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Superconducting cavities made from niobium allow accelerating gradients of about 50 MV=m close to

the theoretical limit. Quite often, however, the rf losses increase with the gradient faster than quadratic.

This observation is equivalent with a decrease of the quality factor Q with the gradient, called ‘‘Q slope’’

for intermediate gradients, and ‘‘Q drop’’ for larger ones. The paper provides an explanation by an

elementary model based on the two-fluid theory of rf superconductivity and applies it to experimental data

for a large variety of cavity tests.
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I. INTRODUCTION

The performance of superconducting accelerating cav-
ities improved quite significantly during the past decade
and could be pushed up to the theoretical limits of the
accelerating gradient for individual cavities. Nevertheless,
performance limitations remain and are responsible for a
relatively large scatter of performance, even if an identical
cavity preparation protocol is closely followed. They are of
stochastic nature (e.g. field emission, quenches, residual rf
losses, etc.) or of deterministic nature. The latter present
hard limits for the prominently applied technology of
superconducting cavities made from bulk niobium. These
hard limits concern the maximum accelerating gradient
(about 50 MV=m) and the rf losses associated. They are
determined by theoretical foundations, mostly well under-
stood, related to the theory of superconductivity. These are
the so-called superheating critical magnetic field, closely
related to the thermodynamic critical magnetic field, for
the gradient, and the temperature dependent surface resist-
ance for the rf losses. The surface resistance is described by
the BCS theory and does not depend on the gradient
(except for very high gradients). However, in reality it
increases with the gradient, thus imposing additional rf
losses to all kinds of superconducting cavities studied so
far. These experimental findings lack explanation. It is the
purpose of this paper to contribute to the understanding of
the increase of the surface resistance with the gradient.

If the tangential rf electric field E at the cavity surface
(which is very small) follows the rf magnetic field H ¼
B=�0 in a linear relation, their ratio E=H, i.e., the surface
resistance Rs, and hence theQ valueQ� 1=Rs, is constant
with B. If, however, a nonlinear relation exists between E
and H, the surface resistance Rs decreases or increases

with B. Therefore in this paper the according contribution
to the total surface resistance is called ‘‘field dependent,’’
Rs;fd.

In fact three different regimes are observed in niobium
accelerating cavities, where the Q value depends on B. In
the low field region (B< 20 mT) the Q value is observed
to increase with B (low field Q increase). In the intermedi-
ate field region (20–120 mT), the Q value decreases, and
beyond, incidentally, the Q value may drop even faster.
These latter two observations are named ‘‘Q slope’’ and
‘‘Q drop.’’
The paper is organized as such: In the first section, some

general remarks concerning the fitting procedure justify
the approach chosen. In the second section the different
contributions to the surface resistance are derived from first
principles. In the third section, the results of the data
analysis are commented in reference to the different con-
tributions and fit parameters as shown in the Appendix,
where the chi-square minimization plots are presented.
In the fourth section the model is exposed to other experi-
mental findings on niobium cavities. A conclusion summa-
rizes the main results of the paper.

II. DATA EXTRACTION AND FITTING

A. Determination of the surface resistance
from the Q value

Whereas the surface resistance Rs cannot be measured
directly, the Q value can. It is defined as

Q ¼ !
�0

R
dvB2R

daRsB
2
; (1)

! ¼ 2�f being the rf frequency. The integral in the
numerator is taken over the volume of the cavity and the
integral in the denominator is taken over the surface
of the cavity, B being the local magnetic field in the
volume or on the surface, respectively. If the surface
resistance was constant with B, it is inversely proportional
to the Q value,
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Rs ¼ G

Q
; (2)

G being the geometry factor

G ¼ !
�0

R
dvB2R

daB2
: (3)

But this is in the strict sense only approximately valid for
real cavities.

The measurement provides the Q value as a function of
the magnetic field B. If B is identified with the peak
magnetic surface field Bp, the losses are obviously under-

estimated and must be corrected.
Normalizing B to Bp, Eq. (1) transforms into

QðBpÞ ¼ !
�0

R
dvðB=BpÞ2R

daRsðBÞðB=BpÞ2
: (4)

The average surface resistance hRsi is defined as

hRsiðBpÞ ¼ G

QðBpÞ : (5)

The local surface resistance RsðBÞ may be written as a
series expansion

RsðBÞ ¼ Rs0 þ R0
sB

2 þ R00
s B

4 þ � � � ; (6)

which is justified later. A linear dependence on B of the
surface resistance RsðBÞ is not discussed here, because the
data fitting does not require it, in accordance with results
published elsewhere [1]. From Eqs. (4)–(6), the average
surface resistance reads then

hRsiðBpÞ ¼ Rs0 þ R0
s

R
daB4

B2
p

Z
daB2

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�0

B2
p þ R00

s

R
daB6

B4
p

Z
daB2

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�00

B4
p

þ � � � : (7)

This expression is abbreviated as

hRsiðBpÞ ¼ Rs0 þ �0B2
p þ a00B4

p þ � � � : (8)

The directly measured coefficients �0; �00; . . . of the
series expansion of the average surface resistance hRsi
are linked with the required coefficients Rs

0; Rs
00; . . . of

the series expansion of the local surface resistance Rs as

R0
s ¼ �0

�0 ; R00
s ¼ �00

�00 : (9)

The coefficients �0; �00; . . . were computed with
SUPERFISH [2] and are summarized here for an elliptically

shaped accelerating cavity with a cell length adapted to
particles with a velocity close to the velocity of light:
�0 ¼ 0:95, �00 ¼ 0:92, �000 ¼ 0:90; . . . .

It turns out from the detailed analysis that the average
surface resistance hRsi [Eq. (5)] underestimates the local

surface resistance Rs (Bp) [Eq. (6)] by less than 10%, as

long as the ratio B=Bc < 0:9 (Bc is the thermodynamic
critical magnetic field). This deviation is considered to be
tolerable, because it lies in the same range as the normal
measurement error for the Q value. However, for cavity
shapes different from the elliptical shape, the deviation is
much larger (�50%). Therefore the data analysis as pre-
sented here is applied exclusively for elliptically shaped
cavities.
The surface resistance characterizing the individual loss

mechanisms is additive, provided that the rf losses are
smoothly distributed over the cavity surface. This fact
can be seen from the following argument.
The average surface resistance Rs as defined in Eq. (5)

can be written as

1

QðBpÞ ¼ hRsiðBpÞ
G

: (10)

On the other hand, with P being the dissipated power
and U the stored energy, 1=Q is defined as

1

QðBpÞ ¼ P

!U
: (11)

The different loss contributions 1, 2, . . . to the dissipated
power P are additive, such that

P ¼ P1 þ P2 þ � � � ; (12)

provided that the different losses do not depend on the
location on the surface but only on the magnetic field B.
Then a corresponding individual surface resistance
Rs1; Rs2; . . . may be defined, such that

1

QðBpÞ ¼
P1 þ P2 þ � � �

!U

¼
1
2

R
daðRs1B

2 þ Rs2B
2 þ � � �Þ

!�0

2

R
dvB2

¼ ðRs1 þ Rs2 þ � � �Þ
R
da

!�0

Z
dv|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼1=G

¼ Rs1 þ Rs2 þ � � �
G

: (13)

Hence, the different contributions to the surface resist-
ance are additive. If, however, the rf losses are concen-
trated in specific regions, the average surface resistance
hRsi, as defined in Eq. (5), represents a lower limit to the
local surface resistance Rs.

B. Description of the fitting procedure

The data consist of about 1300 quadruples ðRs; B; f; TÞ
collected from cavity tests of a very broad provenience
with regard to the surface resistance Rs (tacitly taken

WOLFGANG WEINGARTEN Phys. Rev. ST Accel. Beams 14, 101002 (2011)

101002-2



as hRsi), magnetic field amplitude B (tacitly taken as Bp),

temperature T, frequency f, shape, cell number, surface
treatment, niobium quality, etc. [3–29]. The data are called
‘‘collective’’ sample. The chosen approach aims to cancel
out stochastic factors and let prevail the fundamental
parameters of the niobium metal.

A relatively large standard deviation of � ¼ 0:35 of the
individual data for Rs

i was chosen to take into account not
only the measurement errors but also variations in prepa-
ration and test conditions, cavity types, etc. This led to a
minimum chi square for the best guess of the fit parameters
a1; a2; . . . of

�2ða1; a2; . . .Þ ¼ �n
i¼1

�
Ri
s � RsðBi; fi; Ti; a1; a2; . . .Þ

�Ri
s

�
2

� 1200: (14)

This number is reasonably compatible with the total
number of about n � 1300 quadruple individual data.

Several precautions were taken for the fit. For instance,
the relevant temperature T is not the helium bath tempera-
ture but that of the cavity interior surface. T is determined
from the power flux, depending on the measured values of
B and Rs, by taking into account the heat transport prop-
erties from inside the cavity to the outside helium bath. The
heat transfer depends on the niobium-helium interface
thermal boundary resistance, the thermal conductivity,
which is related to the residual resistivity ratio RRR of
niobium, and the cavity wall thickness. The thermal
boundary resistance between niobium and helium-I is
taken into account by data on the nucleate boiling heat
transfer [30], up until the film-boiling limit and beyond.
The thermal boundary resistance between niobium and
helium-II is described by data on the Kapitsa resistance
[31]. The heat conductivity of niobium is set proportional
to the residual resistivity ratio RRR, normalized to RRR ¼
100 [32]. However, a variation of the heat transport pa-
rameters by a factor of 3 upwards or downwards from the
�2 minimum leads to a variation of the fit parameters far
below their error and are therefore not considered as
relevant.

The total surface resistance of the collective data was
fitted with the Mathematica� software by trial functions
based on best physical guess. After iterations, the one
resulting in the smallest chi square was retained.

The approach was therefore an inductive one, based on
the set of experimental collective data and existing knowl-
edge. For reasons of clarity, however, a deductive approach
will be chosen in what follows. As a starting point, the
known contributions to the surface resistance, expressed as
equations with well-defined parameters, are considered.
The number of unknown fit parameters is thus reduced to
the strict minimum.

III. QUANTITATIVE ANALYSIS OF THE
SURFACE RESISTANCE

A. Two-fluid model description of the surface resistance

The electric current in the two-fluid model description
for superconductivity [33] is transported by two fluids
of charge carriers, the normal conducting and the super-
conducting fluid. They are considered as noninteracting.
The normal-conducting component has a finite resistance
or conductance, the superconducting component has
inductance but no resistance. The voltage induced across
the inductance acts on the resistance and produces rf
losses. From the law of induction follows for the surface
resistance Rs:

Rs ¼ �2
0�nðTÞ!2�x3 (15)

with the rf frequency ! ¼ 2�f, the conductivity �nðTÞ of
the normal-conducting fluid, and the penetration depth
�x of current flow. In the London model for rf super-
conductivity �x is the London penetration depth �L. The
conductivity �n (T) is proportional to the density of
normal-conducting electrons and depends on the tempera-
ture T as

�nðTÞ ¼ �n0

�
T

Tc

�
4
; �n0 ¼ RRR�; (16)

�n0 being the normal state conductivity at 4.5 K, RRR the
residual resistivity ratio, � the room temperature conduc-
tivity, and Tc the critical temperature.
The surface resistance Rs depends not only on the ex-

perimentally controllable variables, such as B, f, T, but
also on the ‘‘parameters,’’ such as �, RRR, �, the critical
temperature Tc, etc. Some of them are well known, such as
�, Tc, etc., and are therefore not subject to the fitting.
Others are determined by the fit, such as RRR, etc. The
fit results are then checked on plausibility.
The total surface resistance Rs is composed of a sum of

the following contributions: (i) the ‘‘BCS’’ surface resist-
ance Rs;BCSðf; TÞ; (ii) the field-dependent surface resistan-
ces, Rs;fdðB; f; TÞ, describing the Q slope and the Q drop,

and Rs;Q-incðB; f; TÞ, describing the low field Q increase;

(iii) the residual surface resistance Rs;res, and possibly

others.

B. The BCS surface resistance

Instead of solving the Mattis-Bardeen integrals [34] for
the surface resistance, the following analysis is based, for
reasons of clarity, on the two-fluid model. The temperature
dependence of the surface resistance Rs as described
by Eq. (16), is modified following the BCS theory [35]:

Rs;BCSð!; TÞ ¼ �2
0!

2�n0�
3 �

kB
ln

�
�

@!

�
e��=kBT

T
; (17)

� being the superconducting energy gap and kB being the
Boltzmann constant. The surface resistance of Eq. (17)
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depends besides the temperature T and the frequency !
also on the mean-free path l, as indicated here:

�ðT; lÞ ¼ �0ðlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
T
Tc

�
4

s ; �0ðlÞ ¼ �L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	0

l

s
; (18)

with �0 the penetration depth at T ! 0 K, and �L the
London penetration depth. The coherence length 	, to be
used later, is

	ðlÞ ¼ 1
1
	0
þ 1

l

; (19)

	0 being the coherence length for pure niobium. The
Ginzburg-Landau parameter 
 is the ratio of penetration
depth � and coherence length 	: 
 ¼ �=	. The conductiv-
ity �n0 of the normal-conducting electrons depends on the
mean-free path l, too,

�n0 ¼ le2

mvF

nn0; (20)

with the electron mass m, the Fermi velocity vF, and the
density just above Tc of the normal-conducting electrons
nn0. Equation (20) allows the replacement of the depen-
dence on the mean-free path l by a dependence on the
residual resistivity ratio RRR,

ljnm ¼ 2:7RRR: (21)

In reality, the density of normal-conducting electrons may
be increased by the presence of normal-conducting defects,
located to a depth�y away from the surface, but within the
penetration depth � of the electromagnetic field. These
surplus normal-conducting electrons contribute to the rf
dissipation in the same way as those from the normal-
conducting two-fluid model component. Therefore their
share of rf dissipation is taken into account by a frequency
dependent residual surface resistance Rresð!Þ. It should
have the same frequency dependence as the BCS surface
resistance, because it is created by the same physical effect.
Using the fundamental equation for the two-fluid model
surface resistance, Eq. (15), the frequency dependent re-
sidual surface resistance is

Rresð!Þ ¼ �2
0�n0!

2�2�y: (22)

The contribution Rres accounts for experimental results as
published elsewhere [36,37].

C. The field-dependent surface resistance

The field-dependent surface resistance comprises the
contribution Rs;fd for the Q slope and Q drop and

the contribution Rs;Q-inc for the low field Q increase. The

field-dependent surface resistance Rs;fd factorizes in

a good approximation into a temperature dependent
and a field-dependent part, Rs;fdðB;!; TÞ � Rs;fdtð!; TÞ �

Rs;fdbðBÞ, as will be shown later. This observation was also
noticed for niobium film cavities [38,39].

1. The field dependence of Rs;fd

a. The interface vacuum—superconductor with defect

The superconducting surface of niobium is supposed to
be imperfect in a sense as to allow the entry of magnetic
flux (no Bean-Livingston barrier). It may, for instance,
contain a normal-conducting ‘‘defect,’’ acting as a ‘‘con-
densation nucleus,’’ with radius a small compared to the
characteristic length scales in a superconductor (coherence
length 	 and penetration depth �). The origin of such a
defect is explained later. The important notion to be re-
tained lies in the fact that a planar geometry is replaced by
a spherical geometry.
We suppose that the surface with defect is exposed to

an rf magnetic field B. Inspecting Fig. 1, at the interface
between the normal-conducting defect and the circum-
jacent superconductor, being of type II, the Cooper pair
density increases relatively rapidly away from the defect
on a characteristic length scale 	, defining the conden-
sation volume Vc. Much further away, the shielding
action against B by the Meissner-Ochsenfeld effect be-
comes effective on a length scale of typically � > 	,
defining the magnetic volume Vm. Hence, compared to a
situation where the transition is abrupt, the superconduc-
tor provides less condensation energy �Ec, independent
of B, and gains more diamagnetic energy �EB, propor-
tional to B, up to a finite B�, where the energy balance is
equalized:

�E ¼ �Ec � �EB ¼ 1

2�0

B2
cVc � 1

2�0

B�2Vm ¼ 0

) B�2Vm ¼ B2
cVc: (23)

Hence, for

B> B� ¼
ffiffiffiffiffiffiffi
Vc

Vm

s
Bc; (24)

FIG. 1. The superconductor loses energy inside the condensa-
tion volume Vc and gains energy inside the magnetic volume Vm.
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the entry of magnetic flux is energetically possible,
because this lowers the total energy E.

For the special case of an interface between a normal-
conducting half sphere of radius a embedded at the surface
of a superconducting metal, the volumes concerned are

Vm ¼ 2
3�ðaþ �Þ3; Vc ¼ 2

3�ðaþ 	Þ3; (25)

from which

Vm

Vc

� 1 for a � �; 	;

Vm

Vc

�
�
�

	

�
3 ¼ 
3 for a � �; 	;

(26)

as well as

B� � Bc for a � �; 	;

B� �
�
	

�

�
3=2

Bc ¼ 1


3=2
Bc for a � �; 	:

(27)

B� may therefore become pretty small for dirty supercon-
ductors with a small mean-free path l and consequently
small coherence length 	. This is one possibility of creat-
ing a normal-conducting defect already at very small mag-
netic fields. But there are others.

Equation (24) may be interpreted as a functional relation
between the applied magnetic field B ¼ B� and the asso-
ciated condensation volume Vc (B), with Bc and Vm being
considered as constant. This is obviously valid for mag-
netic fields small as compared to the critical magnetic field
Bc and for temperatures small as compared to the critical
temperature Tc. The larger B, the larger becomes Vc in
order to establish the energy balance:

B2Vm ¼ B2
cVc: (28)

Differentiating Eq. (28) results, for B � Bc, in an ex-
pression for the increase of the condensation volume �Vc

(B) under the incremental increase �B of the applied
magnetic field B,

�VcðBÞ ¼ 2BVm

B2
c

�B: (29)

If B approaches Bc, the magnetic volume Vm is no longer
constant, and Eq. (29) is modified to

�VcðBÞ ¼ 2BVm

B2
c

�Bþ
�
B

Bc

�
2
�Vm: (30)

In this case, using Eqs. (25) and (30), the following rela-
tions hold:

�Vm

�Vc

¼
�
aþ �

aþ 	

�
2 �

�
�

	

�
2 ¼ 
2 for a � �; 	 (31)

�Vc ¼ 2BVm

B2
c � ð
BÞ2 �B: (32)

A distinction must be made between the situation when
the defect is located at the surface, and when it is located in
the bulk, but still within a distance given by the penetration
depth � and, hence, exposed to the rf current.
If the defect is embedded in the bulk, the current passes

around it on both sides when becoming normal conducting.
In other words, a looplike microscopic magnetic field
is created with the net result of zero change of magnetic
induction in the superconductor: the diamagnetic
energy remains unchanged, the energy balance �E will
not become negative, and, hence, no transition from the
superconducting state to the normal-conducting state will
occur. This is the reason why the normal-conducting vol-
ume Vc will only grow under the influence of the magnetic
field B when located at the surface and not inside the
superconductor.
A precondition for growth is therefore the existence of a

normal-conducting defect at the surface. It is well known
that such defects exist even at zero magnetic field [40].

b. Derivation of the field-dependent surface resistance

The Q slope and Q drop.—The supposition is made that
a relative increase of the condensation volume �Vc is
accompanied by a relative increase of the electron density
�nn, which may depend on the temperature T,

�nn
nn

¼ �Vc

Vc

: (33)

Differentiating Eq. (20) and using Eqs. (32) and (33), we
obtain

��n ¼ le2

mvF

�nn ¼ le2

mvF

nn|fflfflffl{zfflfflffl}
�n

�Vc

Vc

¼ �n

Vm

Vc

2B

B2
c � ð
BÞ2 �B: (34)

By the definition of the two-fluid model surface resistance
Rs, Eq. (15), the dissipated power per unit area p ¼ Rs �
ðB=�0Þ2=2 increases with the conductivity as

�p ¼ 1
2!

2�x3B2��n; (35)

�x being of the order of the penetration depth �, which
is identical with the spatial extension of the magnetic
volume Vm.
Using Eq. (34),

�p ¼ !2�x3�n

Vm

Vc

2B3

B2
c � ð
BÞ2 �B: (36)
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Equation (36) is integrated from the threshold field B�
(taken for convenience as zero, because it is small anyway)
to the magnetic field amplitude B,

p ¼ �!2�x3�n

Vm

Vc

�
B2

2
2
þ B2

c ln½1� 
2ð BBc
Þ2�

2
4

�
: (37)

By definition of the surface resistance, and taking for
convenience Vm=Vc � 1 [Eq. (26)] being valid for metals
with 
 � 1, such as niobium,

Rs;fd¼ p
1
2ð B�0

Þ2

��2
0!

2�x3�nðTÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Rs;fdt

ð�1Þ
�
1


2
þ ln½1�
2ð BBc

Þ2�

4ð BBc

Þ2
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rs;fdb

: (38)

Equation (38) shows the factorization of the field-
dependent surface resistance Rs;fd into a temperature

dependent factor Rs;fdtðTÞ, via �nðTÞ, and into a field-

dependent factor Rs;fdbðBÞ [with a weak temperature

dependence, though, via BcðTÞ].
After expansion of the logarithm into an infinite but

slowly converging series, Eq. (38) reads

Rs;fd��2
0!

2�x3�nðTÞ 1

2

�ð 
B
BcðTÞÞ2
2

þð 
B
BcðTÞÞ4
3

þ���
�

BcðTÞ�Bc;T¼0

�
1�

�
T

Tc

�
2
�
:

(39)


 is the Ginzburg-Landau parameter and Bc is the thermo-
dynamic critical field of niobium.

Equations (38) and (39) describe in a common way the
Q slope as well as the Q drop, as suggested by the singu-
larity of Eq. (38) at B ¼ Bc=
.

The low field Q increase.—It is well known that the
niobium surface consists of a composite of a niobium
matrix that comprises among other elements dissolved
gases as interstitials, such as oxygen, various oxides of
niobium [40], and hydrogen [41]. As a paradigm, only the
case of NbO is studied in this paper, having in mind,
though, that hydrogen may also be of relevance. A com-
posite of NbO=Nb on top of, and in close contact with,
the niobium bulk will be subject to the superconducting
proximity effect [42]. It follows that the NbO component
exhibits a transition temperature TcNS in between the tran-
sition temperatures of the two constituents, called ‘‘N’’ for
the weak superconductor (NbO) and ‘‘S’’ for the strong
superconductor (Nb), whereas the transition temperature of
the Nb is only weakly affected. Not only the critical tem-
perature TcNS of the N component, but also its critical field
B� is modified by the presence of the S component. For a
sufficiently thick N layer, there is a phase transition of first
order, in the presence of a magnetic field, from the super-
conducting state to the normal-conducting state at very low

magnetic field [42,43]. This phase transition happens twice
per rf cycle and needs a tiny amount of energy, the latent
heat L. This energy is provided by the rf field that boosts the
N component (defect) into the normal-conducting state. As
this energy cannot coherently be rendered back to the rf
field, it is dissipated as heat. Hence, in the low field region,
there exists another contribution to the field-dependent
surface resistance that originates from the proximity effect
and is proportional to the rf frequency ! ¼ 2�f. As the
latent heat L per square meter is independent of the rf
magnetic field amplitude B, the dissipated power per square
meter is p ¼ L � 2f. The related surface resistance is de-
rived by using the definition p ¼ Rs � ðB=�0Þ2=2, as

Rs;Q-inc � 2!L�2
0

�B2
: (40)

This equation describes the low field Q increase.

2. The temperature dependence of Rs;fd

a. Proximity effect in the NbO=Nb composite:
Determination of TcNS

As outlined before, only the niobium monoxide (NbO)
will be considered as a relevant candidate for the proximity
effect among the other compounds of the niobium surface
composite. It is metallic and a ‘‘weak’’ superconductor
with a transition temperature Tc ¼ 1:38 K. Other relevant
parameters for NbO are shown in Table I, in comparison
with those for Nb. They are the superconducting coupling
constant (NV), the Debye temperature �D, and the elec-
tron density N near the Fermi surface.
The superconducting coupling constants (NV) for Nb

and NbO are determined from their respective critical
temperatures Tc via the ‘‘BCS formula,’’

Tc ¼ 1:14�De
�ð1=NVÞ: (41)

The electron density N for Nb is calculated from the
Fermi velocity vF,

vF ¼ @

m
ð3�2NÞ1=3; (42)

taken from the literature [44]. The electron density N of
NbO is taken from the literature as well [45]. The limiting
case is considered here, when the typical spatial extensions
of the ‘‘N component’’ and the ‘‘S component’’ are small
compared to the coherence length (Cooper limit [46]). The
average coupling constant of the composite in the Cooper
limit is given by

TABLE I. Superconducting parameters of Nb and NbO.

ðNVÞS;N �D [K] Tc [K] NS;N [cm�3]

Nb 0.2835 276 9.25 5:56	 1022

NbO 0.1677 472 1.38 1:60	 1022
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ðNVÞeff ¼ ðNVÞNNNvN þ ðNVÞSNSvS

NNvN þ NSvS

; (43)

vN and vS being the volumes, NN and NS the electron
densities, and ðNVÞN and ðNVÞS the superconducting
coupling constants of theN and S components, respectively.

Once ðNVÞeff is known, the critical temperature TcNS is
calculated from Eq. (41), taking for the Debye temperature
�D the value for NbO, which is the dominant constituent in
the composite. Figure 2 depicts the relation between the
critical temperature TcNS of theN component vs the volume
concentration x ¼ vS=ðvS þ vNÞ of the S component in the
NbO=Nb composite. The relation of the critical temperature
TcNS vs x starts at the critical temperature Tc ¼ 1:34 K for
the NbO solely, when the concentration of the S component
is zero. The temperature difference Tc;NSTc;NbO follows a

quasilinear relation with the concentration x,

TcNS � Tc;NbO � x: (44)

As a consequence of the proximity effect, the preceding
description provides another mechanism by which
‘‘defects’’ are created.

b. Percolation effect in the NbO=Nb composite

Supposing that the helium bath temperature T is in-
creased from the critical temperature Tc ¼ 1:38 K of
NbO further up. Because of the proximity effect, by the
presence of Nb (S), the NbO is still superconducting.
Increasing T further, the NbO in the composites with the
smallest volume fraction of Nb will first become normal
conducting. The Nb in the composite still remains super-
conducting, but does not yet form a continuous supercon-
ducting path among itself. Increasing the temperature even
more, the NbO in those composites with a larger volume
fraction of Nb will also become normal conducting up to
the temperature, where the Nb in the composite forms a
continuous superconducting path among itself. This situ-
ation is identical with a so-called percolation threshold
(Fig. 3).
It should be noted that, as soon as the Nb of the com-

posite forms a continuous superconducting path, the NbO
of the composite fragments into normal-conducting
regions of small size. The normal-conducting regions
provide the small condensation nuclei needed for the entry
of magnetic flux, as described before, already at a very
small rf magnetic field B.
However, as long as the Nb in the composite does not

create a superconducting path, the entire composite itself
represents a normal-conducting defect of a size so large
that the entry of magnetic flux is prohibited at very small rf
magnetic fields B. Obviously, the entire composite contrib-
utes to rf losses, as will be discussed later.
Percolation means long-range connectivity in random

systems. There is a percolation threshold x� depending on
the occupation probability x, where infinite connectivity
(percolation) first occurs.
It follows as a corollary that long-range connectivity is

associated with the generation of isolated sites acting as
nucleation centers favoring the entry of magnetic flux.
Percolation thresholds of composites were extensively

studied in recent years. For example, the ‘‘void percolation
threshold’’ for ‘‘continuum percolation,’’ as it is called in the

FIG. 2. Critical temperature of the NbO=Nb composite in the
Cooper limit of the proximity effect vs the volume fraction
x ¼ vS=ðvN þ vSÞ of the S component (Nb).

FIG. 3. Schematic of a cluster of equally sized spheres below (left) and above the percolation threshold (middle and right).
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literature, was investigated for a distribution of overlapping
spheres (N) with equal radius and voids (S) in between.
The threshold volume fraction is x� ¼ vS=ðvN þ vSÞ ¼
0:0301
 0:0003 [47]. Above this threshold the voids are
connected.

Percolation effects are not only characterized by the
percolation threshold concentration x�, but also by the
critical exponent �. The probability P1 that a site
belongs to an infinite cluster is zero below x� and increases
above x� as

P1 ¼ ðx� x�Þ� (45)

with the concentration x of ‘‘occupied’’ sites [48]. The
critical exponent � is universal, i.e., largely independent
of the shape of the occupied sites. It depends on the dimen-
sionality of the problem and other features.

The following two examples are relevant for the analysis.
In a finite but large resistor lattice with a random fraction

of resistors removed there exists a threshold concentration
of resistors x� [49]. For x < x� the lattice is so fragmented
that is does not conduct. However, for x > x� there are
connected conducting paths of infinite extent and the con-
ductivity obeys a power law �� ðx� x�Þt with the critical
exponent t ¼ 1:1
 0:05, for ‘‘bond’’ percolation on a two-
dimensional lattice. Bond percolation means long-range
connectivity of the interface (bonds) between cells,
precisely what is shown in Fig. 3. Evidence for a dimen-
sionality of 2 was also found for a percolation-driven
transition from incoherent to coherent surface supercon-
ductivity [50].

c. Conspiracy between percolation and proximity effect

Applied to the NbO=Nb composite, we identify the
spheres with the NbO part of the composite (N), and
we identify the voids with the Nb part of the composite
(S). We would therefore expect a continuous path of Nb (S)
to exist, if x ¼ vS=ðvN þ vSÞ> x�. Inspecting Fig. 2, this
situation corresponds to a transition from superconducting
to normal of the NbO in the composite at T� ¼ 2:015 K,
which we call ‘‘percolation temperature.’’ Figure 3 illus-
trates the argument in a different way.

In conclusion, only for temperatures T > T�, magnetic
flux will enter at relatively small magnetic field amplitudes
B and make the condensation volume Vc grow under the
action of B, as described by Eq. (23).

Hence, Rs;fd will be relatively small below T�.
Replacing x by T in Eq. (45), introducing the percolation

temperature T�, which is justified due to linear relation

between TcNS � Tc;NbO and x [Eq. (44)], and normalizing

properly the probability P1, we obtain

P1ðTÞ ¼ �ðT � T�Þ
�
TcNS � T�

Tc � T�

�
�
: (46)

�ðxÞ is the step function.
For the temperature dependence of the conductivity

�nðTÞ follows therefore

�nðTÞ ¼ �n0�ðT � T�Þ
�
T � T�

Tc � T�

�
�
: (47)

Equation (47) describes how the magnetic field acts on
defects thus causing the increase, at the niobium surface, of
the conductivity of the normal-conducting electrons above
a threshold temperature T�. However, the fitting of the
collective data imposes considering normal-conducting
defects that exist also below T� with a spatial dimension
sufficiently small to allow the entry of magnetic flux. It is
conjectured that they originate from normal-conducting
zones penetrated by the superconducting current (e.g.
grain boundaries), thus adding a purely Ohmic contribution
to the surface resistance, Rres 1, independent of the rf
frequency. Hence, the temperature dependent part of
Eq. (38), Rs;fdt, must be completed by the residual resist-

ance term, Rres 1.

3. Roundup on the field-dependent surface resistance

In summary, the following conditions are sufficient, in the
frame of the proposed model, to allow the entry of magnetic
flux B causing the field-dependent surface resistance Rs;fd:

(i) There exist at the surface tiny isolated ‘‘nucleation cen-
ters’’ or ‘‘defects,’’ e.g., clusters of NbO, that are normal
conducting at zero magnetic field or become normal con-
ducting by the proximity effect in afirst order phase transition
at very low magnetic fields; the dissipated latent heat is
described by the surface resistance as in Eq. (40); (ii) the
magnetic flux entry is initiated at these tiny defects and
penetrates deeper into the bulk under the action of the mag-
netic field; (iii) the ‘‘conspiracy’’ of percolation and prox-
imity effects increases the density of normal-conducting
electrons starting from a threshold temperature T�; these
normal-conducting electrons are subject to the inductive
voltage as created by the superconducting electrons under
the action of the rf field, in a very similar way to the origin of
the BCS surface resistance; (iv) the field-dependent surface
resistance Rs;fd can be described by the formula

Rs;fdð!; T; BÞ �
2
64Rres1 þ�2

0!
2�x3�n0�ðT � T�Þ

�
T � T�

Tc � T�

�
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rs;fdt

3
75 1


2

�ð 
B
BcðTÞÞ2
2

þ ð 
B
BcðTÞÞ4
3

þ � � �
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rs;fdb

: (48)
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D. Other contributions to the surface resistance

As mentioned before, other however small contributions
to the surface resistance must be added. They are imposed
when fitting the collective data. It is conjectured that they
originate from normal-conducting zones penetrated by the
superconducting current (e.g. grain boundaries). The cor-
responding losses are Ohmic in nature and hence do not
depend on the rf frequency. The according surface resist-
ance is named Rres 2.

IV. RESULTS OF DATA ANALYSIS

A. Contributions to the surface resistance

1. The BCS surface resistance Rs;BCS

The task of data analysis consists in extracting the field-
dependent and other contributions to the surface resistance
from the total surface resistance Rs. This is achieved by
subtracting from Rs the well-known contributions, such as
the BCS surface resistance Rs;BCS and the residual surface

resistances Rresð!Þ and Rres 2. These contributions are de-
scribed by Eqs. (17) and (22). The fixed parameters for
Rs;BCS are the energy gap � and the room temperature

conductivity of niobium �. The fit parameter is the resis-
tivity ratio RRR. The BCS surface resistance Rs;BCS is

determined by adapting the fixed parameters of Eq. (17)
in such away as to closely approximate published data [51].
The RRR value of the niobium cavities on which the pub-
lished data were taken is not precisely known. A typical
number is RRR ¼ 40, generally valid for reactor-grade
niobium commercially available at the time when the data
were published. Then Eq. (17) overestimates the data by a
factor 4. Nevertheless best fits were obtained when the BCS
resistance was lowered by an additional factor of 2.5.

2. The field-dependent and other contributions
to the surface resistance

a. Fitting the individual data

The individual data are analyzed as follows. The mea-
sured total surface resistance Rs is fitted by the formulas as
summarized in the Appendix. The fitted contributions to the
surface resistance from theBCSand residual parts, aswell as
from the low field Q increase, are subtracted from the
measured total surface resistanceRs. What remains is domi-
nated by the field-dependent surface resistance Rs;fd. The

observation is used that the factor in Eq. (48), Rs;fdb, de-

scribes pretty well the field-dependent part. What is plotted
then in Fig. 4 is the remaining temperature dependent factor
Rs;fdt, after subtraction of the small residual part Rres 1, and

conveniently averaged and normalized to 400 MHz.
All these fits to the individual data indicate thatRs;fdt does

not depend on the magnetic field B, but only on the tem-
perature, increasing steeply above a threshold temperature
T� and being small below. The data suggest that the
field-dependent surface resistance Rs;fd factorizes into a

field-dependent and a temperature-dependent part. This
factorization is illustrated in Fig. 5 for a representative
individual data set [12].
The straight lines represent, after a removal of outliers,

the average values to the individual data that were used for
plotting Fig. 4.

b. Fitting the collective data

Having gained evidence for the factorization ofRs;fd from

the individual data, the analysis of the collective data is done
in a similar way. All fixed original and derived parameters as
used for the �2 minimization are listed in Table II.
All fitted original and derived parameters as used for the

�2 minimization are listed in Table III. The numbers are
taken from the �2 minimization as shown in the Appendix.

B. Discussion

As to the BCS surface resistance, the fit of the collective
data yields RRR ¼ 176, corresponding to a mean-free path

FIG. 4. The averaged temperature dependent part of the field-
dependent surface resistance Rs;fdt versus the bath temperature T

(the error bars are smaller than the data points).

FIG. 5. Data highlighting the nondependence of the tempera-
ture dependent part of Rs;fd on the magnetic field B; the

individual data were taken at three different bath temperatures
for one cavity.
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of l ¼ 475 nm, a penetration depth � ¼ 39 nm, and a co-
herence length 	 ¼ 35 nm. All these values come out as
expected. The frequency dependent residual resistance Rres

(1 GHz) is 0:1 n�, corresponding to a normal-conducting
surface layer of �y ¼ 1 nm and less (Appendix).

As to the field-dependent surface resistance, two cases
must be distinguished.

(i) The surface defects are normal conducting for all
magnetic fields and densely packed. In that case they con-
tribute to small Ohmic losses, independent of the rf fre-
quency, because the supercurrent avoids them. They give
rise to the frequency and magnetic field independent con-
tribution to the surface resistance named Rres 2 ¼ 3 n�.

(ii) The surface defects are more loosely connected and
are superconducting at small magnetic fields, by proximity,
but become normal conducting at larger magnetic fields. As
the phase transition in the presence of a magnetic field is of
first order, the defects absorb a constant amount of energy

per transition and dissipate this energy per half rf cycle,
causing the low field Q increase. The contribution to the
surface resistance is represented byRs;Q-incð!Þ ¼ 10 n� at

f ¼ 1 GHz and B ¼ 1 mT. In addition their size increases
with the magnetic field by penetration of magnetic flux,
which is explained by a positive balance of condensation
energy and magnetic energy in a type II superconductor
such as niobium. Two cases must be distinguished. Either
the phase transition occurs for a composite below the per-
colation threshold; then the contribution to the surface
resistance is again purely Ohmic, but dependent on the
magnetic field because of the size effect, represented by
Rres 1 ¼ 25 n�. Or the phase transition happens above the
percolation threshold; then a supercurrent flows, growing
with temperature and described by the percolation proba-
bility within a depth of �x ¼ 41 nm, very close to the
penetration depth � ¼ 39 nm, as expected.
The inductive voltage of the supercurrent acts on the

normal-conducting electrons, whose density increases by
the action of the magnetic field. This effect causes the Q
slope at intermediate accelerating gradients. The losses
originate from a mechanism very much the same as for
the BCS surface resistance and show therefore similar
frequency dependence. Close to Bc=
 [cf. singularity in
Eq. (38)], the rf losses increase beyond all limits, describ-
ing the Q drop at larger accelerating gradients. The corre-
sponding onset of the Q drop depends critically on 
 and
varies between 60 and 130 mT (Fig. 6), which is close to
the experimentally observed value, 80–110 mT [52]. The
corresponding contribution to the surface resistance is
named Rs;fdðB; T;!Þ.
The percolation characteristics of the temperature

dependent contribution to the surface resistance Rs;fdt are

illustrated in Fig. 4. The solid line follows the typical
relation for the percolation transition as described by
Eq. (46), with � ¼ 1, close to the two-dimensional perco-
lation model prediction.

TABLE III. Fitted original and derived parameters obtained by
�2 minimization of the collective data.

Original parameter Fitted value Unit

RRR 175 � � �
�x 41 nm

�y 1 nm

� 1 � � �
Rres 1 25 n�
Rres 2 3 n�
L 1.6 pJ=m2

Derived parameter Value Unit

l ¼ 2:7 � RRR 472 nm

� 39 nm

	 35 nm

�=	 1.1 � � �
Rres (1 GHz) 0.1 n�
Rs;Q-inc (1 mT, 1 GHz) 10 n�

TABLE II. Fixed original and derived parameters used by �2

minimization of the collective data.

Original parameter Value Unit

�=kB 16.2 K

� 7:6	 10�6 ð�mÞ�1

T� 2.07a K

Bc 0.190 T

Tc 9.25 K

�L 38 nm

	0 38 nm


 (surface) 0.8 � � �
Nb wall thickness 2.5 mm

aThis temperature T� denotes the one at the inside of the cavity.
It is estimated to 70 mK above the one of Fig. 4, which denotes
the helium bath temperature. The difference is caused by the heat
transport across the niobium wall to the helium bath.

FIG. 6. Q drop onset field measured at different frequencies.
The data point at 2.82 GHz was measured in the TE011 mode
(from Ref. [52]).
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The BCS part of the surface resistance Rs;BCSðT;!Þ is a
property of the bulk and is independent of the presence of

defects. The normal-conducting component of the charge

carriers in the two-fluid model is exposed to the voltage of

the superconducting component, resulting in a quadratic

frequency dependence.
Hence, in total seven contributions to the surface

resistance were identified, represented by the following
symbols and dependencies on physical parameters:
Rs;BCSð!;TÞ, Rresð!Þ, Rres 1, Rres 2, Rs;fdtð!; TÞ, Rs;fdbðBÞ,
and Rs;Q-incð!;BÞ. The combination of Rres 1, Rs;fdtð!; TÞ,
Rs;fdbðBÞ is responsible for the Q slope and Q drop:

Rs;fdð!; T; BÞ ¼ ½Rres 1 þ Rs;fdtð!; TÞ� � Rs;fdbðBÞ.

C. Typical fit results on individual data

It is good practice to compare the results of the present
analysis with other experimental findings. Reference data
are taken from a thorough analysis on the Q slope and Q

FIG. 7. Typical comparison of measured and fitted individual data: TheQðBÞ curves were obtained for a 1300 MHz single cell cavity
at 2.0 K made of fine grain niobium. �x was intentionally set to 0 to avoid numerical instabilities during the fitting of data, because the
� function already forces the respective term to 0 for T < T�. �y was also intentionally set to 0 because it was small compared to the
other numbers and otherwise oscillated between negative and positive values during the fitting of data.

FIG. 8. Contributions to the surface resistance at 704 MHz
shown separately (green: Rs;fd at 150 mT; red: Rs;fd at 100 mT;

magenta: Rs;fd at 50 mT; dashed blue: Rs;BCS; black: sum of

residual resistances Rres and Rres 2).
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drop performed several years ago [53,54]. These data sug-
gest also a linear dependence of the surface resistance Rs

on the magnetic field B, in addition to the quadratic and
higher dependencies as outlined in this study and elsewhere
(a summary of models proposed can be found in Ref. [52]).
The present study provides no evidence for a linear depen-
dence, though, in accordance to Ref. [1].

Other data fromRef. [52] concern the onset field for theQ
drop, measured at different frequencies (Fig. 6). TheQ drop
onset field is taken from the fit to the collective data at a Q
value of about 75% of its maximum (open circles and dotted
line) and represents well the experimental data of Fig. 6.

Figure 7 shows typical results of individual fits to se-
lected data sets taken out of the collective data sample. The
three curves were obtained from data [13] on the same
cavity that had been subjected to the sequence of treat-
ments indicated, all other parameters kept unchanged.

The results of the fit allow an explanation of the
beneficial effect of the low temperature bake, which was
found to eliminate the Q drop. It can be seen that mainly
two parameters are affected by the bakeout. The first is the
Ginzburg-Landau parameter 
 [Eq. (39)], which is signifi-
cantly reduced with the treatment number. As 
 determines
the entry of magnetic flux at the surface it must be taken as
a physical property of the surface. The other parameter is
the RRR, which decreases from one treatment to the next.
It is a physical property of the bulk, but restricted to the
penetration depth. All other parameters are nearly unaf-
fected. This observation can be explained by a redistrib-
ution of impurities from the very surface into the bulk up to
the penetration depth. This interpretation is in line with
current knowledge attributing the elimination of theQ drop
to a critical interplay of oxygen diffusion into the bulk and
decomposition of the oxide at the surface [55].

D. Contributions to the surface resistance at 704 MHz

It is important to know the relative importance of the
different contributions to the surface resistance of accel-
erating cavities, as, for example, planned for proton drivers
with a typical frequency of 704 MHz [56]. It is clearly
visible in Fig. 8 how the total surface resistance remains

nearly constant below and increases beyond the threshold
temperature of 2 K.

V. CONCLUSION

A quantitative relation for the total surface resistance Rs

is established including the Q-slope/Q-drop/low field Q
increase, as observed in superconducting bulk niobium
cavities. The proposed physical model allows the descrip-
tion of all three phenomena altogether. The Q-slope/
Q-drop is explained by the gradual entry of magnetic
flux with increasing magnetic field amplitude at surface
defects that act as nucleation centers and a rapid entry of
magnetic flux close to Bc=
. The low field Q increase is
explained by the latent heat dissipated when weak super-
conducting defects undergo a phase transition to the nor-
mal and back to the superconducting state. The rf losses are
explained by the conjecture that along with the entry of
magnetic flux the density of the normal-conducting elec-
trons increases as well. These electrons feel the inductive
voltage of the superconducting electrons, thus raising the rf
losses. Percolation and proximity effects explain in detail
the experimental observations of a large sample of collec-
tive cavity test data. A fitting procedure with a relatively
small number of free parameters (Fig. 9) allows a valid
representation of the experimental QðBÞ curves of the
individual cavity tests and also the determination of the
model-relevant physical parameters, which are in reason-
able agreement with present knowledge.
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APPENDIX: LEAST SQUARE FIT RESULTS ON THE COLLECTIVE DATA
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FIG. 9. Results of the �2 minimization of the fit parameters related to the surface resistance Rs.
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