ðkRÞ�4 between the Lin fiber and the HC-1060 fiber, we
would estimate Zc � 0:01 �, which is within a factor of 2
of the simulation result. With so little glass in the fiber, the
mode group velocity vg ¼ 0:81 is relatively high at the

light line. The field flatness of the mode in Fig. 19(a) is
�Ez=G � 0:25 in the central region r < 0:5a, with the
field tending to increase along the horizontal axis and
decrease along the vertical axis. This asymmetry is partly
due to the aforementioned mode splitting, and the field
uniformity would improve if the two nearly degenerate
modes were combined.

VI. CONCLUSION

In this paper we have focused on the basic electromag-
netic properties of the accelerating modes in 2D hollow-
core PBG fibers and specifically to the geometry changes
that will improve both the characteristic impedance and the
ratio of acceleration gradient to maximum field. Wherever
possible we provided physical insight into accelerating
mode behavior based on the surface mode nature and the
distinction with core defect modes. The latter mode type is
almost completely localized in the hollow core with phase
velocity always greater than the speed of light, and is
exemplified by the TEM-like modes used for telecommu-
nications. Surface modes are predominantly confined to

FIG. 19. Longitudinal electric fields of the two nearly degenerate TM surface modes crossing the light line for the HC-1060 fiber as
calculated with BANDSOLVE for a value of kza ¼ 16. The solid ellipse denotes the boundary of the central defect hole.
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the defect region but with significant field in the surround-
ing matrix, leading to a phase velocity that may equal the
speed of light. This makes them suitable for synchronous,
relativistic particle acceleration, and is the main reason
why the design of telecom and accelerator fibers is so
different.

We have reported on our numerical analysis of prototype
hollow-core TM mode fibers fabricated by our industrial
partner. These fibers were drawn from centimeter-size
glass tubes down to micron scales, and the dimensional
ratios were suitable for TM SOL modes. Hollow-core
fibers with a single defect in a lattice with up to 30 layers
of surrounding holes were made in optically polished,
millimeter-thick wafers. The prototypes are only about a
factor of 2 larger in scale than needed for our final accel-
erator structures which are now being fabricated for 1 to
2 �m wavelengths. We also calculated the properties of
candidate TM SOL modes in commercial telecom fibers
which are being used in our SLAC beam experiments to
generate wakefields in fibers with relativistic beams. This
will serve to calibrate our codes with experimental mode
spectra.

The numerical analysis of prototype fibers has improved
our physical understanding of PBG accelerating modes.
The tuning of the defect mode frequency to the band gap
center by adjusting the defect size is now seen as necessary
to maximize the characteristic impedance, maximize the
group velocity, and null the dispersion parameter simulta-
neously. Interestingly, if a nonzero dispersion parameter
and a slightly reduced impedance are acceptable, we found
that when a TM mode is detuned up or down from the gap
center, the transverse fields lose confinement more than the
longitudinal fields, causing the ratio ofG=Emax to improve.
This may be a useful trade-off to reduce the damage factor.
Overall the strongest parameter to control impedance and
the ratio of gradient to maximum field in the glass is the
defect size divided by wavelength, with smaller ratios
being preferred. To this end, the matrix geometry should
be designed with the band gap crossing the light line at a
low value of ka, and kR adjusted to as small a value as
possible consistent with a TM mode being in the gap
center.

The prototype fibers demonstrated the level of random
errors that results from a draw when no special precautions
are taken to ensure a steady-state flow. Randomness in
matrix parameters will change the mode phase velocity
and cause loss of particle synchronism. The prototypes
were typically cut from meter-long sections during a tran-
sient pull from the heating fixture. Random errors of about
1% in the lattice spacing and 2% to 4% in hole sizes were
obtained. These are quite good for a transient pull, but
further prototyping is needed to determine the ultimate
level that can be achieved in steady state. In Sec. II we
quoted the expected variations in effective index and phase
velocity for Lin-type fibers, and this indicates that the

relative phase velocity variations are about 10�3 for 1%
variations in the matrix parameters. Because of the expo-
nentially small fields far from the defect, we find the phase
velocity is insensitive to one-percent lattice randomness
beyond the seventh layer of holes.
We have provided a reasonably complete discussion of

the electromagnetic aspects of PBG fiber acceleration
modes with the goal of illustrating the design requirements
and techniques to realize TM fibers and ultimately bring
these to full experimental test and verification. A more
detailed exposition of the engineering, fabrication, and
beam testing of prototype fibers will be provided in a
forthcoming paper. We have limited the scope of this paper
to the accelerator mode properties and excluded beam
loading and input power coupling issues. Optical power
coupling on the end face of a Lin-type fiber has been
studied [11], and a paper on the side coupling of power
to a fiber is in progress. Interaction of beams with the
accelerator structure is part of the ongoing experimental
program at SLAC [12] and specifically the measurement of
wakefields and synchronous particle acceleration will be
discussed in a future publication. Results from the experi-
mental program will guide us in a better understanding
of how these optical scale structures behave with particle
beams.
The field of PBG fiber acceleration is complex with

many challenging problems, but with prototype structures
now available, we can envision the first beam experiments
followed by structures with realistic input couplers and
beam focusing elements on a time scale of perhaps five
years. At each increment of energy, there should be many
intriguing and practical applications to be pursued as we
realize microscopic particle accelerators.
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