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Transverse instability of a bunch in a ring accelerator is considered with space charge and wakefield

taken into account. It is assumed that space charge tune shift significantly exceeds the synchrotron tune.

Bunch spectrum, instability growth rate, and effects of chromaticity are studied with different bunch and

wake forms. Fast instability caused by coupling of transverse modes is studied in detail. It is shown that,

for monotonic wakes, the transverse mode coupling instability is possible only with a certain sign of the

wake. Its threshold and growth rate are calculated precisely over a wide range of parameters.
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I. INTRODUCTION

Transverse instability of a bunched beam in a ring
accelerator has been considered first by Pellegrini [1] and
Sands [2] with synchrotron oscillations taken into account
(‘‘head-tail instability’’). Coherent oscillations of a bunch
were presented as a sum of uncoupled modes / expðim�Þ
where � is synchrotron phase. After that, Sacherer inves-
tigated the effect in depth including the so-called radial
modes, which describe dependence of coherent displace-
ment on synchrotron amplitude [3].

The role of space charge has been studied first in Ref. [4]
with the assumption that corresponding tune shift is small
in comparison with synchrotron tune. It was shown that the
appearing tune spread causes Landau damping which sup-
presses most of the head-tail modes. The lowest (rigid)
mode is the only universal exception from the rule, and
1–2 next modes can be unstable additionally, in depen-
dence on the bunch shape. The results were confirmed later
in Ref. [5] by an analysis of several simple models. A more
detailed investigation has shown that the damping vanishes
at larger tune shift [6]. Although the thresholds were not
defined exactly, there was shown that the lower modes are
earlier becoming the decay free.

The space charge effects at low synchrotron frequency
were thoroughly investigated in recent papers [6,7].
Although very similar equations have been presented by
the authors, they have arrived at the rather different
conclusions.

According to Ref. [6], all the eigentunes of the bunch
should obtain an imaginary part in response to a wakefield
of any nature and strength. However, no concrete wakes
were investigated in the work.

In contrast to this, solutions with several specific wakes
were presented in Ref. [7]. The conclusion was that, at zero
chromaticity, small wake cannot violate bunch stability, and
all its eigentunes remain to be real numbers. Wake strength
should overcome a certain threshold to excite transverse
mode coupling instability through approach, and coales-
cence of the eigentunes (vanished TMCI, by the author).
The contradiction is resolved in this paper. It is shown

that some small parts of the basic equation were lost at
limiting transition to zero frequency in Ref. [7]. With the
parts recovered, all the eigentunes prove to be complex
numbers almost in all the cases, with rare exclusions only
due to special combinations of parameters. The imaginary
parts do increase when the TMCI arises; however, recalcu-
lated in Ref. [6] the TMCI thresholds appreciably differ
from those presented in Ref. [7].
This concern is discussed in subsequent sections. One of

the base assumptions is that nonlinearity of the external
field is negligible in comparison with space charge contri-
bution. Another important assumption is that synchrotron
oscillations are linear. However, the effect of chromaticity
on the instability growth rate is studied and treated in the
paper.

II. BUNCH MODES EQUATION

Wakefield of a beam produces transverse Lorenz force
which can be written in the form (per unit charge)

~G ðLÞðt; �ðLÞÞ ¼ �
Z t

0
Wðt� t0Þ ~DðLÞðt0; �ðLÞÞdt0; (1)

where DðLÞðt; �ðLÞÞ is linear density of the beam dipole

moment in azimuth �ðLÞ. This usual equation refers to the
laboratory frame, although the corresponding rest frame is
more convenient for our purpose. Therefore the following
variables and definitions will be used hereafter:

� ¼ �ðLÞ ��0t; Gðt; �Þ ¼ GðLÞðt; �ðLÞÞ; etc:; (2)

where �0 is the bunch angular velocity. Then Eq. (1)
transforms to
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~Gðt; �Þ ¼ �
Z t

0
Wðt� t0Þ ~D½t0; �þ�0ðt� t0Þ�dt0: (3)

With this force and space charge field taken into account,
the equation of betatron oscillations of a particle in a linear
external field is

d2x

dt2
þ�2Q2x ¼ eEx½�; x� �Xðt; �Þ; y�

m�3
þ eGxðt; �Þ

m�
; (4)

where � and Q are the particle angular velocity and tune,
and �Xðt; �Þ is the beam transverse displacement at azimuth
� (� ¼ 0 in the bunch center). The space charge electric
field Ex is, possibly, a nonlinear function of transverse
coordinates x and y. Note that d=dt is the total derivative
in time involving longitudinal motion.

An averaging of Eq. (4) over transverse phase space
gives an equation for the function Xðt; �; pÞ which is
transverse displacement of the bunch in the point ð�; pÞ
of longitudinal phase space [6]:

@X

@t
þ�s

@X

@�
þ i�QX’ i��QðX� �XÞþ ieGxðt;�Þ

2m��0Q0

: (5)

Here � and �s ¼ �0Qs are phase and frequency of the
linear synchrotron oscillations. The functions Xðt; �; pÞ
and �Xðt; �Þ are related by the equation

�ð�Þ �Xðt; �Þ ¼
Z 1

�1
Fð�; uÞXðt; �; pÞdp; (6)

where �ð�Þ is linear bunch density associated with longi-
tudinal distribution function F:

�ð�Þ ¼
Z 1

�1
Fð�; pÞdp: (7)

The effective space charge tune shift does not depend on
transverse coordinates in Eq. (5), demonstrating that non-
linearity of the beam field does not affect the coherent
oscillations [6,8]:

�Qð�Þ¼ e

2m�3�2
0Q0

Z 1

�1
@Ex

@x
ð�;x;yÞ�?ðx;yÞdxdy; (8)

where �? is normalized steady state transverse density of

the beam which just produces the electric field ~E.
Laplace transformation in time will be applied as a next

step to obtain a new variable defined by the relation

Yð�; pÞ ¼ expði��Þ
Z 1

0
Xðt; �; pÞ expði!tÞdt; (9)

where

� ¼ dð�QÞ
d�

¼ Q0 þ�0

dQ=dp

d�=dp
¼ Q0 þ � (10)

(� ¼ ��=� is normalized chromaticity). The exponential
factor is added before the integral to exclude dependence
of the parameters � and Q on momentum in Eq. (5). With
zero initial conditions, the equation transforms to

ð!��0Q0ÞYþ i�0Qs

@Y

@�
þ�0�Qð�ÞðY� �YÞ

¼ eexpði��Þ
2m��0Q0

Z 1

0
Wðt0ÞD!ð�þ�0t

0Þexpði!t0Þdt0; (11)

where

D!ð�Þ ¼
Z 1

0
Dxðt; �Þ expði!tÞdt: (12)

Note that a relation like Eq. (6) is valid for the functions
Yð�; pÞ and �Yð�Þ as well.
Variable � has a range ½�	;	� (one turn) whereas the

actual bunch has a smaller range ½��0; �0�. Therefore, it is
more convenient to use the normalized value


 ¼ �

�0
(13)

with a range ½�1; 1� (it was denoted as � in Ref. [6], but the
symbol is occupied now). Then Eqs. (6) and (7) hold true
with formal replacement 
 instead of �, because normal-
ization of the distribution function was not specified yet.
Further, we will apply the conditionZ 1

�1
�ð
Þd
 ¼ 1: (14)

Then the linear density of the dipole moment is

D! ¼ e �X!

R

dN

d�
¼ eN �Yð
Þ�ð
Þ

R�0
expð�i��0
Þ; (15)

where R is the machine radius, and N is the number of
particles in the bunch. Designating

e2NWðtÞ
2m�R�2

0Q0

¼ 2�0qð�0tÞ; (16)

one can rewrite Eq. (11) in the form�
!

�0

�Q0

�
Yþ iQs

@Y

@�
þ�Qð�ÞðY� �YÞ

¼2
Z 1

0
qð�0
0Þexp

�
i�0


0
�
!

�0

��

��
�Yð
0 þ
Þ�ð
0 þ
Þd
0:

(17)

Without the right-hand part, the equation has a universal
solution (rigid mode):

Y ¼ �Y ¼ 1;
!

�0

¼ Q0: (18)

It is easy to add here a contribution of a reasonably weak
wakefield. In the simplest case (constant wake, low chro-
maticity, boxcar bunch), the tune shift is

�!

�0

’ q

�
1� 2i�0�

3

�
: (19)

Hence, in order of value, q coincides with the addition to
the lowest eigentune. Note that q is negative in many
practical cases (e.g. resistive wall wake). According to
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Eq. (19), similar wakes should decrease tune of the rigid
mode and excite its instability at � > 0. It is important that
the statements hold true independently on �Q.

III. LOW SYNCHROTRON FREQUENCY LIMIT

The ultimate case Qs � �Q will be considered in the
following sections. Then, using the methods developed in
Ref. [6], one can obtain the following equation for the
function �Yð
Þ:

U2 d
2 �Y

d
2
�

�

þ U2

��c þ �

d�

d


�
d �Y

d

þ �ð��c þ �Þ

�2�c

�Y

¼ 2�Qc�ð
Þ
Q2

s�c

Z 1

0
qð�0
0Þ exp½i�0
0ð��Qc � �Þ�

� �Yð
0 þ 
Þ�ð
0 þ 
Þd
0 (20)

with

�¼ Qs

�Qc

; �¼!��0Q0

�0�Qc

; U2¼ 1

�ð
Þ
Z
Fð
;uÞu2du:

(21)

Here and subsequently, the subindex c marks the bunch
center, u is reduced particle momentum in the rest frame:
u2 ¼ A2 � 
2, where A ¼ 
max is amplitude of synchro-
tron oscillation. Note that all of the solutions are regular
functions, that is Landau damping plays no part in these
conditions [6].

Equation (20) without the wakefield is developed in
Ref. [6] where details of the derivation can be found as
well. With an additional assumption � ! 0, the equation
coincides with Eq. (60) of Ref. [7]. Such a limiting tran-
sition is quite legitimate in the left-hand side of Eq. (20)
which, with real �, contains only real coefficients.
However, it totally annihilates the imaginary part of the
right-hand side at � ¼ 0. Such was indeed the case of
Ref. [7] when the conclusion was made that, at zero
chromaticity, all eigentunes are real numbers as long as
the wake reaches the TMCI threshold. However, it is seen
now that the right-hand part of Eq. (20) is a complex value
even at � ¼ 0. Purely real eigentunes of similar equations
are possible only in exceptional cases.

Therefore Eq. (20) will be investigated further under the
assumptions j�j / �2 � 1, that is

Qs � �Qc and

�������� !

�0

�Q0

��������� �Qc: (22)

As it was shown in Refs. [6,7], the second inequality
follows from the first one if q ¼ 0. However, now it sets
up constraints for the function qð
Þ whose meaning and
form should be elucidated.

Thus, we rewrite Eq. (20) in the form

U2 d
2 �Y

d
2
¼ Rð
Þ (23)

with the right-hand part

Rð
Þ ¼
�

þU2

�

d�

d


�
d �Y

d

� ð!=�0 �Q0Þ�Qc

Q2
s

� �Y

�c

þ 2�Qc�ð
Þ
Q2

s�c

Z 1



q½�0ð
0 � 
Þ� �Yð
0Þ�ð
0Þ

� expði’Þd
0 (24)

and

’ ¼ �0ð!=�0 �Q0 � �Þð
0 � 
Þ: (25)

Boundary conditions for Eq. (23) are evident directly from
the equation itself through the relationsU2ð�1Þ ¼ 0which
follow from definition (21) and will be reinforced by
examples in subsequent sections. Therefore, any appropri-
ate solution of Eq. (22) should satisfy the conditions

Rð�1Þ ¼ 0: (26)

Actually, Eq. (22) will be solved in the paper in two steps.
First, the solution will be found at ’ ¼ 0 without addi-
tional assumptions or approximations like perturbation
methods, independently on the wake amplitude. Real
eigentunes and TMCI thresholds will be calculated in
this stage with high precision. The perturbation technique
will be used in the next steps to find the instability growth
rate above the TMCI threshold, as well as the chromaticity
contribution. A rather serious restriction j��0j & 1 is ac-
tually applied in the last stage. However, it allows one to
define at least the sign of the chromaticity required to
suppress the instability. More details of the techniques
are given below by specific examples.

IV. BOXCAR MODEL, RECTANGULAR WAKE

A constant wake within a bunch of constant density is
considered in this section:

q¼q0; �ð
Þ¼1

2
; U2¼1�
2

2
at j
j�1: (27)

This simple model is very pertinent to demonstrate both
characteristic features of the phenomenon and the solution
procedure to be used.

A. Real spectrum

First, Eq. (23) has to be solved under assumption ’ ¼ 0
which means, in particular, neglect of chromaticity. To
satisfy boundary condition (26) in the bunch head, we
should take at 
 ¼ 1:

�Y ¼ 1;
d �Y

d

¼ ð!=�0 �Q0Þ�Qc

Q2
s

: (28)

With arbitrary trial ! and these initial conditions, the
solution of Eq. (23) can be found step by step to define
the function Rð
Þ everywhere, including the bunch tail that
is the point 
 ¼ �1. Applying boundary condition (26) to
this point, one can select appropriate values of! which are
just the bunch eigentunes. In practice, it is a good way to
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get real eigentunes including the TMCI thresholds in a
designated area. The complex eigentunes above the thresh-
old could be found by this method as well, but it would
require essentially more widespread sorting over the com-
plex trial frequencies. Therefore, another technique will be
used later to calculate the TMCI growth rate.

The method is illustrated by Fig. 1 where the value
Rð�1Þ (misalignment) is plotted against the real frequency
at different wakes being presented in terms of the parame-
ters h and K:

hðhþ1Þ¼2ð!=�0�Q0Þ�Qc

Q2
s

; K¼q0�Qc

Q2
s

: (29)

Convenience of such a parametrization is that all the
eigennumbers are integers at K ¼ 0: hn ¼ n. By Fig. 1,
most of them almost do not depend on K in the considered
interval. There are only two essential exclusions: the ei-
gentunes h0 and h1 approach each other when the wake
increases, and join at K ¼ 0:465 which is the TMCI
threshold. The extended picture is shown in Fig. 2 where
several eigentunes are presented in a wider range including
negative wakes. It is seen that the second TMCI mode
appears at K ’ 7:08 because of merging of the 2nd and
3rd eigentunes. Next the threshold is found at K ¼ 29 as a
result of coupling of 4th and 5th tunes (not shown in the
figure), and other TMCI modes can appear at higher K.
However, the coupling and the TMCI have never been
observed with negative K.

B. The TMCI growth rate

Basic (K ¼ 0) eigenfunctions of the boxcar bunch are
Legendre polynomials Pnð
Þ [3,6]. Eigenfunctions of 0th
and 1st modes are plotted in Fig. 3 at different positive K
taken below the first TMCI threshold. They are almost
linear functions which can be presented as linear combi-
nations of corresponding basic eigenmodes. With this
assumption, the eigenfunctions and eigentunes are

�Yð
Þ¼1� 2K


1�K�S
;

!

�0

�Q0¼ Q2
s

2�Qc

ð1þK�SÞ;
(30)

where

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2K � K2

3

s
: (31)

The eigentunes are plotted in Fig. 4 against the parameter
K. There are two real solutions at K < 0:464 which are
drawn by dashed lines, and two complex conjugated solu-
tions at K > 0:464 (solid lines). Part of Fig. 2 is also
replicated here on a larger scale. Comparison of these
curves allows one to conclude that approximate formulas
(30) provide a reasonable precision in the range j�Kj & 2
around the threshold.
Much different behavior demonstrates a bunch with

large negative wake. Examples are given in Fig. 5 where
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FIG. 1. Misalignment Rð�1Þ vs tune at different positive
wakes (boxcar model, rectangular wake).
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lines) at different positive K (boxcar, rectangular wake).
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the lowest eigenfunctions are plotted at several K < 0. In
contrast with Fig. 3, transverse displacement of the bunch
accrues approximately exponentially from the bunch head
to its tail, and the curves diverge faster if the wake is
stronger. Higher modes have similar behavior leading to
the conclusion that their junction and the TMCI are im-
possible at K < 0. Essential dissimilarity of the eigenfunc-
tions from the basic ones (Legendre polynomials) at
jKj � 1 also deserves attention because this fact restricts
applicability of perturbation methods.

C. Effect of chromaticity

Considering Eqs. (23) and (24) with ’ � 0, we will treat
the appearing effect as a small perturbation of the above
obtained eigenmodes. This assumption imposes the condi-
tion j��0j< 1, which may be a rather rigorous restriction,
in practice. However, it allows one to determine a sign of
chromaticity required to depress the instability, at least.

Imaginary addition to the tune is the most important
effect which can be described by the expression:

Im
�!n�Qc

�0Q
2
s

¼ �nðKÞ�0
�
� � Re

�
!n

�0

�Q0

��
: (32)

This value is distinct from zero at any chromaticity, both
below and above the TMCI threshold. The coefficients �n

are plotted against the wake strength in Figs. 6 and 7.
According to them, chromaticities of opposite signs are
needed to depress 0th or any other mode, when parameter
jKj is sufficiently small. Similar behavior is well known
in the case of the ‘‘usual’’ (no space charge) head-tail
instability [1,2]. However, at higher jKj, more and more
modes can be depressed coincidentally with the 0th one.
It is also seen that the sign of chromaticity should be the
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FIG. 4. Eigentunes of lower modes vs the wake strength. Zoom
of Fig. 2 + TMCI (boxcar model, rectangular wake).
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same as the sign of the wake to ensure suppression of the
instability.

V. GAUSSIAN BUNCH, RECTANGULAR WAKE

Constant wake within a truncated Gaussian bunch is
considered in this section:

F / exp
1� A2

22
� 1 at A � 1: (33)

Characteristic functions of the bunch involved in Eqs. (23)
and (24) are [6]

�ð
Þ¼C

�


ffiffiffiffi
	

2

r
exp

�
1�
2

22

�
erf

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�
2

p


ffiffiffi
2

p
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�
2

p �
(34)

and

U2 ¼ 2 � C
ð1� 
2Þ3=2

3�ð
Þ ; (35)

where j
j � 1, and C ’ expð�1=22Þ=ð	2Þ is a normal-
izing coefficient. Note that at j
j ’ 1

�ð
Þ’Cð1�
2Þ3=2
32

�
1þ1�
2

52

�
; U2’1�
2

5
: (36)

It was asserted in Ref. [7] that TMCI can arise in a
nontruncated Gaussian bunch at zero chromaticity and
negative wake corresponding K <�180, the instability
being provoked by a junction of 2nd and 3rd base modes.
Positive wakes were not presented in the work.

Our calculations lead to different results. The main
conclusion is that Gaussian and boxcar bunches are very
similar in behavior. In particular, in both cases the TMCI
can be caused only by positive wake, has a threshold at
K ’ 1, and appears as a confluence of 0th and 1st modes,
first. Other properties of the mentioned models are very
similar also, as it is shown below.

Examples are given for ¼ 1=3 that is at 3 truncation.
Coefficient C is approximately 0.0339 in this case. The
solution method is the same as in the previous section, with
even simpler initial conditions:

�Yð1Þ ¼ 1; �Y0ð1Þ ¼ 0: (37)

Dependence of the eigentunes on the wake strength is
presented in Figs. 8 and 9 at zero chromaticity. The plots
look much like Figs. 2 and 4 which characterize the boxcar
model. In particular, the eigentunes do not exhibit a ten-
dency towards coalescence at large negative wakes, and the
TMCI is not observed in this region. The statement is
sustained by Fig. 10 where several lowest eigenfunctions
are plotted. The curves in the graph come apart more and
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(Gaussian bunch, rectangular wake).
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FIG. 9. Eigentunes of lower modes against the wake strength.
Zoom of Fig. 8 + TMCI (Gaussian bunch, rectangular wake).
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more when the wake is stronger, giving no way to expect
the TMCI initiation.

The eigenfunctions of a positive wake have a much
different appearance, as it is shown in Fig. 11. A reciprocal
approach of 0th and 1st eigenmodes occurs before the
wake parameter reaches threshold value K ¼ 0:612.
Therefore, in the threshold vicinity, the eigenfunctions
are adequately representable as a linear combination of
corresponding basic eigenfunctions (red lines in Fig. 11).
Other basic modes give an unessential contribution be-
cause their tunes differ by at least several units. The
TMCI growth rate can be obtained by applying this as-
sumption above the threshold as it is shown in Fig. 9. The
second TMCI threshold appears at K ¼ 9:78 because of
coalescence of 2nd and 3rd eigenmodes. Chromaticity
effects are described by Eq. (32) with the coefficients �n

which are shown in Figs. 12 and 13 being very similar to
Figs. 6 and 7.

VI. GAUSSIAN BUNCH, EXPONENTIALWAKE

The Gaussian bunch presented in the previous section is
combined in this section with the exponential wake:

WðtÞ / exp

�
� t

t0

�
: (38)

The same solution procedure is adaptable and effective in
this case because the wakefield factor of Eq. (24) breaks up
into independent parts:

q½�0ð
0 � 
Þ� ¼ q0 expð�
Þ expð��
0Þ: (39)
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FIG. 11. Eigenfunctions of 0th and 1st modes (solid and
dashed lines) before the TMCI appears. Gaussian bunch, positive
rectangular wake.
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FIG. 13. Zoom of Fig. 12 to show two TMCI thresholds
(Gaussian bunch, rectangular wake). Chromaticity factor above
first TMCI threshold is shown as well.
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FIG. 12. Chromaticity factor �nðKÞ for several modes against
the wake strength (Gaussian bunch, rectangular wake).
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FIG. 14. Eigentunes of lower modes including TMCI with
positive wake (Gaussian bunch, exponential wake).
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The results are presented in Figs. 14 and 15 at � ¼ 1 being
very similar to the case of rectangular wake. As before,
TMCI is possible only with positive wake, although the
TMCI thresholds are a bit higher: 1.03 instead of 0.612 and
14.4 instead of 9.78 (Fig. 14). The depression factor
1.5–1.7 is quite an expected result of averaging of the
decaying wake over the bunch. Chromaticity effects are
attenuated by the same factor (Fig. 15).

VII. CONDITIONS OFAPPLICABILITY

The basic assumptions of the paper are brought in
Eq. (22) and include the bunch eigentunes which are un-
known a priori. Of course, a wide diversity of the spectra is
possible depending on the wake form. However, presented
results allow one to state the conditions at least for mono-
tonic wakes.

It follows from Figs. 2, 8, and 14 that, on a global scale,
the lower tunes are about proportional to the function qð
Þ
averaged over the bunch length, being 2–3 times less in
value. This allows one to rewrite Eq. (22) in the form

Qs � �Qc; j �qj � �Qc: (40)

It means that the synchrotron tune is small, and the space
charge dominates in the impedance budget far exceeding
the wake contribution. In spite of this, the wake can cause a
radical change of the bunch spectrum as it was shown
above. This phenomenon is explained by a significant
degeneration of the basic bunch spectrum at low synchro-
tron frequency, when a lot of different eigenfunctions have
very close eigentunes. This fact was established in
Refs. [3,6,7] and is confirmed in this paper. Its extreme
manifestation is that, at Qs ¼ 0 and with no wake, any
function Yð�Þ satisfies Eq. (11) with the eigenfrequency
! ¼ �0Q0.

The mentioned circumstance essentially restricts appli-
cability of the perturbation methods of the solution. As it
follows from Fig. 4, similar methods are suitable at the
additional condition

jKj ¼ jqj�Qc

Q2
s

& 1 (41)

but a special analysis is required if it is violated.

VIII. CONCLUSION

Transverse instability of a bunch is studied with syn-
chrotron oscillations, space charge, and wakefield taken
into account. Most of the presented results are obtained
with no use of perturbation methods. In particular, it con-
cerns the bunch spectrum including the transverse mode
coupling instability thresholds. It is shown that, with zero
chromaticity and monotonically decreasing wakes, only
positive wakes can excite the TMCI by a coupling of
neighboring eigenmodes. The lowest TMCI threshold is
located at K ’ 1 for any bunch shape. Therefore the per-
turbation theory is usable to determine the instability
growth rate only near the threshold. Effects of chromaticity
are studied with the additional assumption that contributed
phase advance is & 1 within the bunch.
Doubtless, the resistive wall wake q / �1=

ffiffiffi



p
is one of

the most interest cases, in practice. Such a wake decays
rather slowly so that multibunch and multiturn effects
should be necessarily taken into account for a full descrip-
tion of the phenomenon. This specific problem has to be
studied separately. Nevertheless, one can expect that this
negative wake does not cause a confluence or approach of
the eigenmodes and cannot produce TMCI-like effects.
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