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We apply the Venturini-Reiser (V-R) envelope-dispersion equations [M. Venturini and M. Reiser, Phys.

Rev. Lett. 81, 96 (1998)] to a continuous beam in a uniform focusing/bending lattice to study the

combined effects of linear dispersion and space charge. Within this simple model we investigate the

scaling of average dispersion and the effects on beam dimensions and show that the V-R equations lead to

the correct zero-current limits. We also introduce a generalization of the space charge intensity parameter

and apply it to the University of Maryland Electron Ring and other machines. In addition, we present

results of calculations to test the smooth approximation by solving the V-R original equations and also

through simulations with the matrix code ELEGANT.
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I. INTRODUCTION

Control of the maximum beam size and halo in high
energy proton and ion accelerators is paramount to avoid
machine activation and beam degradation from magnet
nonlinearities, image forces, and other effects. One aspect
of this control concerns the effects of dispersion and space
charge. The scope of the paper is to present scaling laws
that permit the simple evaluation of average dispersion and
beam dimensions in the presence of strong space charge.

At least two theories exist that address the effect of space
charge on the dispersion function for coasting, continuous
(unbunched) beams in accelerators. The theories were
developed in 1998 by Venturini and Reiser [1], and, inde-
pendently, by Lee and Okamoto [2]. Other authors have
used one or the other approach to model proton storage
rings at KEK [3–5] and SNS [6], but no experimental tests
of either theory have been carried out.

A major component of the Venturini-Reiser (V-R) theory
is the realization that the standard four-dimensional rms
emittance in the lab frame of reference is not conserved in
the presence of dispersion, with or without space charge.
Although the emittance growth from dispersion alone is
ordinarily very small compared to the one from, e.g.,
standard envelope mismatch, the nonconservation of rms
emittance from dispersion can be used to derive a theory of
dispersion in the presence of space charge. In the Lee-
Okamoto (L-O) theory, on the other hand, conservation of
emittance is not addressed, but the theory in the original
paper is applied to crystalline beams where emittance is
negligible. In both theories, a set of envelope-dispersion

equations are derived that constitute a generalization of the
Kapchinsky-Vladimirsky (K-V) envelope equations for
linear space charge without dispersion [7,8].
Early work on dispersion, space charge, and emittance

growth was carried out by Barnard et al. [9], who followed
a different approach from V-R and L-O to derive a set of
first-order differential equations for the first and second
moments of the beam distribution; the authors also ad-
dressed an equilibrium beam situation equivalent to a
smooth approximation of the theory. The work was shown
later to be equivalent to the V-R theory [10]. We will
discuss this early work further below and compare some
of its results with our own.
Although it can be argued that the local values of the

beam envelope and/or the dispersion function (which can
be readily obtained by numerical solutions of the equations
in the V-R or L-O theories) are more important in practice
than the average values, knowledge of the latter can pro-
vide useful insights for scaling and initial design studies.
An example is the smooth or uniform-focusing approxi-
mation of the standard K-V envelope equations without
dispersion. The theory is presented in [7] and further ex-
plored in a number of publications on both theoretical and
experimental aspects [11–13]. The envelope-dispersion
equations can also be employed for beam stability studies
by using the standard method of small oscillations around
matched envelope and dispersion functions to derive dis-
persion relations (the word ‘‘dispersion’’ used in a different
sense in that context) as it is done for the case without
dispersion [7]. A study along those lines by Ikegami et al.
[4] has shown the existence of dispersion modes besides
the known breathing and quadrupole modes of the K-V
distribution.
In this paper, we will derive explicitly the smooth

focusing-bending approximation of the V-R theory to es-
timate the average beam radius and average dispersion in
an alternating-gradient focusing lattice. The average dis-
persion will be of interest for comparison with actual
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solutions of the V-R equations as well as with calculations
with the code ELEGANT. We should also note that the
smooth focusing-bending approximation has been applied
by both Venturini [14] and Barnard [10] to study the effects
of the transition from a straight channel into a dispersive
lattice. Both treatments of the problem assume stationary
K-V beams in both the straight and dispersive regions and
calculate the effects on emittance and beam size. By con-
trast, we consider in this paper only a dispersive lattice with
near-matched conditions of the envelope and dispersion
functions and assume that the standard rms emittance is
conserved. Another related important consideration is the
type of lattice for which the theory presented here is
applicable: the V-R equations and their algebraic form do
not include any effects from either edge focusing or sextu-
poles; furthermore, a reasonably ‘‘smooth’’ physical lattice
is assumed. A lattice with a racetrack geometry with
long straight sections (as in energy recovery linacs), for
example, may not lend itself for an accurate treatment
of beam envelope and dispersion functions with the
approach adopted here. Finally, we introduce a single
parameter that makes possible to characterize the effects
of both space charge and dispersion in an average sense;
this parameter can be considered as a generalization
of one introduced to characterize (incoherent) space charge
alone [7].

A combination of parameters appears naturally in the
simplest treatment of dispersion with or without space
charge. If both the betatron amplitude and dispersion
functions are matched, these parameters are (see next
section) the ratio of lattice average dispersion to average
zero-current beam radius (D0=a0), the rms fractional
momentum error or spread (�), and the ratio of average
‘‘depressed’’ dispersion to average depressed beam radius
(D=a). The word depressed, which does not imply
‘‘reduced,’’ is used here liberally to indicate the effects of
linear space charge. Furthermore, we depart from the
standard notation for dispersion (�) and use ‘‘D’’ instead,
and reserve ‘‘�’’ to denote space charge tune depression.
As shown below, the product 2D�=a defines a dimension-
less parameter that we denote by �, or �0 in the absence of
space charge. The ratio �0=� turns out to be a possible
measure of the combined effects of dispersion and space
charge, with �0=� ’ 1:0 indicating small effects from ei-
ther, �0=� * 1:0 strong dispersion but small space charge
and �0=� & 1:0 strong space charge and dispersion.

In circular machines of interest, like storage rings for
spallation neutron sources (see e.g. [15]), D0=a0 ¼ 15–30,
while � ’ 10�2, so �0 ’ 0:3–0:6. In this case, although the
effects of dispersion and space charge on the average beam
radius are not entirely negligible, we obtain �0=� ’ 1:0. By
contrast, a typical ring envisioned for a heavy-ion fusion
driver [16], having also D0=a0 ¼ 15–30, will have much
stronger effects from both space charge and dispersion
unless the fractional momentum error is kept significantly

smaller (� ’ 10�4). Even in this latter case we obtain
�0=� ’ 0:86 [17].
By contrast with high power proton storage rings or

heavy-ion fusion drivers, electron circular machines like
storage rings for third generation light sources do not dis-
play any space charge effects but dispersion can be signifi-
cant. For the storage ring of the Advanced Light Source at
Berkeley Lab [18], for example, we have D0=a0 ’ 900, on
account of a small beam dimension in the horizontal plane,
a0, of the order of 200 �m. Therefore, with � ¼ 6:5�
10�4, we get �0 ¼ 1:1 and �0=� ¼ 1:5. Interestingly, with
very low-energy, high-current electrons, and a dense strong
focusing lattice as in the University of Maryland Electron
Ring [19], it is possible to have a number of beams with a
diverse combination of space charge, dispersion, and emit-
tance effects on the average beam radius. In fact, using
� ¼ 0:01 and currents of 0.6, 6.0, and 21, and 104 mA at
10 keV, we obtain �0=� ¼ 1:0, 0.65, 0.44, 0.27 with
D0=a0 ¼ 30, 16, 15, 10.5, respectively, at a typical oper-
ating point. Naturally, these calculations reflect an ideal
situation as qualified in Sec. V.
The paper is organized in six sections. Section II

presents a review of basic relations for the beam centroid
and rms beam radius in the presence of linear dispersion,
including the corresponding relations with space charge. In
Sec. III, the envelope-dispersion equations of the V-R
theory are presented and cast in a form amenable for
analysis within the uniform-focusing/bending approxima-
tion discussed in Sec. IV. In the latter part of Sec. IV, we
apply the smooth approximation equations to a number of
beams in the University of Maryland Electron Ring
(UMER). In Sec. V we compare the results of the smooth
approximation with average quantities obtained from
direct solutions of the V-R equations as well as from
calculations with the matrix code ELEGANT. Section VI is
devoted to summary and conclusions; details of the imple-
mentation of incoherent space charge in ELEGANT are
deferred to the Appendix.

II. BASIC RELATIONS

We review in this section the relations for orbit displace-
ment and beam size that are valid when space charge
effects are negligible; then, we extend the relations to
include space charge effects. The main assumptions are:
(i) the beam is continuous; (ii) dispersion is linear; (iii) no
edge focusing is present; and (iv) the energy spread is
uncorrelated along and across the beam.
In the absence of space charge, the horizontal displace-

ment of a particle from the reference trajectory is given by

x ¼ x� þD0�; (1)

where x� is the betatron oscillation amplitude, � � �p=p0

is the fractional momentum error, and D0 is the standard
dispersion without space charge. The fractional momen-
tum error � is assumed to be uncorrelated with both x and s
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(distance along beam line). For rings, x� in Eq. (1) is

replaced by xco þ x� where xco is the closed orbit dis-

placement; but the closed orbit is ordinarily set as the
reference orbit so xco ¼ 0.

With space charge, we write

xsc ¼ xsc� þD�: (2)

Clearly, in a circular machine D still represents the
closed orbit of off-momentum particles with space charge
forces simply enhancing the displacements; thus, we
expect D>D0.

Without image forces and in the absence of closed orbit
errors and assuming a symmetrical phase-space distribu-
tion, we have hx�i ¼ 0 ¼ hxsc�i for the 4D phase-space

averages at a given s plane. An equivalent statement, under
these assumptions, is that incoherent space charge does not
change the reference trajectory. Therefore, we obtain

hxsci � hxi ¼ ðD�D0Þh�i: (3)

Equation (3) is the same as Eq. (10) in a paper by Ohkawa
and Ikegami on dispersion matching from a linac into a
ring at KEK [3]. It would seem that Eq. (3) allows us to
measure dispersion with space charge by measuring orbits
for low- and high-current beams under the same conditions
of bending/steering. However, it is reasonable to assume
that the distribution of momentum errors is centered at zero
in both cases, so no change in orbits can be observed.

Since by definition hx��i ¼ 0 ¼ hxsc��i, additional

equations for the dispersion and its derivative follow im-
mediately from Eq. (1) or Eq. (2), after multiplying by �
and taking averages:

D ¼ hx�i
h�2i ¼

�16

�66

; D0 ¼ hx0�i
h�2i ¼ �26

�66

; (4)

where the last equalities are written in terms of the beam
sigma matrix [3]. Equations (4) are valid with or without
(linear) space charge and are useful for computational
purposes; however, calculations with � ! 0 must be ap-
proached with caution (see Sec. V).

To measure the effects of incoherent space charge on
dispersion we need to evaluate the second moments of the
beam distribution (and energy spread). Without space
charge, the rms value of x is

hðx� hxiÞ2i1=2 ¼ ½hx2�i þD2
0h�2i�1=2: (5)

With space charge we have

hðxsc � hxsciÞ2i1=2 ¼ ½hx2sc�i þD2h�2i�1=2: (6)

We have used hx��i¼0¼hxsc��i, and h�i ¼ 0. Further,

by using a0 ¼ 2hx2�i1=2, we rewrite Eq. (5) in the form

2xrms ¼ ½a20 þ 4D2
0h�2i�1=2 ¼ a0ð1þ �2

0Þ1=2; (7)

where �0 � 2D0�=a0, with � � h�2i1=2 denoting the rms
fractional momentum error or spread. It is clear that the

linear approximation used in Eqs. (1) and (2) implies that
�2
0 � 1.
In an attempt to include space charge, we could write,

with a � 2ðxrmsÞsc,
a ¼ ½a2sc þ 4D2h�2i�1=2; (8)

which turns out to be approximately correct for small � and
with proper expressions for asc andD (Sec. IV). In general,
however, it is not possible to separate the effects of space
charge and dispersion in the way implied by Eq. (8): as the
beam enlarges in the horizontal plane from dispersion
effects, the space charge force on a given particle also
changes. The correct general expression that replaces
Eq. (7) when linear space charge and linear dispersion
are combined will be derived in the next section.
As a final note, the use of 2xrms in Eqs. (7) and (8) for the

effective beam radius assumes than an equivalent K-V
beam distribution can be employed for arbitrary beam
current and nonzero dispersion. This is a good approxima-
tion, as discussed in [14].

III. EMITTANCE AND THE V-R
ENVELOPE-DISPERSION EQUATIONS

We apply the envelope-dispersion equations of the V-R
theory to a matched beam in a uniform-focusing/bending
channel. For simplicity, we assume an accelerator where
bending occurs only on the horizontal plane and without
horizontal edge focusing (i.e. bending occurs by means of
rectangular dipole magnets). Further, we assume that the
beam has an uncorrelated rms energy spread that is small
(�1%–2% of the nominal beam energy), but that no limits
are imposed on the effects of transverse space charge.
Thus, the theory is self-consistent only in regard to trans-
verse space charge and dispersion; a self-consistent treat-
ment in 6D, whereby the energy spread itself is affected by
longitudinal space charge, would require a more elaborate
theory. Finally, it will be implicit that an equivalent K-V
beam can be used to describe the beam distribution in the
presence of both linear space charge and linear dispersion.
Incoherent space charge forces defocus the beam in both

horizontal and vertical planes, but horizontal dispersion
acts mostly on the horizontal plane, causing enlargement of
the beam in that plane; in an alternating-gradient lattice,
however, coupling introduces effects of horizontal disper-
sion on the vertical plane too but the effect is not as
significant. Because of the reduced effective focusing
caused by space charge, for a given momentum error the
main effect is an increase in dispersion. The reference
orbit, however, is not affected by incoherent space charge,
as it is given by the motion of the beam’s centroid. By
contrast, image forces would affect the reference orbit for
an off-center beam.
Both the V-R and L-O theories rely on a canonical trans-

formation of variables to a system on the off-momentum
particle orbit. In this system, the emittance is conserved but
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is different from the standard emittance. Since bending
occurs only on the horizontal plane, only the standard
horizontal rms emittance,

"2x rms ¼ hx2ihx02i � hxx0i2; (9)

is not conserved in the V-R theory. Instead, the new emit-
tance that is conserved is written as [20]

�2dx ¼ �2x rms ��2h½x0D� xD0�2i; (10)

where D � DðsÞ is the horizontal dispersion, � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihð�p=p0Þ2i

p

is the rms fractional momentum error or
spread, and prime indicates derivatives with respect to
‘‘s,’’ the distance along the reference trajectory. Angular
brackets represent phase-space averages. In the same V-R
theory, the following envelope-dispersion equations are
derived [21]:

D00 þ
�

k2x0 �
2K

XðXþ YÞ
�

D� 1

�
¼ 0; (11a)

X00 þ k2x0X� 2K

X þ Y
� �2dx þ ½XX0 �DD0�2�2

X3ð1� 4�2D2

X2 Þ

þ X02

X
� 4�2

X

�

D

�
þD02

�

¼ 0; (11b)

Y00 þ k2y0X� 2K

X þ Y
� �2y

Y3
¼ 0; (11c)

where � is the local bending radius at the nominal energy,
kx0;y0 are wave numbers representing external focusing,

X, Y are the 2rms beam semiaxes dimensions, K is the
generalized beam perveance [7], and �x;y are the effective

(i.e. unnormalized, 4rms) standard emittances. All quanti-
ties except K are functions of s. It should be noted that
these envelope-dispersion equations were rederived by
Okamoto and Machida in a 2002 paper on dispersion and
resonances [5].

Somegeneral observations can bemade about Eqs. (11a)–
(11c) before we undertake their solution. First, Eq. (11a) for
the dispersion, which dates back to Al Garren’s work for
heavy-ion fusion [22], displays a ‘‘defocusing’’ effect from
space charge like the one present for the envelopes
in Eqs. (11b) and (11c). Thus, thematched dispersion under-
goes fast oscillations with the frequency of the lattice
(0.32 m in UMER) and slow oscillations with wave number
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x0 � 2K=XðX þ YÞ
q

. Second, the denominator of the

emittance term in Eq. (11b) contains the factor
ð1� 4�2D2=X2Þ, which implies that 2�D=X < 1 since
the emittance contribution cannot be infinite or change
sign [this is also evident from Eq. (8) with the substitutions
a ¼ X, and h�2i ¼ �2]. This latter condition is equivalent to
saying that the displacement, �D, from the reference tra-
jectory, cannot be equal or exceed half the envelope effective
radius. Third, the oscillations of the (horizontal) dispersion
function are coupled to those of the (mostly horizontal)

envelope oscillations, so rms envelope and dispersion
matching must be treated simultaneously for optimal beam
transport.

IV. UNIFORM FOCUSING-BENDING
APPROXIMATION

Using the V-R theory [1] and assuming that the standard
4rms emittances �x;y are conserved (see Sec. V), the

envelope-dispersion equations in the smooth approxima-
tion are (see also [4])

�

k2x0 �
2K

aðaþ bÞ
�

D� 1

�
¼ 0; (12a)

k2x0a� 2K

ðaþ bÞ �
4�2

a

D

�
� �2x

a3ð1� 4�2D2

a2
Þ ¼ 0; (12b)

k2y0b� 2K

ðaþ bÞ �
�2y

b3
¼ 0; (12c)

where D now defines the average horizontal dispersion, �
is the average machine radius, kx0;y0 represent external

focusing (constants in the smooth approximation), and a,
b define the constant average or stationary semiaxes beam
dimensions.
If we define �x�, and �y� by the following relations,

�x��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2K

aðaþbÞk2x0

s

; �y��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2K

bðaþbÞk2y0

s

; (13)

we can rewrite Eqs. (12a)–(12c) in a more compact form:

�2
x�k

2
x0D� 1

�
¼ 0; or D ¼ D0

�2
x�

; (14a)

�2
x�k

2
x0a� 4�2

a

D

�
� �2x

a3ð1� 4�2D2

a2
Þ ¼ 0; (14b)

�2
y�k

2
y0b� �2y

b3
¼ 0: (14c)

It is possible to write an (implicit) expression for a2 from
Eqs. (12a)–(12c) or (14a)–(14c). Multiplying out Eq. (14b)
by ð1� 4�2D2=a2Þ and dividing by �2

x�k
2
x0, we obtain a

homogeneous quartic equation in a. By solving the equa-
tion for a2 and using Eq. (14a), we obtain

a2 ¼ a20
�x�ða; b;�Þ þ 4�2D2ða; b;�Þ; (15)

where a0 �
ffiffiffiffiffiffiffiffiffiffiffiffi

�x=k0
p

, and the dependence of �x� and D on
a, b, and � is indicated explicitly. Equation (15) is of the
form of Eq. (8). In the limit of small momentum error but
arbitrary space charge, the quantities defined in Eq. (13)
reduce to the standard space charge tune depressions that
we denote by �x0, and �y0. In this limit, the first term in

Eq. (15) is a20=�x0, which is the correct expression for the

effective beam radius (squared) with space charge but no
dispersion.
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The three second-order equations of the V-R theory,
Eqs. (11a)–(11c), are equivalent to six first-order equations
derived by Barnard et al. [9,10], if the generalized emit-
tance [Eq. (10)] is conserved. Furthermore, Eq. (10) of
Ref. [9], �y2 ffi �x2 � k2�0=�x

2
mk

4, can be shown to be

equivalent to our Eq. (15) [23]. Interestingly, the approach
taken by Barnard et al. of assuming transverse energy
equipartioning leads to results very similar to those pre-
sented here.

It does not appear feasible to obtain a general explicit
expression for the effective beam radius ‘‘a’’ from Eq. (15)
because of the appearance of ‘‘a’’ on both sides of the
equation. However, an approximation can be easily derived
if a ffi b, �x ¼ �y, kx0 ¼ ky0 � k0, and we ignore the term

ð1� 4�2D2=a2Þ in the denominator of the emittance term
in Eq. (12b) or Eq. (14b). This latter step is justified for
space charge dominated transport whereby the emittance
term in the envelope-dispersion equations (including the
ignored factor) is small compared to the space charge term.
The result, from Eq. (12b) using a simplified emittance
term, is

a2 ffi K

2k20
þ 2�2DD0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

K

2k20
þ 2�2DD0

�

2 þ a40

s

; (16)

where a0 was defined above. The last equation can be
rewritten in terms of the parameter u � K=2�xk0 intro-
duced in Ref. [7]:

a2

a20
ffi uþ 2�2DD0

a20
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

uþ 2�2DD0

a20

�

2 þ 1

s

: (17)

If � ¼ 0, we get a2=a20 ffi ðuþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ 1
p

Þ, which is the

correct uniform focusing approximation, zero-momentum
error limit [7]. In the zero-current limit, though, we obtain
a2=a20 ! 1þ 2�2D2

0=a
2
0, which is not the correct limit as

can be seen by comparing this expression with Eq. (7). To
obtain the correct limit, ð1� 4�2D2=a2Þ must be included
in the emittance term in Eq. (12b), as can be realized from
Eq. (15), which is exact within the uniform focusing/
dispersion approximation.

To make Eq. (16) or Eq. (17) useful for scaling studies,
we use the following additional expressions:

D ¼ D0

�2
x�

ffi D0

�2
x0

; u ¼ 1

2

�

1� �2
x0

�x0

�

; (18)

where we have assumed small momentum error in the ap-
proximation �x� ’ �x0 on the left [see Eqs. (13) and (14a)].
Thus, we obtain, finally,

a2

a20
ffi 1� �2

2�
þ �2

0

2�2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

1� �2

2�
þ �2

0

2�2

�

2 þ 1

s

; (19)

where we have omitted the subscript ‘‘x0’’ to simplify the
notation.

Equation (19) is the main result. The equation is not
exact in any particular limit of nonzero space charge and/or
dispersion. We reiterate the conditions for the validity of
Eq. (19): a ffi b, �x ¼ �y, kx0 ¼ ky0 � k0, 4�

2D2=a2�1,

and small momentum error. The latter two conditions can
be combined to obtain

�2D2
0 �

a20�
3

4
; (20)

where we have used D ffi D0=�
2, and a2 ffi a20=�, since

most of the increase in beam size comes from space charge
if � is small. The condition in Eq. (20) is somewhat too
restrictive as D is overestimated by the approximation
used. However, we can still use the relation to find upper
limits to the momentum error �; we consider two cases of
D0=a0 (10 and 30) and two cases of� (0.1 and 0.3): we find
maximum � of 0.2% and 0.8% for ðD0=a0; �Þ ¼ ð10; 0:1Þ
and (10, 0.3), respectively, and 0.05%, 0.3% for
ðD0=a0; �Þ ¼ ð30; 0:1Þ and (30, 0.3). Thus, Eq. (19) is valid
over a broad range of values of average lattice dispersion
and beam currents with more severe restrictions on the
momentum error at extreme conditions of space charge
(� of the order of 0.1). For values of � � 1%, on the other
hand, Eq. (19) can only provide a rough or fair estimate of
beam radius in most cases.
For completeness, we examine also the condition a ffi b

behind Eq. (19). By subtracting Eq. (12c) from Eq. (12b)
and neglecting the emittance terms, i.e., assuming space
charge dominated beam transport, we can obtain the degree
of anisotropy caused by dispersion and space charge when
the momentum error is small:

a� b

a
ffi 4�2D2

0

a20�
¼ �2

0

�
: (21)

For D0=a0 ¼ 10, � ¼ 0:1, for example, we find
ða�bÞ=affi4�103�2, or a 1% anisotropy at � ¼ 0:16%.
For beam transport in UMER, Eq. (19) overestimates the

effect on beam radius when both space charge and mo-
mentum error are significant (� & 0:3, � * 1%) because
D is not as large as implied by the first approximation in
Eq. (18); the equation also underestimates the effect for
small current because the contribution from the emittance
term [Eq. (14b)] is given less weight by ignoring the factor
ð1� 4�2D2=a2Þ�1. However, the results are accurate
within 10% or better [of the exact result from Eqs. (12a)–
(12c)] as shown in Fig. 1 [24].
Figure 1 illustrates the results of calculations using

Eq. (19) of normalized beam radius a=a0 as a function of
standard tune depression � for four values of �0 ¼
2�D0=a0: 0.0 (no momentum error), 0.20, 0.30, and 0.60.
Also shown are the results of exact calculations, within the
smooth approximation [Eqs. (14a)–(14c)], for five beams
in UMER (� ¼ 0:01 for all cases but one), the SNS proton
storage ring [15] and a hypothetical heavy-ion fusion ring
[16]. We assume also � ¼ 0:01 for these latter cases. The
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first two columns in Table I contain the main beam pa-
rameters in UMER; we also include calculations of beam
dimensions, normalized to the space charge value without
dispersion aS, for � ¼ 0:002 and � ¼ 0:01. We justify
below the choice of these momentum errors for a 10 keV
electron beam in UMER.

We emphasize that there are two major, not entirely
independent, assumptions behind all approximations above:
first, both rms envelope and dispersion matching are
satisfied (or the mismatch is small), and, second, the rms
emittance change is negligible. Clearly, these assumptions

may not be realistic for large momentum errors (>1%), for
which case the smooth focusing/bending approximation
may not be accurate, but those cases are considered extreme.
Furthermore, Eqs. (19)–(21) and Fig. 1 may give the im-
pression that �0 and� (standard horizontal tune depression)
can be specified independently for a given beam current and

emittance. This is not the case as � is a function of a0 ¼
ð�=k0Þ1=2. To specify the beam transport problem com-
pletely in the smooth approximation and in the presence of
both space charge and dispersion, we need the beam current,
energy, rms emittance, and rms fractional momentum error
� (beam parameters) as well as the average machine radius
and magnet strength (lattice parameters). The standard tune
depression and the ratio D0=a0, in turn, are independent of
�, but �0 is proportional to �. To illustrate this further, we
have included in Fig. 1 a point labeled ‘‘6mA*’’ on the curve
for �0 ¼ 0:60; this point is possible if we adjust both the
emittance and the momentum error (� ¼ 0:015) to yield
�0 ¼ 0:60 and� ¼ 0:50while keeping other parameters the
same as for the standard transport of 6 mA in UMER (see
Table I).
We can now define a dispersion-space charge intensity

parameter, 	D:

	D � �0

�
¼

�

D0

a0

��

D

a

��1
: (22)

The ratio D0=a0 is fairly constant (10–30) over a broad
range of beam parameters and machines, since D0, a0 are
both proportional to

ffiffiffiffiffiffiffiffi

�x0

p
[25,26]. Furthermore, from

Eq. (22) we see that 	D ¼ 1 with no space charge and no
dispersion; 	D ’ a=a0, with no space charge (* 1:0 with
strong dispersion); 	D & 1:0, with strong space charge. In
this latter case, we can use the approximationsD ffi D0=�

2

and a ffi a0=�
1=2, valid for small �, to obtain 	D ffi �3=2.

For larger �, of the order of 1%, and strong space charge,
D is still significantly larger than D0, although not as large

FIG. 1. Approximate normalized horizontal beam semiaxis as a
function of standard tune depression [see Eq. (19)] for four values
of the parameter �0 ¼ 2D0�=a0, with � ¼ 0:0 for the first case
(red dashed line) and� ¼ 0:01 for the other three cases; all cases
include full space charge. Five cases of beams in UMER are also
indicated [exact calculations from Eqs. (14a)–(14c)] by their
currents; the operating point in UMER is 
0 ¼ 6:37, and the
edge emittances are given in Table I. Also shown are points for
the proton ring at SNS and a hypothetical ring for heavy-ion fusion
(HIF).

TABLE I. Basic parameters of UMER beams at 10 keV and results of smooth approximation
calculations of beam horizontal (a) and vertical (b) semiaxes dimensions (normalized to the
space charge, zero-dispersion value aS), from Eqs. (14a)–(14c). The operating point is 
x0 ¼

y0 ¼ 6:37, so the zero-current average horizontal dispersion is D0 ¼ 0:045 m, and the zero-

current average beam radii are a0ðmmÞ ¼ 0:54� �0:5ð�mÞ. The emittances are 4� rms,
unnormalized.

Current (mA), Standard a=aS, b=aS 	D

emittance (�m) tune depression � ¼ 0:2% � ¼ 1% � ¼ 0:2%, 1%

0.0, 8.05 1.00 1.01, 1.00 1.16, 1.00 1.01, 1.16

0.6, 8.05 0.85 1.01, 1.00 1.20, 0.99 0.80, 1.03

6.0, 26.2 0.62 1.01, 1.00 1.10, 0.99 0.50, 0.65

6.0a, 17.2 0.50 1.01a, 1.00a 1.26a, 0.96a 0.37a, 0.82a

21, 30.2 0.30 1.01, 1.00 1.11, 0.97 0.20, 0.44

104, 64.4 0.14 1.01, 1.00 1.06, 0.98 0.09, 0.27

aThe rms fractional momentum errors are � ¼ 0:15% and 1.5% for the case 6.0 mA, 17:2 �m.
See also Fig. 1.
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as implied byD ffi D0=�
2, while a is still of the same order

as the space charge value aS obtained without dispersion.
We conclude from Table I that the beam enlargement in

the horizontal direction caused by dispersion, relative to
space charge alone, is an effect of the order of 1%, or less,
for relatively low momentum error, and a 10%–20% effect
for large momentum error. The effect on the beam vertical
dimension, on the other hand, is negligible for small mo-
mentum error, but a 1% effect (reduction) for large mo-
mentum error. Dispersion and space charge induce a beam
size asymmetry that, interestingly, is largest for 0.6 mA
(a=b ¼ 1:21) at � ¼ 1%. An examination of Eq. (11b) or
Eq. (12b) reveals that the ratio of dispersion to space
charge terms is larger for 0.6 mA at � ¼ 1% than for the
other beam currents; the dispersion term relative to the
emittance term, however, is not. The 0.6 beam remains
emittance dominated, but dispersion effects are, on aver-
age, more important than space charge effects. Thus, the
parameter 	D ¼ 1:03 (last column in Table I) is indicative
of this.

Another effect of dispersion is to change the standard
tune depressions, particularly in the bending (horizontal)
plane. This effect was already noted in Ref. [4], but our
results differ from those of that reference because of the
effects of the term ð1� 4�2D2=a2Þ.

In Table II we tabulate the results of normalized average
dispersion as well as the standard and dispersion-modified
tune depressions. In chapter 5 ofRef. [7], Reiser includes the
effect of dispersion on the Laslett tune shift formula and
concludes that the effect is to increase the tune shift more on
the vertical than on the horizontal (bending) plane. With the
self-consistentV-R theory, however, we find that the effect is
much more pronounced on the horizontal (bending) plane.
FromTable II, we see, for example, that at 6.0mA,� ¼ 1%,
the horizontal tune depression changes byþ10%, while the
vertical tune depression changes by only þ2:5%. For the
same �, the horizontal tune depression more than doubles
for the 104 mA beam. Further, Reiser predicts correctly that
more current can be transported in principle by operating at a

lower bare tune and, consequently, higher dispersion (both
bare and depressed).

V. NUMERICAL TESTS OF THE
SMOOTH APPROXIMATION

In this section we present solutions of the V-R equations
[Eqs. (11a)–(11c) in Sec. III] for the beam dispersion and
envelopes corresponding to ‘‘zero’’ current as well as three
cases of beam transport with non-negligible space charge,
0.6, 6.0, and 21 mA. (We operate with these beams in
experiments currently underway in UMER.) We compare
the envelope-dispersion results with those from the smooth
approximation discussed in the previous section, as well
as with results of calculations with the code ELEGANT

[27]. Other authors have compared solutions of the V-R
equations for space charge dominated beams with large
momentum spread [20] with simulations with the particle-
in-cell code WARP [28]. We will comment on that work
below and relate it to the results of our calculations.
The envelope-dispersion calculations as well as those

with ELEGANT employ an idealized UMER lattice of 72
identical magnetic quadrupoles over a 11.52-m circum-
ference, i.e., with no alignment or drift length errors. For
the envelope-dispersion calculations, the quadrupole gra-
dient is implemented as a smooth profile based on an
analytical function using an approach similar to the one
described in [13], while the bending is modeled with either
a series of ten-degree kicks between every other quadru-
pole, or as constant bending with � ¼ 1:833 m; no signifi-
cant difference is seen between these two approaches to
bending. In ELEGANT, on the other hand, the quadrupoles
are modeled as equivalent hard-edge elements [13], and the
bending magnets as rectangular 10-deg dipoles. The code
ELEGANT has two major advantages for the space charge

calculations: relative ease for parametrization of the prob-
lem from the use of the standard matrix approach to
accelerator calculations [see, e.g., Eq. (4)], as well as speed
even for tracking calculations involving two turns and up to

TABLE II. Results of smooth approximation calculations of dispersion, from Eqs. (14a)–(14c),
and tune depressions [Eq. (13)]. The operating point is 
x0 ¼ 
y0 ¼ 6:37, so the zero-current

average horizontal dispersion is D0 ¼ 0:045 m. The emittances are 4� rms, unnormalized.

Current (mA), Standard D=D0 Tune depression �x, �y

emittance (�m) tune depression � ¼ 0:2%, 1% � ¼ 0:2% � ¼ 1%

0.0, 8.05 1.00 1.0, 1.0 1.00, 1.00 1.00, 1.00

0.6, 8.05 0.85 1.4, 1.3 0.85, 0.85 0.89, 0.87

6.0, 26.2 0.62 2.5, 2.1 0.63, 0.62 0.68, 0.64

6.0a, 17.2 0.50a 3.9a, 2.2a 0.51a, 0.50a 0.68a, 0.54a

21, 30.2 0.30 9.3, 4.6 0.33, 0.31 0.47, 0.32

104, 64.4 0.14 31, 10 0.18, 0.14 0.31, 0.15

aThe rms fractional momentum errors are � ¼ 0:15% and 1.5% for the case 6.0 mA, 17:2 �m.
See also Table I to evaluate the ratios a=b.
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250 K particles. The implementation of space charge in
ELEGANT is briefly described in the Appendix.

We begin by computing the full-current transverse
Courant-Snyder parameters �x;y, �x;y for the rms-envelope

matched beam over one superperiod in UMER (four quad-
rupoles and two bending dipoles); we use the code
TRACE3D [29] for this purpose. These parameters are then

used to compute the 2rms envelope semiaxes dimensions
that are the initial conditions for solving the V-R equations;
the latter [Eqs. (11a)–(11c)] are solved in MATHEMATICA

[30]. We then undertake calculations of envelopes and
dispersion over 1–2 turns, i.e., 36–72 focusing-defocusing
periods, for two cases: initially mismatched dispersion
withDð0Þ ¼ 0,D0ð0Þ ¼ 0, and approximate matching con-
ditions. To obtain the latter, we adjust the initial values of
the dispersion and its slope, Dð0Þ, D0ð0Þ, and, in some
cases, also the initial value of the horizontal beam semiaxis
Xð0Þ. Matching is judged by the evolution of the envelopes
and dispersion over 1–2 turns. Since our goal is to compare
average dispersion and beam dimensions with smooth
approximation results, we consider that this approach is
sufficient as long as mismatch is not too large. We also
do the calculations for two values of the rms fractional

momentum error: � ¼ 0:002 and � ¼ 0:01, as in the
previous section.
The solutions of the V-R differential equations display

instabilities of the dispersion and envelope functions for all
beam currents in UMER, particularly for � around 0.002,
when the dispersion is mismatched by arbitrarily setting
Dð0Þ ¼ 0 ¼ D0ð0Þ. Figures 2(a)–2(c) show the results of
these calculations for 0.6 mA, � ¼ 0:002 over two turns in
UMER. As Fig. 2(a) shows, the dispersion of the mismatch
case turns negative during the first turn and its peak value
grows by a factor of 4 at the end of the second turn; by
contrast, the matched dispersion [Dð0Þ ¼ 0:048, D0ð0Þ ¼
�0:16] remains positive and with a constant peak value of
about 0.1 m. In Figs. 2(b), 2(b), and 2(c), we show the
mismatched andmatched horizontal and vertical envelopes;
clearly, the beam horizontal dimension turns unstable dur-
ing the second turn. The calculations in ELEGANT under the
same initial conditions, however, do not display the insta-
bilities; instead, the dispersion and horizontal envelope
dimension undergo initially large slow and fast oscillations
whose amplitude decay but continue after two turns. The
oscillations are expected from the lattice geometry and
space charge too [see Eqs. (11a)–(11c)], but in ELEGANT

FIG. 2. Dispersion and beam envelopes over two turns in UMER from solutions of the V-R equations; matched and mismatched
cases for 0.6 mA, � ¼ 0:002 are shown: (a) dispersion functions, (b) horizontal beam envelopes, and (c) vertical beam envelopes.
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they are further modified by an initially varying emittance
as discussed in more detail below. The results from
ELEGANT and V-R equations are shown in Figs. 3(a)–3(c);

notice the close agreement between ELEGANT and V-R
calculations for the dispersion function over the first 5 m
or so, and the almost perfect agreement for the envelopes in
Fig. 3(c) (vertical envelope not shown.)

Figures 4(a)–4(c) show examples of calculations of dis-
persion in ELEGANT for 0.0, 0.6, 6.0, and 21 mAwith � ¼
0:002, 0.01; also shown are lines indicating average values
from the smooth approximation as well as from solutions of
the V-R differential equations. Notice the large jump in
average dispersion from 6 to 21 mA at � ¼ 0:002. All
calculations yield a significantly larger average dispersion
for a combination of small � ( & 0:002) and large current;
e.g., for 21mA,� ¼ 0:002, we getD ¼ 0:37 m (ELEGANT),
0.42m (SA), andD ¼ 0:31 m (V-R equations). Better agree-
ment for the average dispersion is obtained among the three
approaches if � ¼ 0:001 (results not shown in Fig. 4); at
21 mA, for example, we get D ¼ 0:47 m from both
ELEGANT and SA, andD ¼ 0:40 m from the V-R equations.

To examine the assumption of rms emittance con-
servation that lead to the SA Eqs. (12a)–(12c), and that
was also used when solving the V-R equations, we can
estimate the difference between the generalized rms
horizontal emittance �dx [introduced in [1] and given in
Eq. (10)] and the standard horizontal rms emittance �x rms.
Using the smooth approximation to set D0 ¼ 0 and
�2x rms ¼ hx2ihx02i ¼ a2hx02i=4 in Eq. (10), we obtain

�2dx ffi �2x rmsð1� �2
xÞ; (23)

where �x ¼ 2�D=a. Therefore, the fractional difference
can be approximated as

�x rms � �dx
�x rms

	 �2
x

2
: (24)

From either Eq. (23) or Eq. (24), we find that the fractional
difference between �dx and �x rms is from around 1% at low
current (0.6 mA) to 5% at high current (21 mA) if � ¼
0:002, and from 10% to 30% (low to high current) if � ¼
0:01. Therefore, the assumption that �x rms is conserved is

FIG. 3. Comparison of results from ELEGANT and V-R equations for the dispersion functions at 0.6 mA, � ¼ 0:002 in UMER (two
turns) for (a) mismatched, and (b) near-matched conditions. The horizontal beam envelopes over one turn for near-matched conditions
are shown in (c). The dispersion function from ELEGANT in (b) appears to be shifting ahead of the V-R curve, but the inset indicates that
this is not the case.
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good for small momentum error but only fair for a combi-
nation of large momentum error and high space charge.

From Figs. 4(a)–4(c), it is clear that the maximum
dispersion can be a factor of 2, approximately, larger
than the average dispersion during the first turn before
the dispersion oscillations settle to an almost constant
amplitude. The initial slow and large oscillations of the
dispersion function are directly related to the (horizontal)
emittance oscillations as can be seen from Eq. (10) above;
the frequency of those oscillations can also be easily
computed from Eq. (11a) using the average values of the
matched envelopes X and Y (a and b) and the SA value of
the external focusing constant kx0. These oscillations are
described also by Venturini in his Ph.D. thesis [14] and in a
PAC99 paper [20] for space charge dominated beam trans-
port in UMER with 100 mA and � ¼ 0:015. We obtain
qualitatively similar results as illustrated in Fig. 5(a),
where the dispersion and standard rms horizontal and
vertical emittances (normalized to the initial values) from
calculations with ELEGANT are plotted over two turns for

6.0 mA and � ¼ 0:010. The horizontal component of the
beam envelope also evolves initially with slow oscillations
coupled to the emittance oscillations, but not as strongly as
the dispersion function; this is illustrated in Fig. 5(b).
The decay of the slow oscillations of the horizontal emit-

tance in approximately one turn is also in agreementwith the
WARP simulations presented in [14,20]. However, there are

obvious differences between our results and Venturini et al.
calculations, likely stemming from the different tune depres-
sion, space charge models, and mismatch conditions; in
particular, the vertical emittance in the calculations from
ELEGANTgrowsby less than 10%,while itmore than doubles

in the WARP calculation. In both sets of calculations, though,
coupling of the two transverse directions, unavoidable in an
alternating gradient lattice and modified by dispersion, as
well as nonlinear space charge forces may drive the hori-
zontal and vertical emittances closer together after the initial
jump in the horizontal emittance from mismatched disper-
sion and/or envelope functions. The small-amplitude resid-
ual oscillations in the horizontal and vertical emittances

FIG. 4. Dispersion functions with space charge over two turns in UMER from ELEGANT code: (a), (b) 0.0, 0.6, and 6.0 mA at 10 keV;
(c) 21 mA at 10 keV. The solid black lines represent results from the smooth approximation [Eqs. (12a)–(12c)], while the broken lines
indicate results from the V-R differential equations. Notice the different vertical scale in (c).
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observed after about one turn [Fig. 5(a)] are related to
envelope mismatch for space charge dominated transport,
but are also affected by the order of thematrix calculations in
ELEGANT as discussed in the Appendix.

The large average dispersion obtained in cases of small
� and large current do not lead to large displacement of
off-momentum particles relative to the reference orbit or to
significant beam size increase. Thus, the product D� is
moderate, only about 0.8–2.0 mm, as obtained from the
average and maximum dispersion for 21 mA, � ¼ 0:002
[Fig. 4(c) for 21 mA]. As expected, the effect on the
average beam horizontal dimension is also small for � ¼
0:002: a=aS ¼ 1:01; but significant at � ¼ 0:01: a=aS ¼
1:11 (see Table I).

Additional ELEGANT vs V-R equation calculations of
dispersion are shown in Figs. 6(a) and 6(b), for 0.6 and
6.0 mA at � ¼ 0:01. Notice that, despite appearances, the
dispersion functions are not ‘‘out of phase’’ relative to each
other; it is only the slow (‘‘amplitude’’) oscillations that are

out of phase. The same feature can be seen in the disper-
sion curve shown in Fig. 3(b) for 0.6 mA, � ¼ 0:002.
Furthermore, for high current and large momentum error
[Figs. 6(b) and 4(c)], the slow oscillation structure is
essentially lost after one turn in the calculations with
ELEGANT, while the dispersion from the V-R equations

displays the slow oscillations for two turns and beyond.
With constant and fixed emittances in the two transverse
planes, and near-matched values for the initial envelopes
and dispersion functions, the dispersion from the V-R
equations evolves evenly from the start. By contrast, the
results of particle-tracking calculations in ELEGANT reflect,
as already mentioned, the changing emittances as well as
effects from nonlinear space charge and dispersion.
Further, and as seen in Fig. 3(a), a changing emittance
can provide a stabilizing effect on the dispersion, thus
indicating that the V-R equations do not always provide

FIG. 5. Evolution of (a) dispersion and (b) horizontal envelope
functions (red curves) and standard rms horizontal (blue) and
vertical (black) emittances, normalized to initial values, from
ELEGANT calculations for 6 mA, � ¼ 0:01 over two turns in

UMER. The initial large oscillations occur even for initial disper-
sion/envelope values that are not far from matching conditions.

FIG. 6. Dispersion functions (ELEGANT, solid curves; V-R
equations, dotted curves) with space charge for (a) 0.6 mA and
(b) 6.0 mA, at � ¼ 0:01 over two turns in UMER. The disper-
sion functions from ELEGANT appear to be shifting ahead of the
V-R curves, but the inset in (a) indicates that this is not the case.
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an accurate prediction. The model based on the V-R equa-
tions could be improved, though, by implementing a vary-
ing standard rms emittance according to Eq. (10), but this
is not straightforward as the latter equation involves a 4D
phase-space average.

To summarize the results, for low current (0.6 mA or
less) and � ¼ 0:001–0:01, the smooth approximation (SA)
predicts an average dispersion that agrees well with both
ELEGANT calculations and solutions of the envelope-

dispersion equations of the V-R theory. For space charge
dominated transport around 6 mA, we obtain fair agree-
ment among the three approaches for estimating average
dispersion, also in the range � ¼ 0:001–0:01. At larger
current (21 mA), however, there is agreement between SA

and ELEGANTonly for small� ¼ 0:001; for larger momen-
tum errors, SA yields values of average dispersion that are
significantly larger ( * 30%) than those from ELEGANT or
the V-R equations. As for the average beam horizontal
dimension, the V-R equations yield values that are always
larger (10%–20%) than SA results, while ELEGANT predicts
values that fall between V-R and SA. A similar discrepancy
between V-R and SA average beam horizontal dimension is
observed with space charge but no dispersion [13].

The model of smooth focusing/dispersion used here to
predict transverse effects is not obviously applicable to
short bunches when additional and significant transverse-
longitudinal phenomena occur. Also problematic is the
case of strong correlation of momentum spread with the
bunch’s slice, as can be originated at the source and be
modified by longitudinal space charge in, e.g., coasting
beams. However, we can still apply the model in this latter
case to the core of the bunch, or, in an ad hoc way, to the
whole bunch in an average sense. In UMER, the actual
uncorrelated energy spread may be closer to� ¼ 0:002 for
low current and somewhat larger (� ¼ 0:005) for high
current, but we have chosen to do calculations with � ¼
0:01 to enhance the effects of dispersion and because this
figure corresponds more closely to the correlated energy
spread. Furthermore, the initially correlated energy spread
of the UMER bunch could turn into uncorrelated energy
spread, at least partially, as the bunch ends meet after a
number of turns with accompanying free longitudinal ex-
pansion. In this regime, where the ring is filled with charge
[31,32], the dispersion model presented here would be
relevant. Another interesting possibility is to study the
average beam dimensions as functions of rms incoherent
energy spread, whereby the latter is manually controlled by
special means, in order to test directly the range of validity
of the SA model [Eq. (15)]; this study would be similar to
one conducted in a solenoid channel to test a SA model of
space charge without dispersion [12].

So far, our dispersion measurements in UMER have
been limited to beam centroid dispersion (see Sec. II) for
0.6 and 6.0 mA, with results that are in fair agreement with
the zero-current value [19]. Furthermore, we have not

addressed in this paper the important issue of dispersion-
envelope matching involving a bending element before
injection into UMER. Computational work that employs
the V-R formalism, as well as particle-in-cell simulations,
for dispersion matching in UMER has been published
before [33], but experimental investigations are lacking.
Before a dispersion section is implemented in UMER,
however, we need to do measurements of beam size,
emittance, and energy spread on a turn-by turn basis to
ascertain the degree of mismatch. One difficulty in this
regard is to separate the effects of envelope mismatch from
those of dispersion mismatch. But measurements over the
first turn are also important, as the results discussed above
indicate that important phenomena occur over the first few
depressed betatron wavelengths (first turn in UMER) when
the beam dispersion and transverse beam size relax from
mismatch conditions. Needless to say, additional theoreti-
cal work is also required to extend the treatment of disper-
sion and space charge to bunched beams, perhaps
including longitudinal space charge in a self-consistent
6D model. Finally, the calculations of space charge with
ELEGANT can be improved and should be systematically

compared with particle-in-cell simulations.

VI. SUMMARYAND CONCLUSIONS

We have presented a smooth approximation treatment of
linear dispersion and space charge based on the theory
developed by Venturini and Reiser [1]. The smooth ap-
proximation consists in replacing the discrete lattice of
focusing and bending elements with uniform focusing
and bending. Further, we have assumed that both disper-
sion and beam envelopes are matched, or nearly so, in an
rms sense, and that the standard rms emittance is con-
served. Under these conditions, we obtain a simple expres-
sion for the horizontal beam dimension as a function of
tune depression and a dispersion-related parameter. We
also introduce an intensity parameter to characterize
beam transport with both dispersion and space charge
over a broad range of beam and lattice parameters. We
have applied the theory to beam transport in UMER and
compared the results of average dispersion and beam di-
mensions with direct calculations using the Venturini-
Reiser original dispersion-envelope equations as well as
with tracking of particles in the matrix code ELEGANT. We
have shown that the smooth approximation of dispersion/
space charge provides simple and useful scaling relation-
ships applicable to UMER and other machines.
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APPENDIX: SPACE CHARGE IN ELEGANT

We do zero-current calculations of dispersion and enve-
lopes in ELEGANT and compare the results with those from
the V-R equations and from the standard smooth approxi-
mation. The zero-current case leads to average dispersion
values of 0.049 m from ELEGANT and the V-R equations at
an operating tune 
0 ¼ 6:37. The average dispersion from
simple theory, on the other hand, yields D0 ¼ �=
2

0 ¼
0:045 m. The zero-current matched dispersion, i.e., the
periodic lattice dispersion, is calculated automatically in
ELEGANT, while in MATHEMATICA’s implementation of the

V-R equations we adjust Dð0Þ and D0ð0Þ for obtaining
matched envelopes and dispersion. The two solutions for
lattice dispersion are virtually identical.

Space charge is implemented in ELEGANT as a series of
electrical and magnetic kicks applied after each element in
the lattice [34]. In turn, these kicks are calculated based on a
tri-Gaussian distribution bunch, which leads to a linear
transverse space charge force for a long bunch. The linear
space charge force depends on the beam transverse and
longitudinal rms envelope sizes, �x;y;z {we use the notation

of [34]; the �x;y correspond to our X=2, Y=2 of Eqs. (11a)–

(11c), or a=2, b=2 in the smooth approximation}, as in
other implementations of space charge (e.g. TRACE3D

[35]) through factors of the form ½�z�x;yð�x þ �yÞ��1,

but ELEGANT has an additional exponential factor
expð�s2=2�2

zÞ. Therefore, to do calculations involving
space charge in a continuous (DC) beam in ELEGANT that
we can compare with corresponding calculations with the
V-R equations, we need to carefully decide on the effective
�z and charge per bunch, transverse phase-space distribu-
tion, longitudinal phase-space distribution, and number of
particles. For the calculations of this paper we use a ‘‘hard-
edge’’ (rectangular) distribution for the longitudinal phase
space (cutoff ¼ 1:73), and ‘‘uniform ellipse’’ for the trans-
verse phase spaces (cutoff ¼ 1:0) [36]. The choice for the
transverse distributions follows the concept of a projected
4D K-V distribution [7] on the x� x0 or y� y0 planes,
which is the basis of the V-R equations and the model in
TRACE3D. For the same reason, the initial emittance in

ELEGANT is taken as the 4rms unnormalized emittance

(edge or effective emittance). ELEGANT calculates the rms
beam transverse dimensions of the initial K-V beam and
uses these values for space charge evaluation with the tri-
Gaussian distribution. Since a ¼ 2�x, and b ¼ 2�y relate

the uniform-ellipse semiaxes to the rms dimensions, we also

use a bunch’s length equal to 2�z ¼ 2l=
ffiffiffiffiffiffi

12
p ¼ 3:38 m,

where l ¼ 5:85 m is the length of a 100 ns bunch at
10 keV. With these choices and the full charge per bunch,
the space charge kicks in ELEGANT and TRACE3D take the
same form (with DC approximation in the case of TRACE3D
[29]) except for the exponential factor mentioned above in
the case of ELEGANT. The longer bunch assumed in ELEGANT

apparently reduces the effect of the exponential factor on the

space charge kicks; thus, we find good agreement with
TRACE3D for rms beam envelopes at 0.6 and 6.0 mA over

one superperiod. For longer distances, the varying emittance
in ELEGANT (see below) alters the agreement, but not
significantly.
We emphasize that only transverse space charge is

included for the calculations presented in this paper.
Furthermore, an improved (but considerably more compli-
cated) space charge calculation in ELEGANT is possible if we
concentrate on the effects on a center slice in the bunch [37]
instead of trying to compensate for the s-position (slice)
dependence of the space charge kicks along the bunch.
Before doing dispersion calculations with space charge

in ELEGANT, we verify the space charge model in the case of
no momentum error. For this, we compare the rms enve-
lopes that result from solving the V-R equations (with
TRACE3D-derived initial conditions) and from tracking

particles to build the envelopes in ELEGANT. Figures 7(a)

FIG. 7. Envelope functions from ELEGANT and the V-R equa-
tions with no dispersion, over one superperiod in UMER, for (a)
0.6 mA and (b) 6.0 mA. Notice that the scales between (a) and
(b) differ by a factor of 2. See Table I for additional parameters.
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and 7(b) show the results for 0.6 and 6.0 mA over one
superperiod (0.64 cm) in UMER. The small differences in
modeling focusing and bending in the two approaches do
not contribute significantly to the observed discrepancy in
the envelopes; clearly, this discrepancy increases for higher
beam current. The changing emittance in ELEGANT does not
seem to explain the differences either, as the space charge
effects are significantly higher at 6 and 21 mA than the
emittance effects. Therefore, it is likely that our implemen-
tation of space charge calculations in ELEGANT introduces
significant nonlinear effects at high current.

As we discussed before, the horizontal geometric emit-
tance calculated in ELEGANT displays large amplitude oscil-
lations over about 1=2 turn particularly in themismatch case
with Dð0Þ ¼ 0, D0ð0Þ ¼ 0. These oscillations are mostly
due to dispersionmismatch and are reflected in the evolution
of DðsÞ ¼ �16=�66 and the horizontal envelope XðsÞ. For
6 mA,� ¼ 0:01, the final (after two turns) rms emittance is
some 40% larger than the initial value.With better matching
conditions, the initial emittance oscillation amplitude is
reduced by a factor of 2, and the final rms emittance is
20% larger than the initial value [see Fig. 5(a)]. The small-
amplitude residual oscillations in the emittances illustrated
in Fig. 5 for 6mAhave a period of close to 1m,which is also
the wavelength of envelope oscillations from mismatch [7].
The same oscillations are seen regardless of the number of
particles for tracking calculations when this number is equal
to or greater than 50 000; however, the size of themomentum
error as well as the order of thematrix calculations affect the
character of the oscillations near the end of the run. For
example, comparison of calculations over five turns with
order 1 (linear) and 3 (maximum order) for 6 mA and � ¼
0:01 show that the oscillations at turn 5 become smaller and
fairly irregular for the nonlinear case; this is not unexpected
as nonlinearities lead to more beam filamentation over lon-
ger distances [38]. For calculations with lower current
(0.6 mA) and momentum error (� ¼ 0:002), on the other
hand, no difference between the linear and nonlinear cases is
observed in the long-termbehavior of emittance; in this case,
the (horizontal) emittance oscillations track closely the slow
oscillations of the beam dispersion for the length of the
calculation. Amore systematic study of long-term emittance
evolution in the presence of both space charge and disper-
sion is deferred to a future publication.

To conclude, a simple implementation of space charge
calculations in the matrix code ELEGANT provides valuable
insights on the evolution of beam envelopes, dispersion, and
emittance. We have shown examples from UMER, but the
same tools should be applicable to existing or future rings.

[1] M. Venturini and M. Reiser, Phys. Rev. Lett. 81, 96
(1998).

[2] S. Y. Lee and H. Okamoto, Phys. Rev. Lett. 80, 5133
(1998).

[3] T. Ohkawa and M. Ikegami, Nucl. Instrum. Methods Phys.
Res., Sect. A 576, 274 (2007).

[4] M. Ikegami, S. Machida, and T. Uesugi, Phys. Rev. ST
Accel. Beams 2, 124201 (1999).

[5] H. Okamoto and S. Machida, Nucl. Instrum. Methods
Phys. Res., Sect. A 482, 65 (2002).

[6] J. A. Holmes, J. D. Galambos, D.K. Olsen, and S. Y.
Lee, in Proceedings of the 6th European Particle
Accelerator Conference, Stockholm, 1998 (IOP, London,
1998), p. 279.

[7] M. Reiser, Theory and Design of Charged Particle Beams
(Wiley-VCH, Weinheim, 2008), 2nd ed.

[8] R. C. Davidson and H. Qin, Physics of Intense Charged
Particle Beams in High Energy Accelerators (Imperial
College Press and World Scientific, Singapore, 2001).

[9] J. J. Barnard, H.D. Shay, S. S. Yu, A. Friedman, and D. P.
Grote, in 1992 Linear Accelerator Conference
Proceedings, edited by C. R. Hoffman (AECL Research,
Chalk River, Canada, 1992), p. 229.

[10] J. J. Barnard, G. D. Craig, A. Friedman, D. P. Grote, B.
Losic, and S.M. Lund, in Proceedings of the Workshop on
Space Charge Physics in High Intensity Hadron Rings,
AIP Conf. Proc. No. 448 (AIP, Woodbury, NY, 1998),
p. 221.

[11] R. C. Davidson, H. Qin, and P. J. Channell, Phys. Rev. ST
Accel. Beams 2, 074401 (1999).

[12] H. Suk, M. Reiser, J. G. Wang, and D.X. Wang, J. Appl.
Phys. 76, 3970 (1994).

[13] S. Bernal, H. Li, R. A. Kishek, B. Quinn, M. Walter, M.
Reiser, P. G. O’Shea, and C.K. Allen, Phys. Rev. ST
Accel. Beams 9, 064202 (2006).

[14] M. Venturini, Ph.D. thesis, University of Maryland,
College Park, MD, 1998.

[15] S. Henderson, Technical Report No. SNS-100000000-
PL0001-R13, Spallation Neutron Source, U.S.
Department of Energy, 2005.

[16] M. Cornacchia and G.H. Rees, in Proceedings Heavy Ion
Workshop (Report No. LBL-10301, 1979), edited by W.B.
Hermannsfeldt [Lawrence Berkeley Laboratory (UC) and
Stanford Linear Accelerator Center, 1979], p. 297.

[17] We employ a Uþ ion beam with the following parameters:
10 GeV, 1 kA, �n ¼ 35:7 �m (normalized rms emittance),
� ¼ 10�4, average machine radius � ¼ 83 m, and operat-
ing tune 
0 ¼ 8:3. We obtain in the smooth approximation:
tune depression� ¼ 0:9,D0 ¼ 1:2 m,a0 ¼ 0:069 m,D ¼
1:5 m, a ¼ 0:072 m. See also Ref. [16] and equations in
Sec. IV.

[18] A. Jackson, Technical Report No. LBL-29280, Lawrence
Berkeley Laboratory, University of California, Berkeley,
2010.

[19] S. Bernal, D. Sutter, B. Beaudoin,M. Cornacchia, K. Fiuza,
I. Haber, R. Kishek, T. Koeth, M. Reiser, and P. OShea, in
14th Advanced Accelerator Concepts Workshop, AIP Conf.
Proc. No. 1299, edited by S. H. Gold and G. S. Nusinovich
(AIP, Melville, NY, 2010), p. 580.

[20] M. Venturini, R. A. Kishek, and M. Reiser, in Proceedings
of the 18th Particle Accelerator Conference, New York,
1999 (Brookhaven National Laboratory, Upton, NY, and
IEEE, Piscataway, NJ, 1999).

[21] The original equations are written in terms of rms beam
dimensions, �x;y and rms emittances �x;y, in the original

S. BERNAL et al. Phys. Rev. ST Accel. Beams 14, 104202 (2011)

104202-14

http://dx.doi.org/10.1103/PhysRevLett.81.96
http://dx.doi.org/10.1103/PhysRevLett.81.96
http://dx.doi.org/10.1103/PhysRevLett.80.5133
http://dx.doi.org/10.1103/PhysRevLett.80.5133
http://dx.doi.org/10.1016/j.nima.2007.03.015
http://dx.doi.org/10.1016/j.nima.2007.03.015
http://dx.doi.org/10.1103/PhysRevSTAB.2.124201
http://dx.doi.org/10.1103/PhysRevSTAB.2.124201
http://dx.doi.org/10.1016/S0168-9002(01)01685-0
http://dx.doi.org/10.1016/S0168-9002(01)01685-0
http://dx.doi.org/10.1103/PhysRevSTAB.2.074401
http://dx.doi.org/10.1103/PhysRevSTAB.2.074401
http://dx.doi.org/10.1063/1.357369
http://dx.doi.org/10.1063/1.357369
http://dx.doi.org/10.1103/PhysRevSTAB.9.064202
http://dx.doi.org/10.1103/PhysRevSTAB.9.064202


notation [1]. In Eqs. (11a)–(11c), on the other hand, X,
Y � 2�x;y, �x;y � 4�x rms;y rms in our notation.

[22] A. Garren, in Proceedings of the Heavy Ion Fusion
Workshop (Reports No. LBL-10301/SLAC-PUB 2575
and No. UC-28, 1979), edited by W.B. Hermannfeldt
[Lawrence Berkeley Laboratory (UC) and Standford
Linear Accelerator Center, 1979], pp. 397–402.

[23] The equivalence is seen if we identify: (i) the vertical
beam size, whose variance is denoted by �y2 in Ref. [9],
with the first term in our Eq. (15), (ii) �x2m with our D2

0�
2,

(iii) k=k�0 with �x�, and we set a ¼ b. In addition, the
condition �2

0 � 1 is also stated in Ref. [9].
[24] If we simply substitute D0=�

2
x0 for D and �x0 for �x� in

Eq. (15), we obtain a2 ¼ a20=�x0 þ 4�2D2
0=�

4
x0, which

grossly overestimates ‘‘a’’ for small �x0 and large �,
(e.g. 21 and 104 mA at � ¼ 0:01). However, the expres-
sion a2 ¼ a20=�x0 þ 4�2D2

0=�
2
x0 is more accurate than

Eq. (19) over the same range of standard tune depressions.
[25] H. Wiedemann, Particle Accelerator Physics (Springer,

New York, 2007), 3rd ed., p. 261.
[26] S. Y. Lee, Accelerator Physics (World Scientific,

Singapore, 2004), 2nd ed., p. 122.
[27] M. Borland, Technical Report No. LS-287, Argonne

National Laboratory, 2000.
[28] D. Grote, A. Friedman, I. Haber, W. Fawley, and J. Vay,

Nucl. Instrum. Methods Phys. Res., Sect. A 415, 428
(1998).

[29] G. H. Gillespie Associates Inc., Particle Beam Optics
Laboratory version 3.0.1.0 (2010).

[30] Wolfram MATHEMATICA 6.0, Wolfram Research Inc.,
2007.

[31] T. Koeth, B. Beaudoin, S. Bernal, I. Haber, R. A. Kishek,
and P. OShea, in Proceedings of the 2011 Particle
Accelerator Conference (IEEE, New York City, NY,
2011).

[32] B. Beaudoin, S. Bernal, K. Fiuza, I. Haber, R. Kishek, T.
Koeth, M. Reiser, D. Sutter, and P. OShea, in Proceedings
of the 2011 Particle Accelerator Conference (Ref. [31]).

[33] L. G. Vorobiev, X. Wu, and R. C. York, in Proceedings of
the 2001 Particle Accelerator Conference, Chicago
(IEEE, Piscataway, NJ, 2001), p. 3078.

[34] A. Xiao, M. Borland, L. Emery, Y. Wang, and K.Y. Ng, in
Proceedings of the 2007 Particle Accelerator Conference,
Albuquerque, New Mexico (IEEE, Piscataway, NJ, 2007).

[35] K. Crandall and D. P. Rusthoi, TRACE 3-D
Documentation, Report No. LA-UR-97-886, Los Alamos
National Laboratory, 1997.

[36] M. Borland, Advanced Photon Source, Argonne National
Laboratory, 2009.

[37] M. Cornacchia (personnal communication).
[38] We should note that we used the linear order for all

calculations presented before for comparison with the
linear V-R theory; however, the space charge calculations
include nonlinear kicks.

SMOOTH APPROXIMATION MODEL OF DISPERSION WITH . . . Phys. Rev. ST Accel. Beams 14, 104202 (2011)

104202-15

http://dx.doi.org/10.1016/S0168-9002(98)00608-1
http://dx.doi.org/10.1016/S0168-9002(98)00608-1

