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We are commissioning a 2.5 GeV synchrotron radiation source (SRS) where electrons travel in high

vacuum inside the vacuum chambers made of aluminum alloys. These chambers are kept between the pole

gaps of magnets and are made to facilitate the radiation coming out of the storage ring to the experimental

station. These chambers are connected by metallic bellows. During the commissioning phase of the SRS,

the metallic bellows became ruptured due to the frequent tripping of the dipole magnet power supply. The

machine was down for quite some time. In the case of a power supply trip, the current in the magnets

decays exponentially. It was observed experimentally that the fast B field decay generates a large eddy

current in the chambers and consequently the chambers are subjected to a huge Lorentz force. This

motivated us to develop a theoretical model to study the force acting on a metallic plate when exposed to

an exponentially decaying field and then to extend it for a rectangular vacuum chamber. The problem is

formulated using Maxwell’s equations and converted to the inhomogeneous Helmholtz equation. After

taking the Laplace transform, the equation is solved with appropriate boundary conditions. Final results

are obtained after taking the appropriate inverse Laplace transform. The expressions for eddy current

contour and magnetic field produced by the eddy current are also derived. Variations of the force on

chambers of different wall thickness due to spatially varying and exponentially time decaying field are

presented. The result is a general theory which can be applied to different geometries and calculation of

power loss as well. Comparisons are made with results obtained by simulation using a finite element based

code, for quick verification of the theoretical model.
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I. INTRODUCTION

A storage ring which produces synchrotron radiation is a
type of circular particle accelerator in which a continuous
or pulsed particle beam circulates in vacuum for several
hours. It consists of many vacuum chambers where a
charged particle beam travels under the influence of mag-
nets positioned around the circumference of the ring. The
dipole magnets define the orbit, the quadrupole magnets
define the optics, and the sextupole magnets define the
chromaticity. The required magnetic fields must be applied
to keep the particles on the well-defined orbit. Therefore
the vacuum chambers are placed between the poles of the
magnets. If the magnets produce a time varying field then it
will generate an eddy current in the vacuum chamber
which in turn modifies the B field produced by the accel-
erator magnets. That can cause disturbance to the circulat-
ing beam [1–3]. Beam position monitors (BPMs) are
mounted at vacuum chambers to detect the position of
the particle beam. The general profile of a storage ring
dipole magnet vacuum chambers consists of the particle
beam channel, the antechamber, and the slit (between the
channel and the antechamber). The particle beam channel

provides an ample aperture for the passage of the particle
beam. The antechamber provides space for mounting pho-
ton absorbers at the top and/or bottom, leaving satisfactory
clearance for the synchrotron radiation exit. The two parts
are connected by a longitudinal slit, which allows the
synchrotron radiation to leave the particle beam channel
and should be sufficient for vacuum chamber pumping
conductance [4–8].
The wall thickness of the chamber is decided to with-

stand the atmospheric pressure load when the chamber is
under vacuum. In most of the cases, aluminum is chosen as
the chamber material for its favorable vacuum, mechani-
cal, and (non)magnetic properties. To get proper feedback
of the beam, BPMs are installed on the chambers with very
stringent mechanical tolerances and positional stability. To
achieve this accuracy, the temperature of the tunnel is
controlled within less than one degree Celsius. The vacuum
chambers are supported at the BPM locations with Invar
stands that have a low linear coefficient of thermal expan-
sion [9].
In spite of all such precautions, one very important point

which may have caused the disturbance of the positional
accuracy of the BPM is overlooked. This point is the huge
force acting on a chamber that arises due to the eddy
current [1]. Eddy current will arise when the magnets are
excited with harmonic or transient current. Harmonic ex-
citations of magnets are required for boosters or rapid
cycling synchrotrons, often used as injectors for large
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machines storing a charged particle circulating beam, and
operated in the persistent mode, which are studied in detail
and reported earlier by others including ourselves [1–3].
However, the effect of exponential decay of field has not
been studied. It remains unexplored because it is not
required for regular operation. However, in case of sudden
switch off of the power supply, the current in the magnets
will decay exponentially as in the case of L-R circuit.
Crowbarring is done in a power supply circuit which
includes a diode to allow the controlled current decay
and avoid voltage spikes when the source is suddenly
turned off [10].

We are commissioning a 2.5 GeV synchrotron radiation
source (SRS) where the electrons are injected at 550 MeV
and then the energy is increased to 2.5 GeV in 300s [11].
The electrons are traveling in high vacuum inside the
vacuum chambers, made of aluminum alloys. These cham-
bers are connected by metallic bellows. During the com-
missioning phase, the metallic bellows became ruptured
due to the frequent tripping of the dipole magnet power
supply. In case of power supply tripping, the current in the
magnets decays exponentially. This generates large eddy
current in the chambers and consequently the chambers are
subjected to a huge force. This motivated us to develop an
analytical model to study the force acting on a metallic
plate when exposed to an exponentially decaying field and
then to extend it for a rectangular vacuum chamber. This
force should be considered at the design stage of a chamber
and also for providing the support structure to achieve the
required stringent positional accuracy of BPMs. Also the
mechanical strength of the welding joints of a chamber
should be strong enough to withstand the force acting on it
when supported by rigid structure [12].

In this paper we have proposed a theoretical model to
understand the eddy current behavior on a square/rectan-
gular plate and the consequences of it. We describe the
problem mathematically by Maxwell’s equations and ob-
tain a partial differential equation. It is assumed that the
conducting plate is nonmagnetic. In the case of a booster or
rapid cycling synchrotron vacuum chambers are placed
between magnet poles where the field is mostly uniform
and perpendicular to the surface of the chamber. But, in the
case of a storage ring only the beam channel part of a
chamber remains inside the dipole magnet poles and is
exposed to a uniform B field. The antechamber part re-
mains outside the poles and is exposed to a space varying
field. So, we have considered two different cases: (i)
case I—the plate is exposed to a spatially uniform but
exponentially time decaying field; and (ii) case II—the
exponentially time decaying field is uniform on some
portion of the plate but exponentially reducing with dis-
tance to the edge of the plate. In our earlier work we have
considered the field of the form of cosð!tÞ and eddy
current sinð!tÞ. In the case of an exponential decay, the
procedure is considerably different. Here, we have taken

the Laplace transform and then solve the differential equa-
tion with appropriate boundary conditions. Final results are
obtained after taking the inverse Laplace transform. The
present model can provide accurately the following pa-
rameters: (i) eddy current contour in the plate; (ii) force
acting on it; (iii) magnetic field produced by the induced
eddy current. Comparisons are made with results obtained
by simulation using a finite element based code, like OPERA

[13,14] for quick verification of the theoretical model.

II. EXPERIMENTAL OBSERVATION

Our 2.5 GeV Indus-2 (SRS) lattice, a double bend ach-
romat, consists of eight super periods each having two
dipole bending magnets, four focusing and five defocusing
quadrupoles, and four sextupoles and seven corrector (or
steering) magnets used for closed orbit correction [15]. The
maximum field and the magnetic arclength of the dipole
are 1.5 T and 2.179 48 m, respectively. The vacuum cham-
bers of the Indus-2, made of aluminum alloy (5083-H321),
are placed inside the 50 mm pole gap of the ‘‘C’’-type
dipole magnets. A large fraction of the total cross section
of the vacuum chamber lies outside the pole gap of the
magnet to facilitate the paths for synchrotron radiation
(Fig. 1). During the commissioning phase it was noticed
that some of the metallic bellows connecting the dipole
chambers with the adjacent straight sections got damaged
due to the movement of the dipole chambers.
We have seen from our earlier work when a conducting

plate is exposed to a nonuniform time varying magnetic
field it experiences unbalanced force [1]. The width of the
chamber is about 0.646 m. About 40% of it is covered by
the poles of a dipole magnet and exposed to a uniform
magnetic field. The remaining 60% of the chamber is lying

FIG. 1. The vacuum chamber made of aluminum alloy is
placed inside the pole gap of a dipole magnet and approximately
60% of it is lying outside the pole gap and exposed to a
nonuniform field.
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outside the pole gap where the field is reducing exponen-
tially with distance as one moves towards the edge of the
chamber. The total length of the chamber is about 3 m and
the typical weight of it is 300 kg. In this storage ring beam
is injected at 550 MeV and then the energy is increased to
2.5 GeV in 300 s. In the case of normal operation eddy
current generated in the chamber is negligible because of
the slow ramp. However, due to some unavoidable reason,
the dipole magnet power supply tripped several times
during commissioning. The required peak field of the
dipole magnet is 1.5 T which is obtained at 760 A current.
The effective length of the dipole magnet is 2.179 48 m.
The time constant of the power supply with all the loads
connected is measured as 1.4 s. So the current in the
magnets decays as I0 expð�t=1:4Þ, where t is in s, after
the tripping of the power supply that powered the dipole
magnets. This fast decay of current and hence the field will
generate a huge amount of eddy current in the chambers.
Interaction of it with the dipole field caused around
18.38 kN force acting on the chamber. To confirm this
we purposefully switched off the power supply and cap-
tured the movement of the chamber and did some mea-
surements. The metallic bellows got deformed due to the
huge force. We have shown the deformed bellows in Fig. 2.

We have estimated the peak force using a 3D simulation
as well [4]. Based on the analysis additional support struc-
tures are put in place to prevent any chamber movement.
This work was performed and experimentally verified by
our ultrahigh vacuum technology division. Apart from the
bellows several other devices, like BPMs and pumps, are
connected with the chambers whose alignments are also
disturbed. We presume similar incidents may have oc-
curred in other rings also but remain unnoticed because
of its rare occurrence. We would also like to put a word of
caution that during design stage the chamber and the sup-
port structure should be strong enough to withstand such
forces to avoid any unwanted situation. To understand the
physics behind it, we are trying to develop a theoretical

model which will successfully explain all the above
observations.

III. ELECTROMAGNETIC FORMULATION OF
THE THEORETICAL MODEL

The actual shape of a dipole magnet vacuum chamber is
a bit complicated. However, the eddy current depends on
the flux changes and, hence, the perpendicular cross sec-
tion of the chamber exposed to the changing field.
Therefore, for eddy current calculation, we have simplified
the geometry and considered a uniform wall thickness
rectangular shape chamber. It consists of two horizontal
plates connected by two thin vertical plates at the ends as
shown in Figs. 3 and 4. Let us consider a conducting
but nonmagnetic plate of width a, length b, and depth d
(d � a and b), which is exposed to a time varying mag-
netic field directed along vertical (Z) direction. The nature
of the field variation is assumed to be transient like

~Bðx; y; tÞ ¼ B0ðx; yÞe�ðt=�Þẑ: (1)

FIG. 2. The photograph of the bellow is shown before (left) and after (right) deformation.

FIG. 3. Coordinate system, geometry of the chamber and the
direction of eddy current and the force (F0) is shown when the
chamber is exposed to a spatially uniform but exponentially time
decaying magnetic field, B0 (case I).
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We consider the following spatial variations of the mag-
netic field, B0ðx; yÞ:
Case I: B0ðx;yÞ¼B0 for 0� x�a; 0� y� b

Case II: B0ðx;yÞ¼B0 for 0� x� c; 0� y�b

¼B0e
�ðx�cÞ=� for c� x�a; 0� y�b;

(2)

where c < a. Hereafter we will refer these as case I and
case II, respectively.

The Maxwell’s equations in the absence of the plate can
be written as

~r� ~B ¼ �0"0
@ ~E

@t
~r� ~E ¼ �@ ~B

@t
; (3)

where ~E is the electric field,�0 is the permeability, and "0 is
the dielectric constant of free space. The time varying
magnetic fieldwill induce an eddy current in the conducting

plate. The eddy current will produce an induced field, ~Hi,
that will oppose the applied field. So, the Maxwell’s equa-
tions in the presence of the plate can be written as

~r� ð ~Bþ�0
~HiÞ ¼ �0

~J þ�0"0
@ ~E

@t

~r� ~E ¼ � @ð ~Bþ�0
~HiÞ

@t
;

(4)

where ~J is the current density in the plate. UsingEqs. (3) and
(4) we find

~r� ~Hi ¼ ~J: (5)

Eddy current flows in a closed loop, in other words, ~r �
~J ¼ 0. Therefore, ~J can be written as the curl of a
potential function uðx; y; tÞ:

~J ¼ 1

d
~r� fuðx; y; tÞẑg: (6)

Using Eqs. (5) and (6) we obtain

~r�
�
~Hi�uðx;y;tÞ

d
ẑ

�
¼0

or

�
~Hi�uðx;y;tÞ

d
ẑ

�
¼ ~rVðx;y;z;tÞ

or ~Hi¼
�
uðx;y;tÞ

d
ẑþ ~rVðx;y;z;tÞ

�
;

(7)

where Vðx; y; z; tÞ is a scalar magnetic potential. In the
present model the eddy current is flowing on the surface
of the plate, i.e. jz ¼ 0. We are interested in finding the
eddy current distribution on the plate. The Z component
of the field will depend on @Vðx; y; z; tÞ=@z which should
be a function of x and y and time on the surface of the
plate. Therefore, we have presumed that @Vðx; y; z; tÞ=@z
will be related to a general function uðx; y; tÞ, already
assumed. So, without loss of generality, we assumed the
induced field along the Z direction to be

Hz
i ¼

�
uðx; y; tÞ

d
þ guðx; y; tÞ

�
¼ ð1þ gdÞ 1

d
uðx; y; tÞ;

(8)

where g is constant and Hz
i is evaluated on the surface of

the metallic plate. Using Ohm’s law ~J ¼ � �E, we find
from Eq. (4)�

@Jy
@x

� @Jx
@y

�
ẑ ¼ ��

�
�B0ðx; yÞ

�
e�ðt=�Þ

þ�0

ð1þ gdÞ
d

@uðx; y; tÞ
@t

�
ẑ: (9)

Substituting the expression of ~J from Eq. (6), we obtain

�
@2

@x2
þ @2

@y2

�
uðx; y; tÞ ��0�ð1þ gdÞ @uðx; y; tÞ

@t

¼ ��B0ðx; yÞd
�

e�ðt=�Þ; (10)

where � is the conductivity of the plate. The above
inhomogeneous Helmholtz equation can be solved with
certain boundary conditions to obtain uðx; y; tÞ and, hence,
the eddy current contour in the plate.

A. BOUNDARY VALUE PROBLEM
AND EDDY CURRENT

We now solve Eq. (10) in two specific cases as given in
Eq. (2). The relevant boundary conditions are given by

uðx; y; 0Þ ¼ 0 for t > 0

uð0; y; tÞ ¼ uða; y; tÞ ¼ uðx; 0; tÞ ¼ uðx; b; tÞ ¼ 0: (11)

Let the Laplace transform of uðx; y; tÞ be uðx; y; sÞ, then
we can write

uðx; y; sÞ ¼ Lfuðx; y; tÞg ¼
Z 1

0
e�stuðx; y; tÞ@t:

Multiplying Eq. (10) by e�st and integrating over dtwe get

FIG. 4. Coordinate system, geometry of the chamber and the
direction of the forces (F1 and F2) is shown. Here the chamber is
exposed to a magnetic field that varies both in space and time
(case II).
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�
@2

@x2
þ @2

@y2

�
uðx; y; sÞ ��0�ð1þ gdÞsuðx; y; sÞ

¼ ��B0ðx; yÞd
1þ s�

: (12)

Here, we have used the identities

Z 1

0
e�st @uðx; y; tÞ

@t
@t ¼ suðx; y; sÞ and

Z 1

0
e�ste�ðt=�Þ@t ¼ �

1þ s�
:

The eigenfunction unmðx; y; sÞ of the equation
�
@2

@x2
þ @2

@y2

�
unmðx; y; sÞ ¼ �nmunmðx; y; sÞ (13)

with the above boundary conditions can then be written as

unmðx; y; sÞ ¼ Nnm sinð�nxÞ sinð�myÞ; (14)

where �n ¼ n�
a , �m ¼ m�

b (n, m are integers), and Nnm ¼
2ffiffiffiffi
ab

p are obtained using a normalization condition.

The general solutions uIðx; y; sÞ and uIIðx; y; sÞ of
Eq. (12) for the two cases as mentioned in Eq. (2) may
then be expressed as

uIðx; y; sÞ ¼ X1
n;m¼1

AI
nmðsÞNnm sinð�nxÞ sinð�myÞ

uIIðx; y; sÞ ¼ X1
n;m¼1

AII
nmðsÞNnm sinð�nxÞ sinð�myÞ;

(15)

where the value of the Anm can be obtained as follows. Put
the value of uðx; y; sÞ in Eq. (12) and use the orthogonality
condition

R
a
0 @x

R
b
0 @yunmðx; yÞun0m0 ðx; yÞ ¼ �nn0�mm0 . After

rearrangement we get

AI
nmðsÞ¼ 2�B0dffiffiffiffiffiffi

ab
p ð1þs�Þ

�
K0

nmða;bÞ
ð�2

nþ�2
mÞþ��0ð1þgdÞs

�

and AII
nmðsÞ¼ 2�B0dffiffiffiffiffiffi

ab
p ð1þs�Þ

�
Knmða;b;cÞ

ð�2
nþ�2

mÞþ��0ð1þgdÞs
�

(16a)

with

K0
nmða; bÞ ¼

Z a

0
sin�nx@x

Z b

0
sin�my@y

¼ f1� cosð�naÞgf1� cosð�mbÞg
�n�m

(16b)

and

Knmða; b; cÞ ¼
�Z c

0
sin�nx@xþ

Z a

c
e�ðx=�Þec=� sin�nx@x

�

�
Z b

0
sin�my@y

¼
�
1� �2�2

n

1þ �2�2
n

�
K0

nmðc; bÞ

þ
�

�2�2
n

1þ �2�2
n

�
eðc�aÞ=�K0

nmða; bÞ

þ
�

�2�2
n

1þ �2�2
n

�
L0
nmðc; bÞ

�
�

�2�2
n

1þ �2�2
n

�
eðc�aÞ=�L0

nmða; bÞ: (16c)

Here L0
nmða; bÞ ¼ ½f1� cosð�mbÞg=ð�n�mÞ�f1þ sinð�naÞ

��n
g

and L0
nmðc; bÞ can be obtained by replacing a by c.

We make use of the following integration to get the
above expression:

I ¼
Z a

c
ec=�e�x=� sinð�nxÞ@x

¼ 1

ð1þ 1
�2�2

n
Þ
�
� eðc�aÞ=�

�n

�
cosð�naÞ þ sinð�naÞ

��n

�

þ 1

�n

�
cosð�ncÞ þ sinð�ncÞ

��n

��
: (16d)

Now, to get the value of uðx; y; tÞ from uðx; y; sÞ, we have
to take the inverse Laplace transform:

uðx; y; tÞ ¼ L�1fuðx; y; sÞg

¼ X1
n;m¼1

L�1fAI
nmðsÞgNnm sinð�nxÞ sinð�myÞ

¼ X1
n;m¼1

AI
nmðtÞNnm sinð�nxÞ sinð�myÞ: (17)

Rearranging the expression of Eq. (16a), we get

AI
nmðsÞ ¼ 2B0dK

0
nmða; bÞffiffiffiffiffiffi

ab
p

�0ð1þ gdÞ�fsþ 1
�gfsþ �2

nþ�2
m

��0ð1þgdÞg
:

Taking the inverse Laplace transform, we get

AI
nmðtÞ ¼ 2B0dK

0
nmða; bÞffiffiffiffiffiffi

ab
p

�0ð1þ gdÞ�f �2
nþ�2

m

��0ð1þgdÞ � 1
�g

� ½e�ðt=�Þ � e�tfð�2
nþ�2

mÞ=ð��0ð1þgdÞÞg�

AII
nmðtÞ ¼ 2B0dKnmða; b; cÞffiffiffiffiffiffi

ab
p

�0ð1þ gdÞ�f �2
nþ�2

m

��0ð1þgdÞ � 1
�g

� ½e�ðt=�Þ � e�tfð�2
nþ�2

mÞ=ð��0ð1þgdÞÞg�: (18)
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Here we have used the following identity [16]:

L�1

�
1

ðsþ pÞðsþ qÞ
�
¼ e�pt � e�qt

q� p
; p � q:

Therefore, the eddy current density and the induced field
due to the eddy current on the surface of the plate can be
expressed as

jx¼ 1

d

@uðx;y;tÞ
@y

¼ X1
n;m¼1

�m

d
A�

nmðtÞNnm sinð�nxÞcosð�myÞ

jy¼�1

d

@uðx;y;tÞ
@x

¼� X1
n;m¼1

�n

d
A�

nmðtÞNnmcosð�nxÞ

�sinð�myÞ
Hz

i ¼
1

d
ð1þgdÞuðx;y;tÞ

¼ X1
n;m¼1

1

d
ð1þgdÞA�

nmðtÞNnm sinð�nxÞsinð�myÞ; (19)

where � represents I or II. It is clear from Eq. (18) that the
time decay of eddy current and field produced by it will
follow a new time constant �1 which is different from the
time constant of the applied field decay, �. The new time
constant will depend on the geometry and the conductivity
of the plate.

It is clear from Eqs. (18) and (19) that the value of the
constant ‘‘g’’ needs to be evaluated in order to calculate the
values of current density and field. The value of the con-
stant g can be determined self-consistently as explained
below. The value of Hz

i is evaluated on the surface of the
plate using Eq. (19) and is proportional to (1þ gd). By
knowing the values of jx and jy, the B field on the surface

of the plate can also be evaluated using Biot-Savart’s law
which also depends on (1þ gd) [see Sec. III C, Eq. (27)].
Now, we plot the B field obtained using two different

methods as explained above against (1þ gd). The value
of (1þ gd) is obtained from the intersection of the above
two curves plotted in a graph (Fig. 5). Finally, the value of
g is obtained by using the value of d which is the thickness
of the plate. While evaluating Eq. (19) we have taken the
values of m and n, the index of sum, up to 300 because
beyond this limit the change in current density is less than
0.002%. So, instead of evaluating an infinite series sum, the
sum of index up to 300 is sufficient to calculate the values
of current density and field without losing much accuracy.
Now, we will use the eddy current expression to find the

Lorentz force acting on the plate in the presence of an
applied magnetic field.

B. LORENTZ FORCE

If an eddy current flows through the conducting plate,
then it will experience a force in the presence of the
magnetic field. The B field is uniform throughout the plate.
The amplitude of the eddy current increases symmetrically
as we move away from the center of the plate. But, the sign
of the eddy current jyðjxÞ is positive on the right (lower)

side of the plate and negative on the on the left (upper) side
(Figs. 8 and 7). So, the resulting force on one half of the
plate will be balanced by the other half and there will be no
resultant force acting on the plate (case I). However, this
balance will be disturbed when the plate is exposed to a
nonuniform field (case II). It is very important for the
stability of any system to estimate the magnitude of the
force. The force can be expressed as

~F ¼
Z
V
ð ~J � ~BÞ@V

¼ B0e
�ðt=�Þd

�Z a

0
@x

��Z b

0
ðjyx̂� jxŷÞ@y

�
case I

¼ B0e
�ðt=�Þd

�Z c

0
@xþ

Z a

c
e�ðx�cÞ=�@x

�

�
�Z b

0
ðjyx̂� jxŷÞ@y

�
case II: (20)

Substituting ~J from Eq. (19) to Eq. (20), the net force
acting on the plate can be calculated. In case I,

~FY ¼ 0 because
Z b

o
cosð�myÞ@y ¼ 0

~FX ¼ 0 because
Z a

o
cosð�nxÞ@x ¼ 0: (21)

In case II, there will be a net force acting on the plate:

~F Y ¼ 0 because
Z b

o
cosð�myÞ@y ¼ 0 (22)

~FX¼�
�
B0e

�ðt=�Þd
X1

n;m¼1

�n

d
AII
nmðtÞNnm

�Z c

0
@x

þ
Z a

c
e�ðx�cÞ=�@x

�
cosð�nxÞ

Z b

0
sinð�myÞ@y

�
x̂: (23)

FIG. 5. Plot of the magnetic field on the surface of the plate
obtained using two different methods using Eqs. (19) and (27),
respectively. The value of (1þ gd) is obtained from the inter-
section of two curves.
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After integration and rearranging we get

~FX ¼ �B0e
�ðt=�Þ X1

n;m¼1

1

�m

AII
nmðtÞNnm½1� cosð�mbÞ�

� sinð�ncÞ þ
�

�2�n
2

1þ �2�n
2

� eðc�aÞ=�
�
sinð�naÞ � 1

��n
cosð�naÞ

�

�
�
sinð�ncÞ � 1

��n
cosð�ncÞ

�
2
6664

3
7775

2
6664

3
7775x̂: (24)

The final expression is obtained by using the following integrals:

I ¼
Z a

c
e�x=� cosð�nxÞ@x ¼ e�x=� sinð�nxÞ

�n

��������
a

c
þ 1

��n

Z a

c
e�x=� sinð�nxÞ

�n

@x

¼
�
e�x=� sinð�nxÞ

�n

���������
a

c
þ 1

��n

��
�e�x=� cosð�nxÞ

�n

���������
a

c
� 1

��n

Z a

c
e�x=� cosð�nxÞ@x

�

or Iec=� ¼ 1

�n

�
�2�2

n

1þ �2�2
n

��
eðc�aÞ=�

�
sinð�naÞ � 1

��n

cosð�naÞ
�
�

�
sinð�ncÞ � 1

��n

cosð�ncÞ
��
: (25)

As the force depends on the eddy current, we have taken
the sum ofm and n up to 300 only without losing too much
accuracy.

C. MAGNETIC FIELD PRODUCED
BY EDDY CURRENT

We have already calculated the eddy current distribution
in the conducting plate induced by a time varying magnetic
field. We have assumed that the thickness of the plate is
uniform and quite small compared to the skin depth. This
assumption may be fine for the vacuum chambers used in
accelerators which produce synchrotron radiation. The
source current density for which the induced field needs
to be calculated is lying on the x-y plane. The eddy current
is distributed in the plate. We consider a small strip of the
plate as a current carrying conductor. The magnetic field at
a point Pðx; y; zÞ due to a source current at ðx0; y0; z0Þ can be
expressed using the Biot-Savart’s law:

~Bðx; y; zÞ ¼ �0

4�

Z
V

~j� ð~r� ~r0Þ
ðr� r0Þ3 @x0@y0@z0;

where r� r0 ¼ ðx� x0; y� y0; z� z0Þ: (26)

By taking z0 ¼ 0 and taking the curl, we get

~B0ðx;y;zÞ¼d�0

4�

Z a

0
@x0

Z b

0
@y0

jxðy�y0Þ�jyðx�x0Þ
fðx�x0Þ2þðy�y0Þ2þz2g3=2 ẑþ

ð�jxzÞ
fðx�x0Þ2þðy�y0Þ2þz2g3=2 ŷþ

jyz

fðx�x0Þ2þðy�y0Þ2þz2g3=2 x̂

2
666664

3
777775:

(27)

The above expression is true in the absence of any
magnetic material. The field due to the eddy current is
obtained after integrating the above expression. We have
written a code in FORTRAN to evaluate the field. It is
possible to calculate the field when the current carrying

conductors are located between the two parallel iron poles
with very high permeability. Details of it are available in
our earlier work [1].

IV. RESULTS AND DISCUSSIONS

To test the theoretical model we have calculated the
eddy current generated in the two parallel aluminum plates
when exposed to a spatially uniform but exponentially time
decaying field. Direction of the field is perpendicular to the
surface of both plates. The distance between the two
plates (s) is 20 mm. The width (a), length (b), and thick-
ness (d) of the plates are 1.4, 1.4, and 0.002 m, respectively.
The conductivity of both plates is 16:95� 106 S=m. The
peak field and the time constant of the field decay are
1.3695 T and 1.4 s, respectively. So, the transient field
can be expressed as

B ¼ 1:3965e�ðt=1:4Þ; (28)

where t is expressed in s. Before computing the eddy
current density using Eq. (19), the value of g and the index
of sum (m and n) should be evaluated. We have plotted the
value of field obtained on the surface of the plate using
Eqs. (19) and (27) in Fig. 5. From the intersection of both
curves we find that the value of (1þ gd) is 0.002 59 m.
Therefore, the value of g is�498:705 for the above geometry.
The values of the current density and the field in Eq. (19)

are expressed in terms of an infinite series sum. However,
the index of the sum should be limited to a reasonable
small number to save the computation time without losing
the accuracy. To estimate the necessary minimum index up
to which the sum is computed, we have calculated the
current density for various indices and plotted them in
Fig. 6. It is clear from the figure that the index can be taken
as 300 for calculation of different parameters. Variation of
current density is found to be around 0.002% if the index of
the sum is increased from 300 to 400. Therefore, for all
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practical calculations, the index of the sum can be taken as
300. The data plotted in Fig. 5 is also obtained for m ¼
n ¼ 300.

Once the value of g and the sum of indices m and n are
known, current densities can be computed using the ana-
lytical expression given in Eq. (19). We have developed a
code in FORTRAN for computation of eddy current and other
required parameters. This code is compiled on a HP DL
380 G5 server having a xeon 3.73 GHz dual core with 8GB
RAM and Red Hat Enterprise Linux 4.0. The code takes
typically a minute to calculate the value of current densities
in the above-mentioned plate. The contour plot of current
density jx and jy are plotted in Figs. 7 and 8, respectively.

Both contour plots are obtained when an aluminum plate
of dimension ð1:4; 1:4; 0:002Þ m3 is exposed to a spatially
uniform but exponentially time decaying field of the form
given in Eq. (28) and at time t ¼ 0:2 s. The B field is

pointing in the upward direction and decreasing with time.
Therefore, the direction of the eddy current will be such
that it will oppose the change of the field in accordance
with the Lenz’s law. So, the flow of eddy current will be in
the counterclockwise direction. This phenomenon is de-
picted in Figs. 7 and 8 and has come naturally from the
mathematical formulation of the model. The value of jx is
negative and positive for the upper and lower half of the
plate, respectively. The value of jx is the maximum at the
center of the lower half and it passes through zero at
the middle and becomes the minimum at the center of
the upper half. It is symmetric about the line Y ¼ b=2. It
is clear from Fig. 8 that the variation of jy is symmetric

about the line X ¼ a=2. The value of jy is the maximum at

FIG. 6. Evaluation of the eddy current from the analytical
expression of Eq. (19) for different indices of the sum (m¼n).
The solid line is just a guide to the eye.

FIG. 7. Contour plot of X component of the eddy current
density, jx, in the aluminum plate of dimension
ð1:4; 1:4; 0:002Þ m3.

FIG. 8. Contour plot of Y component of the eddy current
density, jy, in the aluminum plate of dimension ð1:4; 1:4;
0:002Þ m3 when exposed to a field exponentially decaying
with time.

FIG. 9. Variation of the eddy current density, jy, with time for
various thicknesses (d ¼ 2, 6, 10, 14, and 18 mm, respectively)
of a plate while the other dimensions are kept constant
(a ¼ 1:4 m and b ¼ 1:4 m).
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the center of the right edge as expected and it passes
through zero at the line bisecting the plate along the width
and the minimum is at the center of the left edge.

Variation of the current density with time shows inter-
esting behavior. An electromotive force (emf) is generated
across the plate due to the change of flux. This emf will
drive the eddy current to flow in the plate in a closed path.
As it is circulating in the plate an effective inductance will
come into the picture. Time t ¼ 0 is taken at a time when
the field starts decaying. So, at t ¼ 0 current density is also
zero. Now, it will take finite time to reach to the peak value
and then start decaying as the rate of change of flux is
reducing with time. The effective inductance of a plate
depends on the geometry of the plate. Resistance of the
plate decreases with the increase of the thickness.
Therefore, the time constant, which is the ratio of the
inductance to the resistance, increases with the increase
of thickness of a plate. So, the eddy current will take longer
time to reach the peak value as the thickness of a plate
increases. This is apparent from our theoretical model,
Eqs. (18) and (19). The variation of the Y component of
the current density with time is plotted for different thick-
ness (2, 6, 10, 14, and 18 mm) of a plate having both the
width and length 1.4 m in Fig. 9. The time constant of the
field decay is the same as 1.4 s for all the cases and jy is

calculated at X ¼ 0:9 m from the edge on the Y ¼ b=2
line. It shows that for a 2 mm thick plate, jy reaches very

quickly (0.02 s) to the peak value. However, for the 18 mm
thick plate it takes 0.19 s to reach the peak value.

Time variation of the current density at various points
(X ¼ 0:8, 1.0, 1.2, and 1.39 m from the edge) of a plate of
dimension ð1:4; 1:4; 0:002Þ m3 when exposed to an expo-
nentially time decaying field is shown in Fig. 10. Here jy
takes an almost similar time to reach the peak value as the

thickness of the plate is the same. We know that the value
of jy is zero at the middle of the plate (X ¼ 0:7 m) and it

increases as one moves towards the edge (X ¼ 1:4 m), as
shown in Fig. 8.
For quick verification of the analytical model, the results

are compared against those obtained by simulation using a
finite element (FEM) based code, like OPERA [13]. The
OPERA-3D analysis program ELEKTRA can be used to com-

pute time varying electromagnetic fields in three dimen-
sions including the effects of eddy currents. The program
incorporates state of the art algorithms for the calculation
of electromagnetic fields and advanced finite element
numerical analysis procedures. The detailed procedure
was explained in our earlier work [1]. We have taken
two parallel aluminum plates of dimension ð1:4; 1:4;
0:002Þ m3 separated by 20 mm, inside a solenoid magnet
where the field is decaying in a programmed manner as
expressed in Eq. (28). The plates are placed at the center of
the solenoid in such a way that the direction of the B field is
perpendicular to the surfaces of the plates. In other words,
the normal vectors of the plate surfaces are in parallel to the
rotational axis of the solenoid. The inner radius of
the solenoid is 1.5 m and it produces a uniform field on
the surfaces of the plates. The uniformity of the field is
�0:05%, which is similar to a dipole magnet. The mesh
size of the plate is taken as 2� 2 mm2 in the x-y plane and
0.5 mm along thickness (z). This model is solved with 1=4
symmetry and the number of elements and nodes in the
model are 1 378 300 and 1 417 074, respectively.
The values of the current density, predicted by

the analytical model, are in good agreement with the
simulation values obtained using a 3D FEM code [13].
The values of the eddy current density obtained from two
different methods are plotted in Fig. 11 for comparison.

FIG. 10. Time variation of the current density at various points
(X ¼ 0:8, 1.0, 1.2, and 1.39 m from the edge) of a plate of
dimension ð1:4; 1:4; 0:002Þ m3 when exposed to an exponentially
time decaying field.

FIG. 11. Variation of the eddy current density, jyðA=cm2Þ in
the aluminum plate of dimension ð1:4; 1:4; 0:002Þ m3 at different
times obtained from two different methods when exposed to an
exponentially time decaying field.
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The agreements are within 0.2%. This work may be ex-
tended for rectangular vacuum chambers with some ap-
proximations. A rectangular chamber is made of two such
horizontal plates connected by two thin (few mm width)
vertical plates at the end. Neglecting the contribution of the
vertical plates, the eddy current in the chamber will be the
same as that of two horizontal plates separated by a dis-
tance of 20 mm in this case.

The magnetic field produced by the eddy current is
evaluated using Eq. (27). The BZ field generated due to
the eddy current in the two parallel plates is plotted in
Fig. 12. It shows that the field varies with the square of the
distance in the central zone, a typical sextupole-like varia-
tion as expected. Here the distance is measured from the
middle of the plates, i.e., at X ¼ a=2 ¼ 0:7 m. However,
the nature and content of the multipole depends on the
distance from the plate and the point of observation. The
vertical component of the field obtained from the simula-
tion is also plotted in the same graph for comparison.

Until nowwe have used the dimensions of the chamber as
ð1:4; 1:4; 0:002Þ m3 to study the analytical model. From
here on, we will be studying a chamber whose dimensions
are close to the dipole magnet beam chamber used in our
accelerator. We have already explained that the antecham-
ber portion of a vacuum chamber of a storage ring remains
outside the poles of a dipole magnet. Therefore, some
portion of the chamber gets exposed to a uniform magnetic
field produced by the dipole magnet and rest of it (ante-
chamber part) is exposed to a space varying field of the form
given in Eq. (2). The value of � of Eq. (2) is 0.045 m as
obtained from the experimental data for a 50 mm pole gap
dipole. Storage ring chambers are of different sizes and
shapes. We have considered an aluminum chamber of
width, length, and thickness of 0.646, 2.2, and 0.006 m,

respectively. The variation of current density is studied for
an arbitrary time (t ¼ 0:1 s) by varying the uniform field
exposed zone (c) from 20%, 40%, 60%, 80%, and 100% of
the width (a) of the vacuum chamber. The peak uniform
field is 1.5 T. Case II of our theoretical model can be used to
study these problems. In the case of 100% uniform field
exposure, the problem reduces to case I. As expected it is
clear from Fig. 13 that the eddy current density is minimum
at the left, passing through zero at x ¼ a=2, i.e., at 0.323 m
and maximum at the right of the plate for 100% uniform
field exposure. However, for a nonuniform field exposure
the nature of the eddy current variation is asymmetric. The
value of the eddy current density at the left (X ¼ 0) for 20%,
40%, 60%, 80%, and 100% field exposure are �251:37,
�388:55, �481:94, �532:07, and �543:57 A=cm2, re-
spectively, whereas at the right (X ¼ 0:646), these values
are 41.94, 122.06, 245.67, 409.11, and 543:57 A=cm2,
respectively.
The nature of the variation of jy will also depend on the

width and length of the chamber. This asymmetric varia-
tion of current density causes unbalanced force acting on
the chamber. Estimation of such force is important for
various practical applications. The force can be evaluated
using Eq. (24). We assumed that the force calculation on
the plate may be extended for vacuum chambers of rect-
angular shape, which consists of two such horizontal plates
connected by two vertical plates at the end. If we neglect
the contributions coming from the vertical plates, then the
force will be twice in the case of the chamber. The force
acting on a chamber when exposed to a nonuniform time
varying field is plotted in Fig. 14. The value of the force
depends on the peak field and its extent on the chamber (c).
It is observed that, for a given geometry and peak field
of 1.5 T field, the force becomes maximum when

FIG. 12. Vertical component of the magnetic field, BzðGÞ due
to eddy current, at the middle of the two parallel aluminum
plates of dimension ð1:4; 1:4; 0:002Þ m3 kept at 20 mm apart.
Simulation results (dotted lines) are also plotted for comparison.

FIG. 13. Variation of the eddy current density, jy, when the
chamber is exposed to a nonuniform field as expressed in Eq. (2).
The uniform field (1.5 T) exposure zone (c) varies from 20%,
40%, 60%, 80%, and 100% of the width (a ¼ 0:646 m) of the
chamber.
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approximately 60% of the chamber is exposed to a uniform
field. When the extent of the uniform field zone is 100% of
the chamber, then the force becomes zero (Fig. 14) as
expected from the theoretical model. The value of the force
is 15.2 kN for the uniform field zone, c, of 0.387 m for a
chamber of 0.646 and 2.2 m width and length, respectively,
at time 0.1 s (d ¼ 0:006 m). This gives general informa-
tion about the force acting on the chamber of a storage ring
in the case of sudden turn-off of power supply. This will be
helpful in designing the antechamber part to avoid un-
wanted force on the chamber without compromising the
vacuum consideration.

Variation of force on the chamber with time for different
thickness is also studied. Thewall thickness of the chamber
is decided to withstand the atmospheric pressure load when
the chamber is under vacuum. However, this force calcu-
lation will provide additional information about the thick-
ness. Therefore, during the design stage, the wall thickness
can be decided judiciously.

Variation of the force on a chamber with time for differ-
ent wall thickness (d ¼ 4, 6, 8, 10, and 14 mm) of a
chamber when exposed to a nonuniform time varying
magnetic field is plotted in Fig. 15. Width and length of
the chamber are 0.646 and 2.2 m, respectively. Around 40%
of the chamber (c ¼ 0:260 m) is exposed to 1.5 T peak
uniform magnetic field. It is observed that the forces acting
on a chamber, whose wall thickness varies from d ¼ 4, 6,
8, 10, and 14 mm, by keeping all other parameters un-
changed, are 8.83, 13.12, 17.47, 21.57, and 29.66 kN,
respectively, and it reaches its peak value at time t ¼
0:038, 0.042, 0.046, 0.053, and 0.064 s, respectively. Here
we have assumed that the skin depth is large compared to
the wall thickness.

Our analytical model predicts that the peak force (F in
kN) on a chamber with the wall thickness, d (in mm), can
be expressed as F ¼ 2:35d0:96. We have plotted the force
variation with wall thickness of the chamber in Fig. 16 and
the dotted line in the plot represents the fitted data using the
above equation. However, for detailed calculation of force
Eq. (24) should be used. To minimize the force on a
chamber the wall thickness should be as small as possible
but it should withstand the vacuum pressure. This force
should be considered at the design stage of a chamber and
also for providing the support structure to achieve the
required stringent positional accuracy of BPMs. At the

FIG. 14. The variation of the force on the chamber due to the
eddy current when exposed to a nonuniform time varying
magnetic field for various uniform field zones (c) keeping the
length and width of the plate constant as 2.2 and 0.646 m,
respectively.

FIG. 15. Variation of the force (in kN) on a chamber with time
for different wall thickness (d ¼ 4, 6, 8, 10, and 14 mm) of a
chamber when exposed to a nonuniform time varying magnetic
field.

FIG. 16. Variation of the peak force (in kN) on a chamber with
the wall thickness of a chamber keeping other parameters
constant (a ¼ 0:646 m, b ¼ 2:2 m, c ¼ 0:260 m, and B0 ¼
1:5 T) when exposed to a nonuniform time varying magnetic
field.
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same time the mechanical strength of the welding joints of
a chamber should be strong enough to withstand the force
acting on it when supported by a rigid structure. Our model
predicts that the time of the peak force (t in s) as a function
of wall thickness (d in mm) can be expressed as t ¼
0:019d0:44 for the chamber of above dimensions.

V. CONCLUSIONS

The analysis presented here allows a quick and accurate
estimation of the force acting on the vacuum chamber of a
storage ring when exposed to a time varying magnetic field
without using time consuming computer simulation. A
computer code, in FORTRAN, is developed using the ana-
lytical expressions of the theoretical model that provides
results of various parametric studies. This helps to under-
stand the physical behavior of electromagnetic field better.
The method has been simplified by assuming the uniform
wall thickness of the chamber. A more complicated struc-
ture with varying thickness may be analyzed with modified
treatment which was not considered here. Finally, the
knowledge of the force on the chamber helps to design a
robust chamber and its support structure. It will improve
the up time of the machine and long time positional
accuracy of the BPMs and, hence, the smooth operation
of the ring. The force acting on a chamber due to the eddy
current when exposed to a nonuniform time varying B field
depends on the portion of it exposed to the uniform field.
When it is exposed to a uniform B field, then the force
acting on the one half of the chamber is balanced by the
force on the other half. Therefore, the net force acting on it
will be zero. It is observed that, for a given geometry and
peak field, presented in this paper, the force becomes the
maximum when approximately 60% of the chamber is
exposed to a uniform field. This will be helpful in design-
ing the antechamber part of the vacuum chamber to avoid
unwanted force on the chamber without compromising the
vacuum consideration. Variation of force on the chamber
with time for different thickness is also studied. The wall
thickness of the chamber is decided to withstand the
atmospheric pressure load when the chamber is under
vacuum. However, this force calculation will provide addi-
tional information about the wall thickness. Therefore,
during the design stage, the wall thickness can be decided
judiciously. Thickness should be kept as small as possible
which can withstand the vacuum pressure and minimize
the force due to eddy current. Variation of the eddy current
density with time for different wall thickness shows inter-
esting behavior. It takes longer time to reach the peak value
for thicker chamber. It shows that for 2 mm wall thickness,
jy reaches very quickly (0.02 s) to the peak value. However,

for 18 mm wall thickness it takes 0.19 s to reach the peak
value. The force on the chamber depends on the eddy
current and the applied B field. The B field is decaying
exponentially and the eddy current initially increases and
then decreases with time. Therefore, the force variation

shows the initial increase and then a decrease with time. It
is observed that the peak force acting on a chamber of
dimension ð0:646; 2:2; 0:014Þ m3 is 29.66 kN for 1.5 T
peak field and it reaches its peak value at time t ¼ 0:064 s.
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