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A method is presented that enables one to compute the parameters of matched beams with space charge

in cyclotrons with emphasis on the effect of the transverse-longitudinal coupling. Equations describing the

transverse-longitudinal coupling and corresponding tune shifts in first order are derived for the model of

an azimuthally symmetric cyclotron. The eigenellipsoid of the beam is calculated and the transfer matrix

is transformed into block-diagonal form. The influence of the slope of the phase curve on the transverse-

longitudinal coupling is accounted for. The results are generalized and numerical procedures for the case

of an azimuthally varying field cyclotron are presented. The algorithm is applied to the PSI injector II and

ring cyclotron and the results are compared to TRANSPORT.
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I. INTRODUCTION

There is continuous interest in the understanding of
space charge effects in isochronous cyclotrons [1–9]. The
area is of special relevance for the conceptual designs of
cyclotrons as energy-efficient drivers for accelerator driven
systems (ADS) [10,11]. Nevertheless, there is no self-
consistent first order theory of matched bunched beams
with space charge in cyclotrons to date known to the
author. Bertrand and Ricaud showed that it is possible to
set up and solve linearized equations of motion for a simple
cyclotron model [9], but they did not determine the pa-
rameters of matched beams in cyclotrons and they did not
generalize their results in order to find a numerical method
to compute matched beams for sector-focused cyclotrons.
Information on the matched ellipsoid is of special interest
for modern high-performance codes like OPAL, that enable
one to simulate high intensity beams in the space charge
dominated regime [12,13].

First, we describe the usual simplified azimuthally sym-
metric cyclotron model (see, for instance, [14] or [15]), but
include the linearized space charge forces. The model
neglects possible effects of rf acceleration and is restricted
to the description of a coasting beam. A modified version
of Teng’s method to decouple longitudinal and horizontal
motion will be presented and applied to the simplified
analytical model [16,17]. Later we describe how this
method can be applied in an iterative numerical procedure
to determine the parameters of matched beams with space
charge in sector-focused cyclotrons. Finally, we present
some results as computed for the cyclotrons of the PSI
high intensity accelerator facility.

II. THE SIMPLIFIED CYCLOTRON MODEL

The simplest relativistic cyclotron model is based on a
magnetic field with cylindrical and midplane symmetry.
The nominal orbital frequency of an ion beam coasting in
an isochronous cyclotron is

!o ¼ q

m�
B ¼ q

m�
B0�; (1)

where q is the charge and m the rest mass of the ions. The
axial magnetic field is B ¼ BðrÞ ¼ B0�. We define a cy-
clotron length unit a ¼ c

!o
using the orbital frequency !o.

The particle velocity is v ¼ !or so that � ¼ v=c ¼ r=a.
Hence, the relativistic factor � can be written as

� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðr=aÞ2p : (2)

The axial magnetic field in dependence of the radius r is
then given by

BðrÞ ¼ B0

1þ "ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

a2

q ; (3)

where " is a small distortion of the isochronism (" � 1).
The radial field increase compensates the relativistic mass
increase and the cyclotron is strictly isochronous for
"ðrÞ ¼ 0. The field index n ¼ r

B
dB
dr is given by

n ¼ r

B

dB

dr
� r

d"

dr
þ �2 � 1; (4)

so that

1þ n � �2 þ r
d"

dr
: (5)

The phase shift per turn��� d�
dn is (see, for instance, [14])
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�� ¼ T
d�

dt
¼ T

�
d�hf

dt
� Nh

d�

dt

�
¼ 2�

!c

ð!hf � Nh!cÞ

¼ 2�

!c

ðNh!o � Nh!cÞ ¼ 2�Nh

�
!o

!c

� 1

�
; (6)

where � is the azimuthal angle, !c ¼ _� is the real orbital
frequency, and !hf ¼ Nh!o the frequency of the acceler-

ating high frequency system operated at the harmonic
number Nh. The bending radius r of a particle with charge
q in a magnetic field B is given by r ¼ p

qB and, hence, !c

can be written as

!c ¼ v

r
¼ mc��

m�r
¼ p

m�r
¼ qBðrÞ

m�
¼ q

m

B0�ð1þ "Þ
�

¼ !oð1þ "Þ; (7)

so that

!o

!c
¼ 1

1þ"
�1�" "�� ��

2�Nh

¼�
�
!o

!c

�1

�
: (8)

Hence, d"
dr is proportional to the change of the phase shift

per turn with radius.
The reference orbit corresponding to the kinetic energy

E ¼ mc2ð�� 1Þ ¼ E0ð�� 1Þ is a circle with the radius

rðEÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
�

: (9)

We will use x ¼ r� rðEÞ as the horizontal coordinate of a
specific orbit relative to the reference orbit, y as the axial
deviation from the median plane, and z as the longitudinal
coordinate.

III. SOME GENERAL REMARKS

From the assumption of midplane symmetry it follows
that the axial coordinate y is neither coupled to the hori-
zontal nor to the longitudinal coordinate. Therefore it is
sufficient to describe the coupling of horizontal and longi-
tudinal motion. Since we assume azimuthal symmetry, the
matched beam ellipse must also be azimuthally symmetric,
i.e., constant along the orbital length coordinate s. If the
matched beam is constant, then the forces are constant—
even if space charge is taken into account.

The vector describing the (horizontal and longitudinal)
displacement of an orbit at position s relative to the refer-
ence orbit is x ¼ ðx; x0; z; �ÞT , where x0 ¼ dx

ds is the hori-

zontal direction angle with the reference orbit and
� ¼ p�p0

p0
is the relative momentum deviation. We use the

formalism of linear Hamiltonian systems as for instance
described by Talman [18] including the method of Wolski
to compute the matched beam matrix [19]. The equations
of motion (to first order) can be written as

x 0ðsÞ ¼ FxðsÞ; (10)

where F is a constant 4� 4 matrix. The general solution is

x ðsÞ ¼ expðFsÞxð0Þ ¼ MðsÞxð0Þ; (11)

where MðsÞ is the transfer matrix. The matrix exponential
MðsÞ is

MðsÞ ¼ expðFsÞ ¼ 1þ Fsþ ðFsÞ2
2!

þ ðFsÞ3
3!

þ � � � : (12)

Let S be the skew-symmetric matrix with S2 ¼ �1,

S ¼

0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0

0
BBBBB@

1
CCCCCA; (13)

so that—since M is symplectic—the following relation
holds:

M TSM ¼ S: (14)

If there exists an invertible transformation matrix E and a
diagonal matrix � such that

F ¼ E�E�1; (15)

then it is easy to show that the following relation holds:

M ¼ E expð�sÞE�1 ¼ E�E�1: (16)

E is the matrix of columnwise eigenvectors and � is the
(diagonal) matrix of the corresponding eigenvalues of F.
The (imaginary) eigenvalues of F are the betatron frequen-
cies of the orbital motion. F and M have the same eigen-
vectors—and the eigenvalues of M are the exponentials of
the eigenvalues of F. The eigenellipsoid �E, defined by

�E ¼ M�EM
T; (17)

can then be written as follows [19]:

�E ¼ �EDE�1S; (18)

where D is the diagonal matrix with the eigenvalues of
�ES—which are the emittances (apart from factors �i).

IV. THE EQUATIONS OF MOTION (EQOM)

The Hamiltonian is given by

H ¼ x02

2
þ �2

2�2
þ kx � Kx

2
x2 � �2Kz

2
l2 � hx�; (19)

where the canonical coordinates are x and l and the mo-
menta are given by x0 and �. The EQOM (in first order) are

d

ds

x

x0

l

�

0
BBBBB@

1
CCCCCA ¼

0 1 0 0

�kx þ Kx 0 0 h

�h 0 0 1
�2

0 0 Kz�
2 0

0
BBBBB@

1
CCCCCA

x

x0

l

�

0
BBBBB@

1
CCCCCA; (20)

where h¼ 1
r is the inverse bending radius and kx¼h2ð1þnÞ

is the horizontally restoring force. Kx and Kz represent the
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strength of the horizontal and longitudinal space charge
forces [20]:

Kx ¼ K3ð1�fÞ
ð�xþ�yÞ�x�z

K3 ¼ 3qI�

20
ffiffiffi
5

p
�"0mc3�2�3

Kz ¼ K3f

�x�y�z

f�
ffiffiffiffiffiffiffiffiffiffiffiffi
�x�y

p
3��z

Ky ¼ K3ð1�fÞ
ð�xþ�yÞ�y�z

:

(21)

The eigenvalues of F and M are

� ¼ Diagði�;�i�; i!;�i!Þ
� ¼ Diagðei�s; e�i�s; ei!s; e�i!sÞ a � kx � Kx � Kz

2

b � KzðKx þ h2�2 � kxÞ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b

pq

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b

pq
: (22)

Note that bmust be positive to give a real-valued frequency
! and, hence, a longitudinally focused orbit. This is espe-
cially important, if we allow for a (small) field error "ðrÞ. In
this case the change of the orbital frequency as given by d"

dr

can play a significant role:

kx ¼ h2ð1þ nÞ ¼ h2
�
1þ r

d"

dr
þ �2 � 1

�

¼ h2
�
�2 þ r

d"

dr

�
¼ h2�2 þ h

d"

dr

b ¼ Kz

�
Kx � h

d"

dr

�
: (23)

If Kx < h d"
dr , then the longitudinal focusing frequency ! is

imaginary and the longitudinal beam size increases expo-
nentially with s. This in fact is a surprising feature of this
type of coupling in combination with isochronism:
Longitudinal focusing requires a strong enough horizon-
tally defocusing space charge force. On the other hand, if
d"
dr < 0, i.e., if the radial increase of the magnetic field is

below the isochronous field increase, then the longitudinal
focusing is strengthened.
The matrix of eigenvectors E of the force matrix F is

E ¼

1 1 1 1

i� �i� i! �i!

i�A �i�A i!B �i!B

Kz�
2A Kz�

2A Kz�
2B Kz�

2B

0
BBBBB@

1
CCCCCA: (24)

The inverse matrix E�1 is given by

E�1 ¼ 1

2ðA� BÞ

�B iB
� � i

�
1

Kz�
2

�B �iB
�

i
�

1
Kz�

2

A � iA
!

i
! � 1

Kz�
2

A iA
! � i

! � 1
Kz�

2

0
BBBBBBBB@

1
CCCCCCCCA
; (25)

where

A ¼ h

�2 þ Kz

B ¼ h

!2 þ Kz

: (26)

The transfer matrix M can be computed by using Eq. (16)
and one obtains

M ¼ 1

A� B

Ac� BC A~s
! � BS

�
S
� � ~s

! ABðC� cÞ
�BS�!A~s Ac� BC C� c ABð!~s��SÞ
ABð�S�!~sÞ ABðc� CÞ AC� Bc ABðB!~s� A�SÞ

c� C ~s
! � S

�
S
B� � ~s

A! AC� Bc

0
BBBBB@

1
CCCCCA; (27)

where

C¼ cosð�sÞ S¼ sinð�sÞ c¼ cosð!sÞ ~s¼ sinð!sÞ:
(28)

V. THE EIGENELLIPSOID

The matrix D is explicitly given by D ¼
Diagði"1;�i"1;�i"2; i"2Þ [19]. The matched eigenellip-
soid can then be calculated using Eq. (18):

�E¼ 1

B�A

�

B"1
� þA"2

! 0 0 "1
�þ"2

!

0 B"1�þA"2!
"1�þ"2!

Kz�
2 0

0 "1�þ"2!
Kz�

2
A"1�þB"2!

Kz�
2 0

"1
�þ"2

! 0 0 "1
B�þ "2

A!

0
BBBBBBB@

1
CCCCCCCA
:

(29)

The beam dimensions are given by the diagonal elements
of the matrix representing the eigenellipsoid:
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�2
x ¼ 1

B� A

�
B"x
�

þ A"z
!

�

�2
z ¼ 1

B� A

�
A"x�þ B"z!

Kz�
2

�
;

(30)

where "1 ¼ "x and "2 ¼ "z are identified with the hori-
zontal and longitudinal emittance, respectively. The axial
motion can be treated separately and one finds

�2
y ¼

"yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2	2

y � Ky

q : (31)

If one considers Eq. (21) together with Eqs. (30) and (31),
then it is obvious that this result does not enable one to start
a straightforward calculation, since the beam sizes depend
on the space charge forces and vice versa in an algebrai-
cally complicated way. But with the additional assumption
of a spherical beam, it is possible to derive a 4th order
equation for the beam size as will be shown in Sec. VIII.

VI. DECOUPLING LONGITUDINAL AND
TRANSVERSE MOTION

If sectors are considered, then the azimuthal symmetry is
broken and, hence, the force terms in the EQOM and
consequently the beam ellipsoid depend on the position
s. The vertical beam dynamics can still be treated sepa-
rately, but it has to be taken into account that the periodic
change of the vertical beam size influences the space
charge factors Kx and Kz. The design orbit usually has to
be computed numerically as described by Gordon [21]. If
this has been done, it is possible to compute the transfer
matrix for known starting conditions, since the equations
of motion are known and can be integrated. The problem is
to find the correct beam dimensions for a given beam
current and given emittances such that the beam is
matched, i.e., such that Eq. (17) is fulfilled.

Teng and Edwards described a parametrization for
coupled motion in two and more dimensions that allows
one to find the decoupling matrix [16,17]. They called their
method symplectic rotation. We will give a brief summary
of the method and apply it to the problem of decoupling
longitudinal and transverse motion.

Given two 2� 2 symplectic matrices A and B that
form a block-diagonal (i.e. decoupled) transfer matrix T0,

T0 ¼
A 0

0 B

 !

Að
1Þ ¼ cosð
1Þ1þ sinð
1Þ
�1 �1

��1 ��1

 !

Bð
2Þ ¼ cosð
2Þ1þ sinð
2Þ
�2 �2

��2 ��2

 !
;

(32)

where �i, �i, and �i are the familiar Twiss parameters.
Then a general symplectic transfer matrix M of coupled
motion can be written as

M ¼ M n

m N

 !
¼ RT0R

�1; (33)

where M, N, m, and n are 2� 2 matrices and R is the
symplectic rotation matrix. Teng suggested to write R in
the form

R ¼ I cosð�Þ D�1 sinð�Þ
�D sinð�Þ I cosð�Þ

 !

R�1 ¼ I cosð�Þ �D�1 sinð�Þ
D sinð�Þ I cosð�Þ

 !
;

(34)

where D is a symplectic 2� 2 transfer matrix that de-
scribes the structure of the coupling. Then one obtains
[16,17]

M ¼ Acos2ð�Þ þD�1BDsin2ð�Þ
N ¼ Bcos2ð�Þ þDAD�1sin2ð�Þ
m ¼ �ðDA�BDÞ sinð�Þ cosð�Þ
n ¼ �ðAD�1 �D�1BÞ sinð�Þ cosð�Þ:

(35)

The rotation angle � can be computed using

1
2 TrðM� NÞ ¼ cosð2�Þ½cosð
1Þ � cosð
2Þ�

2DetðmÞ þ TrðnmÞ ¼ sin2ð2�Þ½cosð
1Þ � cosð
2Þ�2:
(36)

If we apply this method to the transfer matrix computed
according to Eq. (16), we obtain

1

2
TrðM� NÞ ¼ Bþ A

B� A
½cosð�sÞ � cosð!sÞ�

2DetðmÞ þ TrðnmÞ ¼ � 4AB

ðB� AÞ2 ½cosð�sÞ � cosð!sÞ�2:
(37)

Comparison of Eqs. (36) and (37) yields

cosð2�Þ ¼ Bþ A

B� A
sin2ð2�Þ ¼ � 4AB

ðB� AÞ2 : (38)

From Eq. (26) we find that A > 0 and B> 0 and B> A
since �2 >!2, so that the method fails in the case under
study. The method of symplectic rotation is not generally
applicable and has to be extended. A workaround solution
was found by replacing trigonometric by hyperbolic
functions.2

R ¼ I coshðc Þ D�1 sinhðc Þ
D sinhðc Þ I coshðc Þ

 !

R�1 ¼ I coshðc Þ �D�1 sinhðc Þ
�D sinhðc Þ I coshðc Þ

 !
;

(39)

2Formally this extension is a rotation about an imaginary
angle, similar to a Lorentz boost in Minkowski space.

C. BAUMGARTEN Phys. Rev. ST Accel. Beams 14, 114201 (2011)

114201-4



with DetðDÞ ¼ �1, i.e. D is not symplectic—but R is
symplectic. Table I compares the formulas of the symplec-
tic rotation and of the symplectic Lorentz boost. Applying
this method to the case under study then gives

sinhð2c Þ ¼ 2
ffiffiffiffiffiffiffi
AB

p
B� A

coshð2c Þ ¼ Bþ A

B� A

tanhð2c Þ ¼ 2
ffiffiffiffiffiffiffi
AB

p
Bþ A

sinhðc Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A

B� A

s

coshðc Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
B

B� A

s
tanhðc Þ ¼

ffiffiffiffi
A

B

s
;

(40)

which can be solved. The matricesA andB are then given
by

A ¼ cosð�sÞ sinð�sÞ=�
��sinð�sÞ cosð�sÞ

 !

B ¼ cosð!sÞ �AB! sinð!sÞ
sinð!sÞ=ðAB!Þ cosð!sÞ

 !

D ¼ 0
ffiffiffiffiffiffiffi
AB

p

1=
ffiffiffiffiffiffiffi
AB

p
0

 !
:

(41)

The signs in B suggest a negative �2—but this can be
compensated by using either a negative emittance or a
negative frequency!, since the transfer matrix is invariant
against a change of the sign of !, while �E is not.

The transformation matrices are explicitly given by

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
B

B� A

s 1 0 0 A

0 1 1=B 0

0 A 1 0

1=B 0 0 1

0
BBBBB@

1
CCCCCA

R�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
B

B� A

s 1 0 0 �A

0 1 �1=B 0

0 �A 1 0

�1=B 0 0 1

0
BBBBB@

1
CCCCCA:

(42)

Note: R and R�1 are symplectic. To make the method
complete, we give the formula to split 2� 2matrices of the
form of A or B:

c¼ cos
 s¼ sin


c s=K

�Ks c

 !
¼R2

e�i
 0

0 ei


 !
R�1
2

R2 ¼
i=K �i=K

1 1

 !
R�1
2 ¼ �iK=2 1=2

iK=2 1=2

 !
:

(43)

The matched beam ellipsoid can be computed for given
emittances according to Eq. (18) as soon as the diagonali-
zation of the transfer matrixM is known.
The fact that we have to extend the decoupling method

of Teng and Edwards raises the question, whether the
description of decoupling is now complete or if there are
other cases that require further modifications or extensions.
The answer to this question requires a proper two-
dimensional extension of the Courant-Snyder theory and
a complete survey of all possible symplectic transforma-
tions as presented in an accompanying paper [22].

VII. THE ITERATION PROCESS AND EXAMPLES

We have shown for the symmetric analytical example
that a modified version of the method of Teng and Edwards
enables one to bring the transfer matrix in block-diagonal
form according to Eq. (32). The diagonalization of the
block-diagonal matrices is given by Eq. (43) and, hence,
the matrix of eigenvectors E and the matched beam ellip-
soid can be constructed.
In order to take advantage of this method for the case of

sectored cyclotrons, the method has to be applied itera-
tively. The goal is to compute the properties of a matched
beam. Assuming that the beam emittances and the current
are given as boundary conditions, one proceeds as follows:
(i) Provide an initial guess of the beam dimensions �xðsÞ,
�yðsÞ, and �zðsÞ. (ii) Compute the driving terms of the

space charge forces KxðsÞ, KyðsÞ, and KzðsÞ. (iii) Compute

the one-turn transfer matrix MðsÞ for all azimuthal angles.
(iv) Compute the eigenvectors ofMðsÞ by diagonalization.
(v) Use the beam emittances to obtain the eigenellipsoid
�E according to Eq. (18). (vi) Take the beam sizes from�E

and go back to step (ii), if beam sizes changed significantly
compared to the previous iteration.
Optionally, one can start the iteration with a reduced

beam current and increase it either during the iteration
process or use the result of the reduced beam current as
an initial guess for higher currents. The (speed of) con-
vergence strongly depends on the assumptions about beam
current and emittance. In the following examples, the
process converged typically after less than 20 iterations.

A. Example: PSI injector II

The PSI high intensity proton accelerator facility [23,24]
consists of a Cockcroft-Walton preaccelerator, a four-
sector injector cyclotron (injector II, 72 MeV), and the

TABLE I. Comparison of the method of symplectic rotation
with the symplectic ‘‘Lorentz boost.’’ The difference � is
defined by � � cosð
1Þ � cosð
2Þ. The matrix S2 is defined
by S2 ¼ ð 0

�1
1
0Þ and Dt is defined by Dt ¼ 2DetðmÞ þ TrðnmÞ.

Symplectic rotation Symplectic boost

TrðM� NÞ=2 cosð2�Þ� coshð2c Þ�
Dt sinð2�Þ2�2 � sinhð2c Þ2�2

D �mþS2n
TST

2

� sinð2�Þ
mþS2n

TST
2

� sinhð2c Þ
A M�D�1m tanð�Þ M�D�1m tanhðc Þ
B N þDn tanð�Þ N �Dn tanhðc Þ
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eight sector ring cyclotron (590 MeV). In routine operation
the beam current is 2.2 mA.

The injector II cyclotron can be modeled reasonably
well by a hard edge approximation of the sector magnets.
This has the advantage that the computed matched beam
parameters can be compared to TRANSPORT [25–27].
We have computed the matched beam parameters for
injector II. The results have then been used as input
parameters for TRANSPORT (with space charge). The
results are shown in Fig. 1.

B. Example: PSI ring cyclotron

The PSI ring cyclotron is a separated sector isochronous
cyclotron with eight sectors. But since the field of the
magnets does not fall off as sharp as it does in injector II,
a hard edge approximation does not work equally well.
Furthermore, the sectors are much more spiralled. For the
sake of precision we used the measured field map Bðr; �Þ to
compute the equilibrium orbits (EO) on a radial grid [28].
The radius Reoð�Þ of the equilibrium orbit (EO) is then
given as a function of the angle and of the starting radius
Reoð�0Þ. Besides the pure geometry of the orbit, one also
obtains a precise value for " ¼ 1� !o

! for each EO [21],

which then allows one to compute d"
dr . In order to obtain the

force matrix according to Eq. (20), the following additional
calculations have been done. (i) Inverse bending radius

h ¼ 1
� ¼ Bðr;�Þ

B0p
. (ii) Local field index

n ¼ �

B

dB

dx
¼ B0

B2

�
dB

dr
p� � dB

rd�
pr

�
:

(iii) Path length element �s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ r2

p
��.

(iv) Horizontal (vertical) focusing kx ¼ 1þn
�2 (ky ¼ �n

�2 ).

(v) hðE; �Þ, nðE; �Þ, �ðEÞ and the space charge forces Kx,
Ky, Kz are then used to compose the force matrix F.

(vi) The exponential series allows one to compute the
transfer matrix for a (short) interval ½� . . .�þ ���:

M ¼ expðF�sÞ ¼ 1þ F�sþ F2

2!
�s2 þ � � � : (44)

(Typically 3–4 terms are sufficient.) (vii) Multiplication of
all matrices yields the one-turn transfer matrix M.
(viii) Diagonalize M and compute eigenellipse �E.
(ix) The average beam sizes are obtained from the eige-
nellipsoid and used to recompute the force coefficients.
(x) The convergence is then checked and either the next
iteration starts with step (v) or is stopped.
Figure 2 shows some results of the matched beam with

space charge for the PSI ring cyclotron, the phase shift per
turn vs energy in the upper, the transversal tunes in the
second, and the axial tune in the last graph. The region
where the slope of the phase shift is negative has been
marked by vertical lines. In this region the longitudinal
tune due to space charge forces apparently becomes
imaginary.

VIII. SPHERICAL SYMMETRY

The first item in the described algorithm is to provide an
initial guess of the beam dimensions. In the following we
show how to obtain a possible choice of the initial guess for
‘‘nearly’’ spherical beams. If the horizontal-longitudinal
coupling is strong enough, the beam will usually be ap-
proximately circular in this plane [29]. The axial size
depends mainly on the vertical emittance and tune.
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FIG. 2. Top: Phase shift per turn for the ring cyclotron com-
puted from the measured magnetic field map. Middle: Horizontal
and vertical betatron tunes of the ring cyclotron as computed by
EO code (gray solid lines), the transfer matrix method over the
EO (black solid lines), and with space charge (dashed lines).
Bottom: Longitudinal betatron tune as induced by transverse-
longitudinal coupling. The region with a negative slope of the
phase shift is indicated by vertical lines. Without further field
trimming, the longitudinal focusing is suppressed by the term
�h d"

dr and the longitudinal beam size may increase. The calcu-

lation has been performed for a beam current of 2.2 mA and
ð"x; "y; "zÞ ¼ ð1:5; 2:5; 0:5Þ� mmmrad.
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From Eqs. (22) and (26), one quickly derives

�2!2 ¼ KzðKx þ h2�2 � kxÞ
�2 þ!2 ¼ kx � Kx � Kz

�2 �!2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkx � Kx þ KzÞ2 � 4h2�2Kz

q
1

B� A
¼ �2hKzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkx � Kx þ KzÞ2 � 4h2�2Kz

q :

(45)

With the assumption of an isochronous cyclotron
(kx ¼ h2�2) and spherical symmetry, i.e.,

�¼�x¼�y¼�z�

"¼"x¼"y¼"z!K¼Kx¼Ky¼Kz¼K3�

3�3
; (46)

one finds

�2!2 ¼ K2 �2 þ!2 ¼ kx � 2K

�2 �!2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x � 4Kkx

q 1

B� A
¼ K

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4K=kx

p :

(47)

The beam size � then yields using Eq. (30)

�4 ¼ "2
ðB!þ A�Þ2

ð�!Þ2ðB� AÞ2 ¼
4"2

kx � 4K
; (48)

so that one obtains

�4 � 4K3r
2

3�
�� 4"2r2

�2
¼ 0: (49)

If one defines �0 ¼
ffiffiffiffiffiffi
2r"
�

q
, then Eq. (49) can be written as

x4 � �x� 1 ¼ 0; (50)

where

x ¼ �

�0

� ¼ 4K3r
2

3��3
0

¼ K3

ffiffiffiffiffiffiffiffi
2�r

p
3"3=2

> 0: (51)

A polynomial of 4th order has four solutions, namely, the
solutions of Eq. (50) are

x ¼ 1

261=3

� ffiffiffiffi
Y

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 12�ffiffiffiffi

Y
p � Y

s �
; (52)

where the abbreviations used are defined by

Y ¼ 21=3Z� 831=3

Z
	 0

Z ¼
�
9�2 þ ffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

256þ 27�2
p �

1=3
> 7681=6:

(53)

The minus sign in the square root of Eq. (52) belongs to a
pair of complex conjugate solutions and may not be used.
Starting from low values of �, Y monotonically increases
starting from zero so that we have to take the plus in front

of the square root as well in order to obtain positive
solutions also for small values of �, so that

x ¼ 1

261=3

� ffiffiffiffi
Y

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12�ffiffiffiffi
Y

p � Y

s �
: (54)

Analyzing Eq. (50), one finds that

lim
�!0

xð�Þ ¼ 1 lim
�!1xð�Þ ¼ �1=3; (55)

so that the function xð�Þ ¼ ð1þ �Þ1=3 is a reasonable
approximation. The maximal relative deviation of about
�0:035 appears at � � 3=2. Therefore we suggest to use
the approximations

� �
8><
>:
�0

�
1þ �

4 � �2

32

�
for 0 
 � 
 5=2

�0ð1þ �Þ1=3 for 5=2 
 �:

(56)

Using the normalized emittance �" ¼ ��", the wavelength
� ¼ c

	rf
¼ 2�c

!oNh
, the cyclotron radius a ¼ c

!0
¼ r

� , and the

relation "0c
2 ¼ 1


0
, the values of K3, �, and �0 can be

written as follows:

K3 ¼ 3qI�

20
ffiffiffi
5

p
�"0mc3�2�3

¼ 3q
0Ia

10
ffiffiffi
5

p
mc�2�3Nh

� ¼ q
0Ia
ffiffiffiffiffiffiffiffi
2�r

p
10

ffiffiffi
5

p
mc�2�3"3=2Nh

¼ q
0I

5
ffiffiffiffiffiffi
10

p
mc�Nh

�
a

�"

�
3=2

�0 ¼
ffiffiffiffiffiffiffiffi
2r"

�

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a��"

p
�

¼
ffiffiffiffiffiffiffiffiffi
2a �"

p
�

:

(57)

Equations (56) and (57) describe the matched beam sizes
for a spherical beam in a perfectly isochronous cyclotron.
The real beam sizes will usually differ from these values
since the spherical symmetry requires that the vertical tune
roughly equals the horizontal tune, while in most cyclo-
trons the vertical tune is below the horizontal tune.
Nevertheless the equations derived for the special case of
a spherical beam can be used as starting conditions for the
described iterative matching procedure.

IX. SUMMARY

A method has been developed that allows one to com-
pute the parameters of a matched beam with space charge
in cyclotrons in linear approximation for given beam cur-
rent and known emittances. As an example, a matched
beam in the PSI injector II cyclotron has been computed.
The result has been used as input to TRANSPORT and it
has been shown that the beam is matched.
Furthermore, it has been shown that the longitudinal

focusing as induced by the space charge forces depends
on the isochronism of the cyclotron. In the case of the PSI
ring cyclotron, the negative slope of the phase shift per turn
may reduce or even destroy the longitudinal focusing
effect. The results are important for the design of high
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intensity cyclotrons. If beam emittance and current are
chosen accordingly, then the space charge induced longi-
tudinal focusing allows one to replace flattop cavities by
accelerating cavities and thus increase the energy gain per
turn and the turn separation significantly. This is important
to minimize beam losses and activation of components.
The flattop cavities of the PSI injector II cyclotron are
already operating as accelerating cavities and a complete
replacement is planned [29,30].
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