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The mechanism of steady-state microbunching (SSMB) has been proposed [D. F. Ratner and A.W.

Chao, Phys. Rev. Lett. 105, 154801 (2010)] to produce steady-state microbunched beams by using laser

modulations in a storage ring for generating coherent radiation with high repetition rate at wavelengths

from the submillimeter to extreme ultraviolet range. In the present paper, we analyze the dynamics of the

SSMB system with a Hamiltonian and Jacobi matrix approach and identify the original proposal of SSMB

as a mechanism with period-1 fixed point in phase space. We then propose an alternative SSMB

mechanism with period-2 fixed point, which is able to produce microbunched beams with shorter bunch

length and, hence, higher harmonic. Taking the SPEAR3 storage ring as an example, we illustrate the

application of the period-2 SSMB to generate terahertz (THz) steady-state coherent radiation in a storage

ring using an X-band radio-frequency (rf) system instead of a more technically demanding laser system.

Issues covered include choice of rf parameters, system errors, beam lifetime, collective effects, and

radiation power evaluation. Compared to the more traditional low-momentum-compaction operation

mode, the proposed SSMB scheme potentially promises higher beam current, larger bunching factor, and

hence brightness increase of at least 1 order of magnitude.
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I. INTRODUCTION

High peak brilliance and high repetition rate are both of
significant importance for light sources. Linac driven free
electron laser (FEL) facilities usually have extremely high
brilliance because their beam is highly microbunched dur-
ing the FEL process, but have low repetition rate (see, e.g.
[1]). On the other hand, storage ring-based light sources,
typically the third generation light sources, have high
repetition rate due to intrinsic rapid beam circulation, but
have relatively low brilliance because storage rings gen-
erally do not support microbunched beams.

Past schemes have proposed generating beams with both
high repetition rate and high brilliance. For example, Kim,
Shvydko, and Reiche proposed to use a cw superconduct-
ing linac to increase the FEL pulse repetition rate up to
MHz [2]. Energy recovery linacs also promise high repe-
tition rate [3,4]. Storage ring FELs were proposed to
generate coherent, monochromatic radiations in storage
rings (see, e.g. [5]). Recently, Ratner and Chao [6] pro-
posed steady-state microbunching (SSMB) to establish a
beam that has a fixed microbunching structure turn after
turn at the location of a radiator in a storage ring to
generate coherent radiation at a high repetition rate or in
continuous wave mode. They illustrate the basic mecha-
nism of the SSMB as follows.

Consider a sinemodulationV sinð2�z=�modÞ of a beam in
a storage ring. A particle with specific nonzero relative
momentum deviation �0 and z0 ¼ 0 has a longitudinal dis-
placement�z¼R56�0 after one turn, whereR56 ¼ �C is the
longitudinal dispersion with � the momentum compaction
and C the circumference of the storage ring. If �z ¼ �mod,
the particle does not return to its initial position but moves
to an equivalent zero crossing [sinð2��z=�modÞ¼0] turn
after turn due to the modulation’s periodicity. The points
ð0; n�0Þ, with n ¼ 0;�1;�2, etc., are considered to be
single turn (period-1) fixed points (modulus �mod). Thus, at
each zero crossing, therewill be a set of fixed points in phase
space. After a fraction, 1=H, of a turn instead of a full turn,
the fixed points and the particles around the fixed points will
have different longitudinal displacements in phase space,
n�mod=H. Consequently, strong microbunching is obtained
with a period of �mod=H. By placing a radiator (dipole or
wiggler) at this position, SSMB generates high repetition
rate, coherent radiation of wavelength �r ¼ �mod=H. To
maintain particles around H fixed points within one modu-
lation wavelength, it requires large enough momentum
aperture A� and/or short modulation wavelength, A� �
H�0=2 ¼ H�mod=2�C. As illustrated in Ref. [6], period-1
SSMB with laser modulations potentially promises high
harmonic number. Because the laser modulation wavelength
is typically small, themomentumaperture constraint is easily
satisfied; taking the SPEAR3 storage ring [7] as example,
C ¼ 234:126 m, A� ¼ 0:03, and � ¼ 0:0011 for regular
user operation mode, with a laser source of wavelength
�mod ¼ 1 �m, the momentum aperture is orders of magni-
tude larger than the energy spacing �0.
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In the case that the momentum aperture is small and/or
modulation wavelength is long (e.g., rf modulation), one
can to some extent mitigate the limitation on the available
harmonic number by applying modulations once every
multiple turns (however, the modulation interval cannot
be too large, otherwise the longitudinal wakefield and other
effects will cause the microbunching structure to smear in
phase space) and therefore increase the equivalent � of the
SSMB system. Moreover, based on the fact that the coher-
ent radiation wavelength highly depends on the separation
of the density peaks rather than the evenly distributed
structure, one can still generate high harmonic coherent
radiation even with a few microbunches (see Fig. 1).

In the above discussion, the microbunched beam is
assumed to have vanishing bunch length. However, the
equilibrium rms bunch length (Gaussian distribution) �z

due to the radiation damping and quantum excitation in a
storage ring is not arbitrarily small. In reality, the available
harmonic number is usually limited by the bunch length. It
requires

H � �mod

2
ffiffiffiffiffiffiffiffiffiffi
2 ln2

p
�z

: (1.1)

Otherwise the density peaks will overlap each other and
destroy the expected microbunching structure at �mod=H.
Thus, the key point for high harmonic SSMB is to mini-
mize the length of the microbunched beam. A typical two-
stage modulation system was analyzed in Ref. [6] using
linearized one-turn map and generalized longitudinal
Courant-Snyder parameters. It is found that using strong
modulations [normalized amplitude jKj & 4, K is defined
by Eq. (2.2) below], the bunch length can be significantly

reduced (see [8–12] for other methods for short bunches).
However, the linearized model becomes invalid for strong
modulations, in which case the nonlinearity arisen from the
sine function dominates the dynamics of the SSMB sys-
tem.We therefore look into the detailed dynamics of such a
system using a Hamiltonian and Jacobi matrix approach in
this paper. Our study shows that with slightly stronger
modulations (jKj * 4), period-1 fixed points become un-
stable, however, period-2 fixed points emerge, repeating
themselves (modulus �mod) every two turns in phase space.
Based on the analysis, we propose a period-2 SSMB
mechanism, i.e., SSMB based on period-2 fixed points,
which doubles the number of the microbunches, and prom-
ises much smaller bunch length and thus potentially higher
harmonic than period-1 SSMB. Even in the case that only
conventional buckets are allowed in phase space (A� <
�mod=�C), period-2 SSMB can produce two microbunches
and, hence, two density peaks with tunable spacing within
one modulation wavelength. Thus, this proposed SSMB
can be established using a rf system with relatively long
wavelength, e.g., to generate THz coherent radiation in a
storage ring using an X-band rf cavity instead of a more
technically demanding laser beating technique which uses
two laser sources with a small difference in wavelengths
[6,13]. Compared with the traditional THz light source
working with low momentum compaction (see [14] and
the references therein), period-2 SSMB reduces the bunch
length by increasing the modulation amplitude, and oper-
ates with momentum compaction on the same order of
magnitude as that of regular user operation mode. It there-
fore allows a relatively large longitudinal tune and prom-
ises high average beam current in a storage ring. (Strong
focusing was proposed to improve the traditional THz light
source, see e.g. [15,16], in which, however, the bunch
length is mainly reduced by decreasing the momentum
compaction.) Because the coherent radiation power is pro-
portional to the square of the stored beam current, with
period-2 SSMB scheme, one can expect an enhancement of
brightness of at least 1 order of magnitude compared to the
traditional THz light source.
In Sec. II A, we present the Hamiltonian of the SSMB

system and view the variation of the dynamics with modu-
lation amplitudeK, from which we reidentify the condition
for period-1 SSMB that was studied in Ref. [6] and extend
the parameter range to include period-2 fixed points. An
alternative SSMB mechanism based on period-2 fixed
points is then proposed. Subsequently, the fixed points,
local instability condition, and synchrotron tune of the
motions around the fixed points are investigated with the
Jacobi matrix in Sec. II B. The relative area and relative
length of the stable islands around the period-1 and period-
2 fixed points are derived in Sec. II C. The numerical
results confirm the analytical predictions. In Sec. II D,
the dynamics of the SSMB system including the effects
of radiation damping and quantum excitation is discussed.
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FIG. 1. Period-1 SSMB with H ¼ 9, left figures show evenly
distributed microbunches within one modulation wavelength,
and right figures show three microbunches with separation of
�mod=H. Both cases generate coherent radiation of wavelength
�r ¼ �mod=H.
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Taking the SPEAR3 storage ring as an example, we
illustrate the application of the proposed period-2 SSMB
using an X-band rf cavity. In Sec. III A, we discuss the
requirements for the X-band rf system, and then implement
numerical simulations, including the radiation damping,
quantum excitation effects, and random errors, to verify the
parameter choice. Collective effects, such as coherent syn-
chrotron radiation (CSR) wakefield, X-band longitudinal
short range wakefield, and heating from the interaction of
beam with small discontinuities of the storage ring, are
evaluated in Sec. III B. It appears there is no insurmount-
able difficulty for a proof-of-principle experiment of
period-2 SSMB in the SPEAR3 storage ring. The steady-
state THz coherent radiation power produced by the pro-
posed SSMB scheme is calculated in Sec. III C. Discussion
on further improving the coherent radiation power is
present in Sec. III D. Conclusions are given in Sec. IV.

II. SSMB SYSTEM DYNAMICS

The steady-state microbunch length sets the highest
achievable harmonic according to Eq. (1.1). In general, the
microbunch length is determined by the smaller of the stable
island size (set by the Hamiltonian of the modulation and
dispersion) and the equilibrium bunch length (set by the
radiation damping and quantum excitation in a ring).
Reference [6] used a linearized analysis to study the two-
stage modulation SSMB mechanism. To provide a more
complete picture of the dynamics, we have studied both
one-stage and two-stage modulation systems using a
Hamiltonian and Jacobi matrix approach. This more com-
plete approach illustrates the transition from period-1 to
period-2 SSMB, and allows us to calculate the phase space
dimensions of the stable islands. In this section, we first use
Hamiltonian and Jacobi matrix methods to study the stable
islands, and then compare the results to the equilibrium
island length due to radiation damping and quantum excita-
tion. For brevity, we only present the analysis of the one-
stage modulation system here. Extension to two-stage
modulation system is straightforward.

A. Hamiltonian of SSMB system

The SSMB system with one-stage modulation can be
described as

z1 ¼ z0; �1 ¼ �0 þ V sinðkz0Þ;
z2 ¼ z1 þ R56�1; �2 ¼ �1;

(2.1)

where z and � are the longitudinal displacement and rela-
tive momentum deviation of a particle relative to the syn-
chronous particle, respectively. Each particle experiences a
modulation kick, V sinðkzÞ with V ¼ eVmod=E0 (E0 is the
nominal beam energy, Vmod is the modulation voltage) and
k ¼ 2�=�mod, and then passes through a longitudinal dis-
persive region before it returns to the modulation source.

It is convenient to transform the variables z, �, and V to
dimensionless quantities,

� ¼ kz; I ¼ R56k�; K ¼ VR56k: (2.2)

Accordingly, Eq. (2.1) becomes

I1 ¼ I0 þ K sin�0; �1 ¼ �0 þ I1; (2.3)

where I and � are both periodic in 2�.
Note that Eq. (2.3) is the well-known ‘‘standard map’’

(see, e.g. [17]), whose Hamiltonian dynamics has been
systematically studied by Chirikov with regard to chaotic
phenomena from the sine nonlinearity. In what follows, we
summarize the variation of the SSMB system dynamics
with the modulation amplitude K, and concentrate on the
condition of small stable island length which is closely
related to the available SSMB harmonic.
Following Ref. [17], Eq. (2.3) can be described with the

pendulum Hamiltonian driven by a periodic perturbation,

HðJ; �; tÞ ¼ 1

2
J2 þ �

X1
n¼�1

cosð�� ntÞ; (2.4)

where J ¼ I=2� and � ¼ K=4�2.
With the method of canonical perturbation analysis

[17,18], one can derive the location Jr and island height
(�J) of the resonances.
Integer resonance

ðJrÞ1 ¼ n; ð�JÞ1 ¼ 2
ffiffiffiffi
�

p ¼ ffiffiffiffi
K

p
=�: (2.5)

Half integer resonance

ðJrÞ2 ¼ ð2pþ 1Þ=2; ð�JÞ2 ¼ ��: (2.6)

Third order resonance

ðJrÞ3 ¼ q=3; ð�JÞ3 ¼ 9:3�3=2: (2.7)

In Eqs. (2.5), (2.6), and (2.7), n, p, q are arbitrary integers.
The resonance island heights depend on � ¼ K=4�2 and

increase with increasing K. Once the separatrices of two
adjacent resonances overlap each other, the frequency of
the motion in the overlapping region will jump randomly
from one resonance to the other; therefore the motion loses
periodicity and becomes chaotic or stochastic [16]. As a
straightforward inference, if the center (fixed point) of one
resonance island touches the separatrix of the adjacent
resonance, all the motions inside this resonance island
will be irregular and the stable island will disappear in
phase space. For example, the condition for the half integer
resonance island disappearing can be estimated by

ð�JÞ1 ¼ 1
2; or ð�JÞ3 ¼ 1

6; (2.8)

which yields K ¼ 2:46 or 2.70, not far from the obtained
critical value K � 2:2 from numerical simulations for the
disappearance of the half integer resonance island.
We simulate the motions described by Eq. (2.3) for

different positive K values (the dynamics is the same for
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negative K, only with the fixed points changed in phase
space, see Sec. II B), with geometry shown in Fig. 2 and
particle coordinates in phase space of ð�; IÞ at the entrance
of the modulation source shown in Fig. 3. For 0<K < 1,
the motions are regular and the resonance islands are stable.
The central integer resonance islands [ðJrÞ1 ¼ 0] corre-
spond to conventional buckets in a storage ring provided
the modulation source is an rf cavity. At K around 1,
stochastic motions emerge neighboring the separatrices of
the resonances. As K increases, the stable islands will
shrink or even disappear due to resonance overlapping.
For 3<K < 4, only integer resonance islands remain sta-
ble. Of particular interest are the cases with 4<K < 2�.
Each integer resonance island splits into two islands
(around period-2 fixed points) with much smaller length.
When K is close to 2�, the stable island size will tend to
zero (very small but not zero). When K > 2�, the coordi-
nate I (or �) will increase continuously each turn, corre-
sponding to particle loss in a storage ring with a finite
momentum aperture.

The islands will rotate in phase space when particles pass
through a dispersive section. Assuming R56 varies mono-
tonically along the ring, for a given K, the island length
reaches its minimum on the opposite of the modulation
source (OP2 in Fig. 2), as shown in Fig. 4 with cases of
K ¼ 3:5 and 5 as examples. The fixed points of the integer
resonance islands change to (�0 � I0=2, I0) in phase space.

From the above analysis, we learn that, the modulation
amplitude should be large enough, e.g. jKj � 3, so that one
can obtain clear stable island structure in phase space and,
hence, clear density modulation at the radiator; the stable
integer resonance island length reaches its minimum when
K is below and close to 4; finally, with jKj slightly larger
than 4, motions around period-1 fixed points are unstable,
but they bifurcate into stable islands around period-2 fixed
points with islands number doubled and much smaller
island length compared to that around period-1 fixed
points. Combining conditions (1.1), with a slightly stronger
modulation than that required by period-1 SSMB,
the SSMB based on period-2 fixed points is capable of

generating shorter microbunched beams associated with
higher harmonic compared to period-1 SSMB. Even in
the case that the modulation source is a rf system with
relatively long wavelength and only conventional buckets
[ðJrÞ1 ¼ 0] are allowed by the momentum aperture, one
can still produce two short microbunches with different
energy deviations using a strong modulation (jKj * 4);
with an optimal R56 between the modulation source and
the radiator, one can obtain a sharply double-peaked lon-
gitudinal density distribution at the radiator, which helps
generate coherent radiation at a wavelength equal to the
separation between the two density peaks.
It should be mentioned that there exist period-3 or even

higher-order periodic fixed points and stable islands
[17,19]. However, the corresponding stable islands have
such small size that they have little practical value. Thus,
here we concentrate only on the period-1 and period-2
trajectories and stable islands.

B. Period-1 and period-2 fixed points

Based on the Hamiltonian dynamics of the SSMB sys-
tem, we derive the stability condition and the synchrotron
tune of the motion around period-1 and period-2 fixed
points.
For the single turn map, Eq. (2.3), the period-1 fixed

points are determined by

�I ¼ I1 � I0 ¼ 0; ��¼ �1 � �0 ¼ 0ðmod2�Þ; (2.9)

which results in ð�0; I0Þ ¼ ð�n; 2�nÞ, n ¼ 0;�1;�2, etc.
Let us consider the particle motion with initial condition

(�0 þ ��, I0 þ �I). From Eq. (2.3), one can obtain a
linearized map,

��

�I

 !
1

¼ 1þKcos�0 1

Kcos�0 1

 !
��

�I

 !
0

¼M1

��

�I

 !
0

; (2.10)

where M1 is the period-1 Jacobi matrix.
The synchrotron tune of the motion around a period-1

fixed point is given by

cosð	sÞ ¼ 1
2 TrM1 ¼ 1þ K cos�0=2: (2.11)

To keep the motion bounded, it requires jTrM1j< 2, which
results in

� 4<K cos�0 < 0: (2.12)

From Eqs. (2.9) and (2.12), the period-1 fixed points are
(0, 0) (mod 2�) for �4<K < 0, and (�, 0) (mod 2�) for
0<K < 4.
To study the period-2 fixed points, we write the map of

two iterations of the one-stage modulation system as

I1 ¼ I0 þ K sin�0; �1 ¼ �0 þ I1;

I2 ¼ I1 þ K sin�1; �2 ¼ �1 þ I2:
(2.13)

OP2

OP1

FIG. 2. One-stage modulation SSMB system. The green box
indicates the modulation source. OP1 and OP2 indicate the
observation points at the entrance and the opposite of the
modulation source, respectively.
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FIG. 3. The motions described by Eq. (2.3) in phase space with K ¼ 0:5; 1; 2; 2:5; 3; 3:5; 4; 5; 5:5, and 6.2, and with observation point
at the entrance of the modulation (OP1 in Fig. 2).
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The period-2 fixed points are determined by

�I ¼ I2 � I0 ¼ Kðsin�1 þ sin�0Þ ¼ 0;

�� ¼ �2 � �0 ¼ I2 þ I1 ¼ 0ðmod2�Þ: (2.14)

There are two solutions for Eq. (2.14), �0 þ �1 ¼ 0
(mod 2�) or �0 � �1 ¼ � (mod 2�). However, only the
first solution is available in practice, corresponding to
K cos�0 ¼ K cos�1. By combining Eqs. (2.13) and (2.14),
we obtain

I2 � I1 ¼ 2I2ðmod 2�Þ ¼ K sin�1;

�2 � �1 ¼ �2�1ðmod 2�Þ ¼ I2;
(2.15)

from which we have

4�1 þ K sin�1 ¼ 2�n: (2.16)

One can numerically solve Eq. (2.16) to obtain �1, and then
calculate �0, I0, I1 from Eq. (2.15).

The period-2 Jacobi matrix can be derived from
Eq. (2.13),

M2 ¼ 1þ K cos�1 1
K cos�1 1

� �
1þ K cos�0 1
K cos�0 1

� �
: (2.17)

With the known condition K cos�0 ¼ K cos�1, we ob-
tain the expression of the synchrotron tune and the stability
condition,

cosð2	sÞ ¼ 1þ 2K cos�1 þ K2cos2�1=2;

�4<K cos�1 < 0;
(2.18)

where vs is the equivalent ‘‘one-turn’’ synchrotron tune of
the motion around period-2 fixed points.

From the stability condition, we can approximate �1 ¼
�10 þ ��10 with �10 ¼ cos�1ð�2=KÞ (mod 2�) and
��10 � �10. Using Eq. (2.16), we obtain an approximate
expression of �1 to the first order of ��10,

�1 ¼ ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � 4

p
=2þ cos�1ð2=KÞðmod 2�Þ: (2.19)

Figure 5 shows the synchrotron tune vs and fixed point
�0 (or �1) of the SSMB system with the modulation am-
plitude K ranging from 0 to 2�. The longitudinal tunes
with 0<K < 4 and 4<K < 2� correspond to that of
the motions around period-1 and period-2 fixed points,
respectively. So they are not continuous at K ¼ 4. The
accuracy of Eq. (2.19) degrades when K is close to 4 or
2�, in which cases the assumption ��10 � �10 is not well
satisfied.

C. Period-1 and period-2 stable islands

As mentioned, along with increasing modulation ampli-
tude K, the stable resonance islands will shrink due to
resonance overlapping. In this section, we derive the relative
stable island area S and relative stable island length
R for the two cases of interest. The first case is when
only integer resonance islands are stable in phase space
(3<K<4) and the second case is when each integer

FIG. 4. The motions described by Eq. (2.3) in phase space with K ¼ 3:5 and 5, and with observation point on the opposite of the
modulation (OP2 in Fig. 2).
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lation amplitude K.
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resonance island splits into two smaller islands (4<
K<2�). Assuming the initial particles are uniformly dis-
tributed in phase space and there is not any dampingmecha-
nism, S and R are closely related to the percentage of the
surviving particles and available bunch length.

For 3<K < 4, we consider the resonance overlapping
between the integer and half integer resonance islands,
assuming the islands are upright in phase space (see
Fig. 6). For a given K, the maximum J of the half integer
resonance island is

ð�JÞ2 ¼ �� ¼ K

4�
: (2.20)

Because of resonance overlapping, the maximum height
(with � ¼ �) of the stable integer resonance island is

J1;max ¼ 1

2
� ð�JÞ2 ¼ 1

2
� K

4�
: (2.21)

Using the Hamiltonian of the integer resonance Jr ¼ 0
(with positive K)

HðJ;�Þ¼1

2
J2þ�cosð�Þ¼1

2
J2� K

4�2
cosð���Þ; (2.22)

and J ¼ J1;max, � ¼ �, we obtain the Hamiltonian of the

motion at the boundary of the stable area,

Hb ¼ 1

2

�
1

2
� K

4�

�
2 � K

4�2
: (2.23)

From Eq. (2.22), � arrives at the farthest point from�when
J tends to 0, i.e. �� ¼ �� � reaches the maximum value,

Hb ¼ 0� K

4�2
cosð��maxÞ: (2.24)

By combining Eqs. (2.23) and (2.24), we obtain��max to
the first order,

��max � �� K=2ffiffiffiffi
K

p : (2.25)

In the range of �1=2< J < 1=2 and 0< �< 2�, there
exists only one stable integer resonance island. The relative
length R and relative beam area S can be estimated by

R ¼ 2��max

2�
� �� K=2

�
ffiffiffiffi
K

p ; (2.26)

S � �� ��max � J1;max

2�
� ð�� K=2Þ2

4�
ffiffiffiffi
K

p ; (2.27)

where S is obtained assuming the stable island is in the
shape of an ellipse with major and minor radii of ��max

and �Jmax. Note that S is approximately proportional
to R2. Thus, to achieve a small relative bunch length, one
has to pay with a larger particle loss rate.
Now consider one of the islands around the period-2

fixed point for 4<K < 2� (see, e.g., the middle left island
for the K ¼ 5 case in Fig. 2). For simplicity, the fixed

point is approximated by �10 ¼ cos�1ð�2=KÞ and J10 ¼
�ðK2 � 4Þ1=2=4�.
The � is limited by the stability condition in Eq. (2.18),

therefore the minimum and maximum � of the island
boundary are given by

�11 ¼ �=2; �12 ¼ cos�1ð�4=KÞ: (2.28)

Then the relative lengthR of the stable island is obtained:

R ¼ cos�1ð�4=KÞ � �=2

2�
: (2.29)

We write the Hamiltonian at the island boundary as

Hb ¼ 1

2
J211 þ

K

4�2
cos�11 ¼ 1

2
ðJ10 þ �J11Þ2

¼ 1

2
J212 þ

K

4�2
cos�12 ¼ 1

2
ðJ10 þ �J12Þ2 � 1

�2
;

(2.30)

where J11, J12 are the action coordinates conjugate to
�11 and �12 and �J11 ¼ J11 � J10, �J12 ¼ J12 � J10, are
assumed to be much smaller than J10. We obtain

J21 ¼ �J12 ��J11 � 1

�2J10
; (2.31)

and then estimate J11 by

J11 � J10 � J21 � cos�1ð�2=KÞ � �=2

cos�1ð�4=KÞ � �=2
: (2.32)
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FIG. 6. Shrinkage of the stable integer resonance island due to
resonance overlapping between the adjacent integer and half
integer resonance islands. The green dashed lines and red dotted
lines indicate the separatrices of the half integer and integer
resonance islands in a single resonance approach, respectively.
The red solid line indicates the boundary of the integer resonance
island stable area.
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With the known J11 and �11, we can evaluate the J ¼
J10 þ �J with � ¼ �10 at the island boundary using the
Hamiltonian,

Hb ¼ 1

2
J211 þ

K

4�2
cos�11 ¼ 1

2
J211

¼ 1

2
ðJ10 þ�JÞ2 þ K

4�2
cos�10

� 1

2
ðJ10 þ�JÞ2 � 1

2�2
; (2.33)

which yields

�J �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J11 þ 1

�2

s
� J10: (2.34)

Note that the island is tilted in phase space, approxi-
mately in the shape of an ellipse with major radius
approximately of �� ¼ ð�12 � �11Þ=2 and minor radius
of �J. Then the relative area S of the stable islands (there
are two such islands in the range of �1=2< J < 1=2 and
0< �< 2�) can be estimated by

S � 2� �� �J ���

2�
¼ �J � ��: (2.35)

Table I lists the R and S from analytical formulas and
numerical measurements. Considering the rather rough
single resonance assumption used in the derivation, the
agreement between the two approaches is fairly good,
especially for the relative stable island area S.

For the cases shown in Fig. 4, the relative stable island
area S is the same as that in Table I, and the relative island
length can be derived from a modified map and the corre-
sponding Hamiltonian. The analytical results are R ¼ 0:33
for K ¼ 3 and R ¼ 0:054 for K ¼ 5, while the numerical
results are R ¼ 0:2 for K ¼ 3 and R ¼ 0:08 for K ¼ 5.

Provided the momentum aperture is large enough, the
available maximum harmonic Hmax is determined by

Hmax ¼ N

�
1

R

�
; (2.36)

where NðxÞ gives the largest integer not greater than x.

D. Effects of radiation damping and
quantum excitation

Up to this point, we have obtained the relative island
phase space dimensions (height, width, and area) using the
Hamiltonian in the absence of radiation damping and
quantum excitation effects. In an actual ring, the island
phase space dimensions indicate the boundary of the stable
motion area, while the rms bunch length and energy spread
are determined by the equilibrium of radiation damping
and quantum excitation effects. The rms bunch length
determines the harmonic limit, so at this point we study
the damping and excitation effects.
Let us consider the case that the SSMB system has one

modulation source and R56 varies monotonically along the
ring. In the dispersive region, the rms energy spread �� is
constant, and estimated by

�� ¼ 


ffiffiffiffiffiffiffiffi
Cq

J"�

s
; (2.37)

where Cq ¼ 3:832� 10�13 m, 
 is the Lorentz factor,

J" � 2 is the longitudinal damping partition number, and
� is the radius of circular orbit.
From the Jacobi matrix (with variables of � and I), we

derive the rms bunch length �z,

�z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0 � 2s�0 þ 
0s

2


0

s
R56��; (2.38)

with the generalized longitudinal Courant-Snyder parame-
ters at the exit of the modulation source in the form

�0 ¼ 1

sinð2�vsÞ ; �0 ¼ �K cos½�0ðor�1Þ	
2 sinð2�vsÞ ;


0 
 1þ �2
0

�0

¼ �K cos½�0ðor�1Þ	
sinð2�vsÞ ;

where vs is determined by Eq. (2.11) or (2.18) and 0<s<1.
At s ¼ 1=2, the bunch length reaches its minimum,

�z;min ¼ R56��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

K cos½�0ðor�1Þ	 �
1

4

s
: (2.39)

In a storage ring, there always is a rf system for injec-
tion, trapping particles and providing energy loss (due to
synchrotron radiation) compensation, with much smaller
normalized amplitude K and much larger bucket (or stable
island) than that of the modulation source in a SSMB
scheme. As we know, if with only the original rf system,
the quantum lifetime is determined by

q ¼ 1

2
z

eA
2
�
=2�2

�

ðA2
�=2�

2
�Þ
; (2.40)

where z is the longitudinal damping time, and the overall
momentum aperture A� is determined by the existing rf
system with long buckets and transverse dynamics.

TABLE I. Comparison of analytical predictions with the nu-
merical measurements.

K Sanalytical Ranalytical Snumerical
a Rnumerical

6.28 0.0042 0.1099 0.0025 0.065

6.21 0.0045 0.1113 0.004 0.065

5 0.016 0.1476 0.014 0.12

4 0.084 0.25 0.08 0.40

3 0.124 0.30 0.11 0.43

aThe values for the relative stable island area are obtained by
Chirikov through precise numerical measurements (see Table 5.3
in Ref. [17]).
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In order to obtain a long enough quantum lifetime, i.e.,
several hours, it requires A� > 6��.

However, the condition would be slightly changed when
introducing strong modulation into the ring. Small islands
are formed within the overall momentum aperture by the
strong modulation, with island height of Aisland. If Aisland >
6��, the vast majority of the microbunched particles will
stay inside the small islands, and thus we obtain a long
quantum lifetime. (In this case, the Touschek lifetime is
usually long enough.) If 3�� < Aisland < 6��, there will be
a few particles moving out of the small islands every turn
due to finite momentum aperture. These particles will not
get lost at once provided A� � Aisland; furthermore, the
existing rf system will help confine the particles not far
away from the small islands boundary. Therefore most of
particles will return to the small islands from outside under
the effects of quantum fluctuation and radiation damping in
the next few turns. As a result, an equilibrium beam
distribution is established with permanent microbunched
structure in phase space while individual particles are
allowed to move out of and into the stable islands without
loss. Now let us consider another effect, the single
Coulomb scattering effect which is related to the
Touschek lifetime. For the interested circumstances with
small bucket height, especially the case that Aisland=�� is
above and close to 3, the rate of particles moving out the
small buckets due to single Coulomb scattering is usually
much less than that due to finite momentum aperture, thus
the equilibrium beam distribution varies little, correspond-
ing to a long lifetime. On the other hand, in the case that
Aisland < 3��, the number of particles moving out of the
bucket from inside is larger than that of particles moving
back from outside of the small islands every turn. Some
particles will get lost at last, leading to a short lifetime.

As a brief summary of Sec. II, to realize the period-2
SSMB scheme for generating short microbunches, one
should use modulation (rf or laser system) with normalized
amplitude K ¼ eVmodR56k=E0 > 4. Increasing K, the rela-
tive bucket length R will be smaller, however, the relative
bucket area S will decrease more rapidly due to the ap-
proximate relation S / R2, implying less particles trapped
in the small buckets. If K is so large that the bucket length
R�mod <�z and/or bucket height Aisland < 3��, the beam
will have a short lifetime. As a compromise between the
small bunch length and large enough particle trapping
fraction, it is recommended to choose K slightly above
4 in a practical implementation of the period-2 SSMB.

III. SSMB FOR THZ COHERENT RADIATION
IN SPEAR3 STORAGE RING

A. Period-2 SSMB using X-band rf system in
SPEAR3 storage ring

As mentioned above, for the SSMB with a rf system, the
modulation wavelength is relatively long, the momentum
aperture is typically smaller than �mod=�C, and only

conventional buckets are allowed. However, in this situ-
ation, it is still possible to produce a sharply double-peaked
longitudinal distribution by using the period-2 SSMB
mechanism. For instance, with an X-band rf system, �rf �
26 mm, and equivalent harmonic H ¼ �rf=�� about 20,
with �� the separation of the two density peaks �1 mm,
the resulting coherent radiation wavelength �r is in the
THz range. Thus, we can use an X-band cavity to establish
microbunched beams in a storage ring for THz coherent
radiation.
The main limitation of such a system is that the required

modulation voltage of the X-band cavity is very high, for
instance, Vrf ¼ E0K=e=R56=k � 200 MV with K � 4:2
for the 3 GeV SPEAR3 storage ring, provided that the
X-band cavity is used in continuous operation mode (this
limitation will be weaker for lower energy). As a compro-
mise, we use the X-band cavity in pulse operation mode
[20], modulating the beam once every multiple turns
(to increase the equivalent R56 and reduce the required
Vrf) with pulse duration of a fraction of turn instead of a
full turn, so as to obtain a small duty factor and reduce the
required voltage and power of the X-band cavity to an
acceptable level.
We implement simulations of the period-2 SSMB in

SPEAR3 storage ring based on the main parameters listed
in Table II, while including radiation damping and quan-
tum excitation effects (the application of the proposed
SSMB mechanism is also explored for another storage
ring at SLAC, the SLC damping ring [21], but will not
be addressed here). In the simulation, a 3.7 m X-band rf
cavity is placed in a 4.8 m long straight section of the
SPEAR3 storage ring. The injection, trapping, and energy
loss (due to synchrotron radiation) compensation are still
supplied by the existing 476.3 MHz rf cavity. After the
beam reaches an equilibrium state due to radiation damp-
ing and quantum excitation in several damping times, with
rms bunch length �z ¼ 4:8 mm and rms momentum
spread �� ¼ 0:1%, the X-band rf cavity is turned on and
provides voltage of 30.9 MV to the electron beam every
eight turns (6:2 �s) with pulse duration of 1=5 turn
(156 ns). The corresponding average power dissipated in
the cavity is 20 kW=m, which is in a large but feasible
level. (Nevertheless, the relatively high average power and
high pulse repetition rate, 160 kHz, are still a challenge to
rf scientists.) After tracking the beam for one million turns,
the final beam distributions are shown in Fig. 7. About 27%
of the particles survive and are microbunched to two short
bunches with �z � 0:3 mm within each conventional
bucket. We note that this bunch length is on the same order
as that predicted by Eq. (2.39), �z � 0:4 mm. With appro-
priate R56 between the radiator (dipole) and the X-band
cavity, we obtain a fixed density modulation structure at the
radiator every eight turns, with the separation of double
density peaks of 1.4 mm and bunching factor of 0.35. Our
study shows that the particle loss mainly occurs in the first
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several damping times after turning on the X-band cavity,
and then, the beam reaches another equilibrium state with
Aisland=�� � 3 and particle loss due to the X-band modu-
lation is negligible, corresponding to a long lifetime, as
shown in Fig. 8. In addition, we test the sensitivity of the
period-2 SSMB mechanism to various errors. It is found
that such a scheme can tolerate relatively large modulation
amplitude fluctuation, i.e., maximum �V=V ¼ 5%, but
small phase error, i.e., 0.05 degrees. An error in R56 mainly
leads to a change to the separation between the two density
peaks and, hence, the coherent radiation wavelength.
However, this influence can be removed by installing a
R56-tunable chicane between the X-band rf cavity and the
radiator. Unlike the very tight constraints from the trans-
verse transfer elements, R51, R52, to the period-1 SSMB
using laser modulation, the conditions of R51�x � �r and
R52�x0 � �r [6] turn out to be R51R52 � �2

r="x � 60 m
with "x of 18 nm in this case, and can be easily satisfied,
which implies the influence from the nonzero R51 and R52

is negligible for the proposed SSMB scheme in the
SPEAR3 storage ring. The second-order dispersion T566

with amplitude up to 2R56 is tested in the simulation. The
microbunching structure is not disturbed, only with little
further particle loss, less than 0.5%. It appears the tolerance
of higher-order dispersion is not very tight.

B. Limitation of the collective effects

Since the microbunched beam has a short bunch length,
�z � 0:3 mm, short range wakefield (or high frequency
impedance) will potentially lead to beam instability or
severe heating at the locations of the devices which cause
small discontinuities on the vacuum chamber.
The CSR wakefield is one of the dominant collective

effects with short bunches. Theoretical and experimental
studies show that bursts of coherent radiation will emerge
when beam current is above the threshold of the CSR
driven microwave instability [22,23]. A recent study taking
into account the shielding effect [24] shows that with no
shielding the particle distribution is deformed to have
markedly triangular shape, and with increasing shielding
the distribution profile moves gradually toward that of the
unperturbed Gaussian. The threshold is given in the form

ðScsrÞth¼0:5þ0:12�; with ðScsrÞth¼Nth

re�
1=3

2�	s
���
4=3
z

;

�¼�z�
1=2

h3=2
; (3.1)

where Scsr and� are the dimensionless strength parameter
and shielding parameter, respectively; re is the classical
electron radius,Nth is the bunch population at the threshold,

TABLE II. Main parameters of the period-2 SSMB scheme in the SPEAR3 storage ring.

Parameters SPEAR3 Unit

Energy 3 GeV

Circumference 234.126 m

Nominal tune vx=vy 14:19=5:23
Synchrotron tune vz (nominal/SSMB) 0:007=0:083
Momentum compaction (nominal/SSMB) 0:0011=0:000 94
Nominal rms bunch length 4.8 mm

rms energy spread 0.1 %

Revolution time, T0 780.4 ns

Existing rf cavity, f 476.3 MHz

Existing rf cavity, V 3.2 MV

X-band rf cavity, f 11.4 GHz

X-band rf cavity, V 30.9 MV

X-band rf cavity, L 3.7 m

X-band rf cavity, pulse duration 1=5 (156) Turns (ns)

X-band rf cavity, pulse interval 8 (6.2432) Turns (�s)
X-band rf cavity, duty factor 0.025

X-band rf cavity, aver. power 20 kW=m
X-band rf cavity, peak power 0.8 MW=m
X-band rf cavity, a/lambda 0.148

Shunt impedance 91 MOhm=m
Beam current/bunch 0.1 mA

No. particles/bunch 5� 108

Harmonic available 18

Bunching factor, b 0.3

Radiation wavelength 1.4 mm

Photon flux at dipole (bunches #) 1:7� 1019=8ð50Þ Ph=½ðsecÞð0:1%BWÞ	
Brightness at dipole (bunches #) 3:5� 1013=8ð50Þ Ph=½ðmmÞ2ðmradÞ2ðsecÞð0:1%BWÞ	
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�z is the (zero current) rms bunch length,�� is the nominal
energy spread, and h is half of the separation between the
two plates (2h approximately corresponds to the vacuum
chamber height).

From Eq. (3.1), for a given �z, Nth is proportional to the

synchrotron tune vs. Note that vs / �1=2 [25], thus we have

Nth / �1=2. The traditional way to generate THz coherent

radiation in a storage ring is to reduce the bunch length to
the submillimeter level by decreasing the momentum com-
paction �, i.e., using the ‘‘low �’’ mode. For the SPEAR3
storage ring, to obtain�z ¼ 0:3 mm, it requires to reduce�
to 1=256 of that of regular user operation optics. The
available beam current for steady-state coherent radiation
generation is quite limited. Equation (3.1) yields Nth¼
3:1�107 (beam current of 6�A=bunch) for the SPEAR3
storage ring low � mode, which agrees well with the
experimental scaling law for the bunch current limit
Ið�A=bunchÞ ¼ 5ð�z=0:3 ½mm	Þ2:354 [26]. In contrast,
due to strong X-band modulation voltage and momentum
compaction of the same order as that of regular user opera-
tion mode, the synchrotron tune of the period-2 SSMB is
relatively large, vs ¼ 0:083, which results in a much higher
threshold, Nth¼6:0�109 (beam current of 1:2mA=bunch).
In addition to the shielded CSR impedance, another

strong source is the short range longitudinal wakefield
associated with the small structure of the X-band rf cavity,
which will cause the particles at the tail to lose more energy
than that at the head of the bunch, and therefore introduce
additional energy modulation to the particles and affect the
final longitudinal distribution of the microbunched beams.
We estimate the effect of the X-band cavity wakefield [27]
by including it in the tracking simulation. Although the
effect of asymmetrical energy loss within one bunch is
partially alleviated by the relatively rapid synchrotron
oscillation, the strong wakefield causes more particle
loss, and limits the beam current to about 0:1 mA=bunch
(5:0� 108 electrons=bunch) with a bunching factor of 0.3.
Note that this beam current is still much higher than that
allowed by the low � mode of the SPEAR3 storage ring.
In the case of a short bunch, the heating from the

interaction of the beam with small discontinuities (enlarge-
ments on the pipe) whose sizes are comparable to the short
bunch length might become a serious problem for the
performance of the storage ring. (The small X-band rf
cavity structure will cause beam energy loss and local
heating, which, however, can be moved by the designed
cooling system for the rf cavity.) Thus, we consider an
ideal case that there are Nd ¼ 100 identical discontinuities
more or less evenly distributed along the storage ring and
estimate the heating power with the assumption of a single
Gaussian distribution profile rather than the actual double-
peak density modulation profile. The induced wake poten-
tial Wk is calculated with the code ECHO [28] and shown

in Fig. 9.
The loss factor � is [29]

� ¼
Z 1

0

1ffiffiffiffiffiffiffi
2�

p
�z

e�z2=2�2
zWkðzÞdz; (3.2)

which results in � � 0:5 V=pC for one discontinuity.
For the stored beam of Nb ¼ 50 bunches with

0:1 mA=bunch in the SPEAR3 storage ring, the average
parasitic power is evaluated by
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FIG. 7. SSMB in the SPEAR3 storage ring after 106 turns’
tracking while including the existing 476.3 MHz rf cavity,
radiation damping, and quantum excitation, with the beam
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distribution (top right), density profile (bottom left) and Fourier
component b2f (bottom right) at the radiator, with bf the bunch-
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FIG. 8. Normalized surviving particles in the cases of with
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only X-band rf (green dashed) and with only existing 476.3 MHz
rf (blue dotted). The curves in the first 5000 turns are expanded
on the image inset.
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Pparasitic ¼ qb
2NdNb�

T0

; (3.3)

where qb is the charge of a single bunch, T0 ¼ C=c is the
revolution time, with c being the speed of light. The
resulting parasitic power is about 0.2 W per discontinuity
and a total of 20 W, which is in an acceptable level.

C. Brilliance evaluation

Coherent radiation occurs when multiple electrons in a
bunch radiate with a mutual relative phase, resulting in a
quadratic dependence of the power on the number of
participating electrons. For a given wavelength �, the
emitted average spectral power is given by

dP

d�
¼ N

dp

d�
½1þ Nb2f	; (3.4)

where N is the number of electrons, bf is the bunching

factor, and dp=d� is the power from a single electron. The
bunching factor bf is defined by

bf ¼
Z

ei2�z=��nðzÞdz; (3.5)

where �nðzÞ is the normalized longitudinal density, satisfy-
ing

R
�nðzÞdz ¼ 1.

For the coherent radiation emitted from a dipole,
dp=d�=dc is given by [30]

d2p

d�dc
¼ 2:7799� 10�16 EðGeVÞ

�2
rC

Sð�cr=�rÞ; (3.6)

where �cr ¼ 4��=3
3 is the critical radiation wavelength,

and SðxÞ � 1:333x1=3 for x � 1. For the SPEAR3 storage
ring, the average radiation spectral power from a dipole
is 1:6� 10�15 W=m at the wavelength �r ¼ 1:4 mm,

assuming the radiation in a deflection angle of dc ¼
100 mrad is collected.
Consider 50 bunches with 0:1 mA=bunch and bunching

factor bf ¼ 0:3 stored in the storage ring. The total photon

flux is

flux ¼ðdPd�Þ�
@w

�0:1%¼1:7�1019 ph=½ðsecÞð0:1%BWÞ	:
(3.7)

Since the microbunching structure is formed once every
eight turns, the average photon flux of the coherent
radiation is about 1:7� 1019=8 � 2:1� 1018 ph=½ðsecÞ�
ð0:1%BWÞ	 and the brightness is about 4:4�
1012 ph=½ðmmÞ2ðmradÞ2ðsecÞð0:1%BWÞ	, which is more
than 1 order of magnitude higher than that produced by

b
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the low � mode in SPEAR3 storage ring of 280 bunches
with 5 �A=bunch, with average photon flux about
1:7� 1017 ph=½ðsecÞð0:1%BWÞ	 [26].

D. X-band injection

Up to this point, we have assumed that the period-2
SSMB begins with injection using the existing
476.3 MHz rf system. As a result, the microbunch pairs
are separated by the standard bunch spacing of about 0.6 m.
Using the X-band rf cavity for both injection and modula-
tion, we can store many more bunches in the storage ring,
resulting in higher average beam current. More importantly,
the regularly spaced microbunches exist over many
periods, permitting bunching factors at only a narrow range
of frequencies (see Fig. 10). The result is a sharper band-
width and increased brightness of the THz coherent
radiation.

IV. CONCLUSION

In this paper, we explore the dynamics of the SSMB
system with a Hamiltonian and Jacobi matrix approach.
Through the analysis, we reidentify the condition of the
period-1 SSMB mechanism and propose the period-2
SSMB mechanism, which uses slightly stronger modula-
tion but promises much smaller bunch length and, hence,
higher harmonic than the period-1 SSMB mechanism. In
addition, the proposed SSMB makes it possible to use an
rf system instead of a laser system to produce micro-
bunching. Taking the SPEAR3 storage ring as an ex-
ample, we illustrate the application of period-2 SSMB
to generate coherent THz coherent radiation using an
X-band rf system in the pulse operation mode. Our study
shows that the available beam current and the brightness
produced by such a scheme can be much higher than that
by a low � mode. For the SPEAR3 storage ring, the THz
coherent radiation power enhancement is more than 1
order of magnitude. Throughout the paper, the transverse
motion is assumed to remain stable in the presence
of the proposed X-band rf modulation. This is a rather
good assumption because the nonlinearities in transverse
dimensions are relatively weak compared with the strong
X-band sine function modulation and collective effects
in the longitudinal plane, and the coupling between
the transverse and longitudinal motions is usually
weak in a typical storage ring. Nevertheless, a full 6D
simulation is needed and will be implemented in the
future.
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