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Coherent transverse beam oscillations in the Tevatron were analyzed with themodel-independent analysis

(MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes,

phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to

solve theMIAmode mixing problemwhich limits the accuracy of determination of the optical functions, we

have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam

positionmonitor (BPM)as twoBPMs separated in a ringbyexactlyone turn.This leads to a simple criterionof

MIAmode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn

should be equal to the betatron tune and therefore should not depend on the BPM position in the ring.

Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.
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I. INTRODUCTION

Turn-by-turn readings from beam position monitors
(BPMs) in a storage ring are often used for accelerator
optics measurements. The main advantage of this approach
in comparison with alternative methods (e.g. the orbit
response matrix technique [1]) is that it takes very little
time to acquire turn-by-turn data. For example, one needs
2 hours of beam time to obtain the full orbit response
matrix for the Fermilab Tevatron collider, compared to
the 160 ms necessary to register 8000 turns of coherent
betatron oscillations excited by a dipole kick.

The conventional harmonic analysis of turn-by-turn
measurements is based on the accurate betatron tune deter-
mination [2]. In the Tevatron collider the betatron tunes are
close to the linear coupling resonance and normally syn-
chrobetatron sidebands overlap. Owing to this fact, it is
difficult to use harmonic analysis for calculation of the
optical functions from turn-by-turn measurements. This
triggered our study of the model-independent analysis
(MIA) [3,4] as an alternative method. MIA is based on
the correlational studies of signals from different BPMs
and does not require accurate betatron tune determination.

In order to find the coupled betatron amplitudes and
phase advances with MIA, it is necessary to solve the
MIA mode mixing problem [4]. Previously this problem
was addressed with two different approaches, namely, the

rotational mode untangling proposed in [4] and the inde-
pendent component analysis (ICA) [5] approach based on
some statistical criterion of mutual signal independence.
Both these methods rely on Fourier analysis as a way to
confirm that the mode separation algorithm actually works.
However, due to the large chromatic tune spread and
synchrobetatron sideband overlapping in the case of the
Tevatron, it is often difficult to determine the quality of
MIA mode separation from the Fourier transformations of
the modes. In this paper we describe a new method of MIA
mode untangling which does not rely on the Fourier spec-
trum information. Furthermore, we describe a MIA-based
technique to locate vibrating magnets in a storage ring.
The paper is organized as follows. In Sec. II we outline

the basics of MIA with some motivational considerations
based on the particle tracking simulations. Section III
presents the results of MIA applied to the Tevatron turn-
by-turn measurements. In Sec. IV we define the coupled
betatron functions and determine their relation to MIA
modes. Section V describes a new method of untangling
the mixed MIA modes with applications to the Tevatron
turn-by-turn measurements and simulation. Here we also
compare our approach with other techniques. Section VI
describes our MIA-based method to find the locations of
vibrating quadrupoles in the Tevatron. Finally, Sec. VII
presents conclusions.

II. MODEL-INDEPENDENTANALYSIS

Let ztm represent horizontal or vertical beam centroid
position recorded at the mth monitor for the tth turn. Then
BN�M � ðztmÞ is the beam history matrix of N beam turns
recorded simultaneously at M monitors (each BPM signal
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is represented by some column of matrix B). The MIA is
accomplished via singular value decomposition (SVD) of
the beam history matrix

B ¼ U�VT; (1)

where UN�M and VM�M are orthogonal matrices
(i.e., the matrices with orthonormal columns) and
�M�M ¼ diagð�1; . . . ; �MÞ is the diagonal matrix of de-
clining singular values. Written separately for each BPM
signal in the beam history matrix, Eq. (1) reads

z1m

..

.

zNm

0
BBB@

1
CCCA ¼ XM

j¼1

�jvmj

u1j

..

.

uNj

0
BBB@

1
CCCA; (2)

where vmj are the elements of matrix V and unj are the

elements of matrix U. This sum can be truncated at some
point because singular values decline rapidly. The remain-
ing columns of matrix U are the orthogonal basis of source
signals also referred to as the temporal modes of MIA. For
each temporal mode in U there is one spatial mode repre-
sented by the column of matrix V. Spatial mode represents
the amplitude variation along the ring for the correspond-
ing temporal mode. Singular value with a proper index
gives the overall amplitude of these two modes in the beam
history matrix.

The statistical analysis described here is also called the
principal component analysis (PCA) [6] and it is particu-
larly known for its ability to compress data and reduce
noise. PCA is used as a first step in numerous independent
component analysis (ICA) algorithms [7], where the final
signal separation is achieved according to some statistical
criterion of mutual signal independence. Previously ICA
was successfully applied to the turn-by-turn data analysis
at the Fermilab Booster synchrotron [5]. At the end of
Sec. V we compare different ICA algorithms as applied
to the Tevatron.

Figure 1 shows singular values and fast Fourier trans-
formation (FFT) amplitudes of two simulated turn-by-turn
data sets for the Tevatron lattice with different sextupole
settings corresponding to small and large chromaticities. In
this tracking simulation the closed orbit passes through
the centers of all sextupoles and the linear optics remains
the same as the sextupole strength is changed. Singular
value spectra in both cases are almost identical. In terms of
the PCA data compression that means a good approxima-
tion exists for the beam history matrix Bwith five temporal
and five spatial modes in both cases of overlapping and
nonoverlapping synchrobetatron sidebands. This property
of MIA can be understood if we clarify the physical mean-
ing of the leading MIA modes in this case.

Since the single-turn particle motion is dominated by the
linear lattice properties, a good approximation for particle
(and beam centroid) turn-by-turn positions can bewritten as

X ðt; sÞ � RðsÞX0ðtÞ þDðsÞ�ðtÞ; (3)

whereX ¼ ðx; px; y; pyÞT is the vector of particle canonical

coordinates in transverse phase space, RðsÞ is the 4� 4
transport matrix along the ring from location 0 to location
s, DðsÞ ¼ ðDx;Dpx

; Dy;Dpy
ÞT is the vector dispersion

function, and �ðtÞ ¼ �pðtÞ=p0 is the relative momentum
deviation performing slow synchrotron oscillations (i.e.,
the synchrotron tune �s � 1).
Although the exact form of X0ðtÞ � Xð0; tÞ �Dð0Þ�ðtÞ

may be complicated due to accumulation of weak non-
linear effects over multiple turns, Eq. (3) means that the
particle transverse coordinates xðt; sÞ and yðt; sÞ anywhere
in the ring can be described with a linear combination
of five functions x0ðtÞ, px0ðtÞ, y0ðtÞ, py0ðtÞ, and �ðtÞ.
Therefore the leading temporal MIA modes in this case
represent an orthonormal basis in the five-dimensional
space of all linear combinations of these five functions.
Corresponding spatial modes represent an orthonormal
basis in the space of four linear orbits and dispersion
function. Notice that the leading spatial modes are defined
here only by the linear optics (up to some arbitrary rotation
in the five-dimensional space).
As we can see, the structure of MIA modes near the

coupling resonance is simple in spite of the complicated
phase space dynamics leading to the turn-by-turn BPM
signals with Fourier spectra that are difficult to interpret.

III. MIA DECOMPOSITION RESULTS

The Tevatron collider has 118 horizontal and 118 verti-
cal BPMs which can simultaneously record turn-by-turn

FIG. 1. Fourier amplitudes and singular values for single
particle experiencing betatron and synchrotron oscillations in
the Tevatron. Beam history matrix B was obtained via tracking
simulation in ELEGANT [19] using two different sextupole set-
tings corresponding to small and large chromaticities. For (a)
and (c) �x ¼ �3, �y ¼ 3; for (b) and (d) �x ¼ 19, �y ¼ 26.

Initial nonzero particle coordinates are x0 ¼ 6� 10�6 and
�p=p0 ¼ 4� 10�5.
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beam position histories over many thousand turns. Figure 2
shows typical turn-by-turn readings of the Tevatron BPMs
when beam is kicked in the horizontal plane (full beam
history matrix file is available in the Supplemental
Material [8]). Figure 3 shows the MIA modes calculated
from this measurement. The first four modes correspond
to the betatron oscillations. The fifth mode is the low-
frequency mode which is caused by the coherent synchro-
tron oscillations of the beam. The spatial component of this
mode is proportional to the dispersion function. The sixth
mode is caused by the mechanical vibration of one of the
final focus quadrupoles in the Tevatron (see Sec. VI for
details). The seventh and the eighth mode is excited by
timing errors of BPM electronics with periodicity of five

turns resulting in coherent lines at the tunes of 0.2 and 0.4.
The spatial components of the last two modes have a
typical random pattern. By looking at the spatial compo-
nent of a particular mode it is easy to tell whether the mode
contains some useful information about the beam motion
or it is a ‘‘noise’’ signal generated by BPM electronics.
If we retain more singular values then other less signifi-

cant noise signals and vibrational modes will appear. For
example, the noise with the tune of 0.4 is below the selected
singular value threshold in Fig. 3.
Fourier amplitudes of the temporal modes (see Fig. 4)

reveal the residual ‘‘mixing’’ between the modes corre-
sponding to different physical phenomena, i.e., each tem-
poral mode contains low amplitude harmonics that are the

FIG. 2. Coherent transverse oscillations of proton beam in the Tevatron recorded by horizontal and vertical BPMs (left). At about
900th turn beam was kicked in the horizontal plane. FFT amplitude of the vertical BPM signal is shown on the right. Timing errors of
BPM electronics with the periodicity of five turns produce coherent lines at tunes of 0.2 and 0.4. Oscillation amplitude damping is due
to nonlinear decoherence of betatron oscillations. Proton beam parameters in the Tevatron: momentum spread (rms),1:2� 10�4

(at 980 GeV); normalized emittance (95%), 18� mmmrad.

FIG. 3. Temporal (left) and spatial (right) modes of MIA corresponding to the largest eight singular values.
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leading harmonics for other modes. Such mixing provides
limitations for some practical applications of observed
MIA modes like dispersion function measurement. There
are several ways to deal with this mode mixing. First of all,
one can apply a Fourier bandpass filter to data before MIA.
Fourier prefiltering is useful in order to treat the low-
frequency and the high-frequency signals separately. For
example, the low-pass Fourier filter makes it possible to
clearly observe another vibrational mode (u3 in Fig. 9) in
the turn-by-turn measurements presented in Fig. 2.

If the Fourier filter is not sufficient to remove the mixing
between MIA modes, one can try the ICA or the general
rotational mode untangling method [4]; i.e., the untangled
temporal modes can be found as

Unew ¼ UO; (4)

whereO is some rotation matrix. In order to find the angles
of this rotation one still needs a criterion of mode separa-
tion (Fourier amplitudes of temporal modes were used in
[4]). However, in the case of overlap between synchrobe-
tatron sidebands all these methods do not provide good
betatron mode separation and simply it is hard to tell
whether the betatron modes are mixed or not. Therefore
we had to develop another model-independent approach
which is explained in the next two sections.

IV. COUPLED BETATRON FUNCTIONS

In this section we outline the relation between the spatial
MIA modes and the optical functions that are used to
describe the coupled betatron oscillations. More detailed
analysis is available in [4].
Let us consider single particle betatron oscillations with

linear coupling between horizontal and vertical planes. Let
L be the ring circumference, then RðLÞ is the full turn
transport matrix, i.e.,

RðLÞXðt; 0Þ ¼ Xðtþ 1; 0Þ: (5)

The RðLÞmatrix has four complex eigenvectors �1, �
�
1, �2,

��
2 (where � denotes complex conjugation) and four corre-

sponding eigenvalues e�i�1 , e�i�2 [9]. Any vector of initial
particle coordinates Xð0; 0Þ can be represented as a linear
combination of the four eigenvectors:

X ð0; 0Þ ¼ a1�1 þ a2�2 þ a�1�
�
1 þ a�2�

�
2

2
: (6)

Therefore turn-by-turn values of X are

X ðt; sÞ ¼ RðsÞXðt; 0Þ ¼ RðsÞRtðLÞXð0; 0Þ
¼ Re½a1f1ðsÞei�1t þ a2f2ðsÞei�2t�; (7)

FIG. 4. FFT amplitude spectra of temporal modes presented in Fig. 3.
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where f1ðsÞ ¼ RðsÞ�1 and f2ðsÞ ¼ RðsÞ�2. To describe
coupled betatron oscillations we introduce the betatron
amplitude and phase advance functions as the phases and
amplitudes of x and y components of these vector func-
tions; correspondingly, for f1x we have

f1xðsÞ ¼ jf1xðsÞjeic 1xðsÞ: (8)

For simplicity of notation, let us assume that initial con-
ditions of particle motion correspond to a1 ¼ a2 ¼ 1.
Then the x or the y component of Eq. (7) reads

zðt; sÞ ¼ jf1zðsÞj cos½c 1zðsÞ þ�1t�
þ jf2zðsÞj cos½c 2zðsÞ þ�2t�; (9)

or in a matrix form

zðt; sÞ ¼

cos�1t

sin�1t

cos�2t

sin�2t

0
BBBBB@

1
CCCCCA

T jf1zðsÞj cosc 1zðsÞ
�jf1zðsÞj sinc 1zðsÞ
jf2zðsÞj cosc 2zðsÞ
�jf2zðsÞj sinc 2zðsÞ

0
BBBBB@

1
CCCCCA: (10)

The beam history matrix can be written as

B ¼ UfV
T
f ; (11)

where

Uf ¼
..
. ..

. ..
. ..

.

cos�1t sin�1t cos�2t sin�2t

..

. ..
. ..

. ..
.

0
BBB@

1
CCCA; (12)

VT
f ¼

	 	 	 jf1zj cosc 1z 	 	 	
	 	 	 �jf1zj sinc 1z 	 	 	
	 	 	 jf2zj cosc 2z 	 	 	
	 	 	 �jf2zj sinc 2z 	 	 	

0
BBB@

1
CCCA: (13)

Equation (11) is the exact solution for the beam history
matrix in the case of linear single particle betatron oscil-
lations. According to Eq. (3) in the general case of many-
particle nonlinear coupled betatron and synchrotron
oscillations, the turn-by-turn position of beam centroid
anywhere in the ring can be written as a linear combination
of just five functions, i.e., the �ðtÞ and the four components
of X0ðtÞ. Using the Fourier filter it is easy to filter out the
low-frequency components of BPM signals proportional to
�ðtÞ and leave only the high-frequency components given
by X0ðtÞ. Such filtered BPM signals are given by the x or
the y component of RðsÞX0ðtÞ. Since the matrix elements
RijðsÞ and the columns of matrix Vf are both linear orbits

of the same lattice, one can always write any RijðsÞ as a
linear combination of the columns of matrix Vf (because

Vf represents a complete basis of four linear orbits).

Therefore the filtered version of matrix B (labeled as ~B)
can be written in the form similar to Eq. (11):

~B � ~UfV
T
f ; (14)

where ~Uf is the generalized version of the Uf matrix for

the case of many-particle beam experiencing nonlinear
coupled betatron and synchrotron oscillations. The four-
column matrix ~Uf is difficult to find analytically; however,

one can obtain it using the particle tracking simulation
data as

~U f � ~BðVy
f ÞT; (15)

where Vy
f is the pseudoinverse of Vf [i.e. Eq. (15) is the

solution of Eq. (14) with respect to ~Uf]. Therefore we can

study the properties of the ~Uf matrix using a tracking

simulation.
One important property of the Uf matrix is that, if

betatron tunes are far enough from integer, half-integer,
and coupling resonances, if

Nj�1 ��2j=2� 
 1; (16)

then Uf is proportional to the orthogonal matrix

UT
fUf � N

2
I4�4: (17)

This property (with obvious modification for a1 � 1 � a2)
is still true in the general case for the ~Uf matrix. For

example, in both simulations with different chromaticities
presented in Fig. 1, the product of ~UT

f
~Uf yields the matrix

which is very close to the expected diagonal matrix (in
particular, the off-diagonal elements in this matrix are
about 100 times smaller than diagonal elements).
For a large number of monitors VT

f Vf tends to be diago-

nal as well, although due to strong modulation of jf1;2zðsÞj
near collider interaction points and because typically
N 
 M, the diagonality of UT

fUf holds much better than

the diagonality of VT
f Vf. Therefore let us orthogonalize Vf

using the SVD

Vf ¼ V̂f�fO
T
f : (18)

Now Eq. (11), or similarly Eq. (14), can be rewritten in the
form of SVD [see Eq. (1)]:

B ¼
0
@

ffiffiffiffi
2

N

s
UfOf

1
A
0
@

ffiffiffiffi
N

2

s
�f

1
AV̂T

f : (19)

Finally, we can relate the coupled betatron amplitudes and
phase advances to the SVD of beam history matrix B (or ~B
in the general case):

Uf �
ffiffiffiffi
N

2

s
UOT

f ; (20)

Vf �
ffiffiffiffi
2

N

s
V�OT

f ; (21)

where we assume that only the first four modes are retained
in SVD of B. From the four columns of matrix Vf one can

MODEL-INDEPENDENT ANALYSIS OF THE FERMILAB . . . Phys. Rev. ST Accel. Beams 14, 092801 (2011)

092801-5



easily calculate the coupled betatron amplitudes and phase
advances. In order to obtain Vf it is necessary to find the

orthogonal 4� 4 matrix Of.

It is interesting to note that the columns of matrix ~Uf

plotted against each other show beam centroid trace in the
normalized phase space (see Fig. 5).

V. UNTANGLING BETATRON MODES

The matrix Of describes some combination of rotations

and reflections in four-dimensional space. Reflections only
change signs of modes and can be determined if we require
that the phase advance c 1zðsÞ and c 2zðsÞ calculated from
Vf increase with s. Any rotation in four-dimensional space

can be described in terms of the six angles, each corre-
sponding to the rotation in the plane of two basis vectors.
Two of these angles are not relevant since they describe a
mixing between the modes with the same tunes. This kind
of rotation results simply in a phase shift, because

..

. ..
.

cos�1t sin�1t

..

. ..
.

0
BBBB@

1
CCCCA

cos� sin�

� sin� cos�

 !

¼
..
. ..

.

cosð�1tþ �Þ sinð�1tþ �Þ
..
. ..

.

0
BBBB@

1
CCCCA: (22)

The remaining four angles in Of set the mixing between

modes with the different tunes, i.e., Of can be written as a

product of the following four matrices:

O13 ¼

cos�13 0 sin�13 0

0 1 0 0

� sin�13 0 cos�13 0

0 0 0 1

0
BBBBB@

1
CCCCCA; (23)

O14 ¼

cos�14 0 0 sin�14

0 1 0 0

0 0 1 0

� sin�14 0 0 cos�14

0
BBBBB@

1
CCCCCA; (24)

O23 ¼

1 0 0 0

0 cos�23 sin�23 0

0 � sin�23 cos�23 0

0 0 0 1

0
BBBBB@

1
CCCCCA; (25)

O24 ¼

1 0 0 0

0 cos�24 0 sin�24

0 0 1 0

0 � sin�24 0 cos�24

0
BBBBB@

1
CCCCCA: (26)

As it was proposed in [4], one can search for these four
angles by looking at Fourier amplitudes of the columns of
matrix Uf given by Eq. (20). In the case of linear betatron

oscillations, the Fourier spectrum of each column inUf has

a single peak at one of the two tunes �1 or �2. This
approach does not work well for the Tevatron turn-by-
turn measurements because of significant chromatic tune
spread in the beam. Even if there is no overlap between
synchrobetatron sidebands (like in Fig. 2 signals), the
nonlinearities in betatron oscillations produce such a dis-
tortion of Fourier spectra that MIA modes have residual
components which are not possible to separate completely
(see the Fourier spectra of u3 and u4 modes in Fig. 4).
Therefore looking at Fourier spectra is usually not enough
for good mode separation.
We have developed another model-independent criterion

of mode separation in MIAwhich makes use of the fact that
betatron phase advance over the entire ring is equal to the
betatron tune. The idea is to treat each BPM as two
monitors separated in a ring exactly by one turn. Thus,
we can double the number of analyzed signals in the beam
history matrix B:

B ¼
z11 	 	 	 z1M z21 	 	 	 z2M

..

. . .
. ..

. ..
. . .

. ..
.

zN�1;1 	 	 	 zN�1;M zN1 	 	 	 zNM

0
BBB@

1
CCCA: (27)

Note that it is not necessary to fully double the number of
signals in B. If calculation time is the important issue, one
can duplicate only a small fraction of all availablemonitors.
The betatron phase advance between the monitor with

readout ðz1m; z2m; . . .ÞT and its counterpart shifted by one
turn ðz2m; z3m; . . .ÞT does not depend on BPM index m and
should be equal to the corresponding tune. Indeed, if we
denote the elements of Vf as

A1zðsÞ ¼ jf1zðsÞj cosc 1zðsÞ; (28)

B1zðsÞ ¼ �jf1zðsÞj sinc 1zðsÞ; (29)

FIG. 5. Beam centroid trace in the normalized phase space
(beam turn from 930 to 2100). uf;1 is the first column of the ~Uf

matrix, determined from the SVD of turn-by-turn measurements
(see Figs. 2 and 3) using the mode untangling technique
described in Sec. V.
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�A 1zðsÞ ¼ A1zðsþ LÞ ¼ jf1zj cosðc 1z þ�1Þ; (30)

�B 1zðsÞ ¼ B1zðsþ LÞ ¼ �jf1zj sinðc 1z þ�1Þ; (31)

then the following expressions can be calculated at each
BPM, and apparently they do not depend on a BPM
location s:

A1z
�A1z þ B1z

�B1z

A2
1z þ B2

1z

¼ cos�1; (32)

B1z
�A1z � A1z

�B1z

A2
1z þ B2

1z

¼ sin�1: (33)

These expressions give a sensitive criterion of betatron
mode separation in MIA. In particular, one may first as-
sume that there is no mode mixing, i.e., Of ¼ I, and

calculate betatron tunes at each BPM using the correspond-

ing elements of matrix
ffiffiffiffiffiffiffiffiffi
2=N

p
V� [see Eq. (21)]. If the

resulting BPM-by-BPM tune variation is significant, then
one can minimize it with a proper Of matrix.

In order to explain our algorithm for the mixing matrix
Of determination, let us assume that the mixing is small,

i.e., Of is close to the unity matrix

Of¼O13O14O23O24� Iþ�O13þ�O14þ�O23þ�O24;

(34)

where, for example,

�O13 ¼

0 0 �13 0

0 0 0 0

��13 0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA: (35)

Now we can calculate the effect of any rotation on the
BPM-by-BPM tune variation given by Eqs. (32) and (33),
since it can be written as

��1ðsÞ¼ @�1

@�13
�13þ @�1

@�14
�14þ @�1

@�23
�23þ @�1

@�24
�24: (36)

In order to do that let us take a derivative of

tan�1 ¼ B1
�A1 � A1

�B1

A1
�A1 þ B1

�B1

(37)

with respect to �13. Here A1ðsÞ and B1ðsÞ are defined
through

..

. ..
. ..

. ..
.

A1 B1 A2 B2

..

. ..
. ..

. ..
.

0
BBBB@

1
CCCCA¼

..

. ..
. ..

. ..
.

A1z B1z A2z B2z

..

. ..
. ..

. ..
.

0
BBBB@

1
CCCCAO13; (38)

with a similar expression giving �A1 and �B1. The derivative
of Eq. (37) yields

jf1zj
jf2zj

@�1

@�13
¼ sinðc 1zþ�1Þcosðc 2zþ�2Þ�sinc 1zcosc 2z:

(39)

The same operation for �24 gives

jf1zj
jf2zj

@�1

@�24
¼ cosc 1z sinc 2z�cosðc 1zþ�1Þsinðc 2zþ�2Þ:

(40)

One may note that, as soon as �� ¼ �2 ��1 is small,

@�1

@�13
þ @�1

@�24
� � jf2zj

jf1zj cosðc 2z � c 1zÞ�� (41)

is also small, while

@�1

@�13
� @�1

@�24
� 2

jf2zj
jf1zj cosðc 2z þ c 1z þ�1Þ sin�1 (42)

is approximately twice as big as each of the derivatives. A
similar result can be obtained for �14 and �23, namely,

@�1

@�14
þ @�1

@�23
��2

jf2zj
jf1zj sinðc 2zþc 1zþ�1Þsin�1; (43)

and

@�1

@�14
� @�1

@�23
� jf2zj

jf1zj sinðc 2z � c 1zÞ��: (44)

Therefore in order to find the Of matrix which mini-

mizes the BPM-by-BPM tune variation ��1;2ðsÞ, it is more

convenient to use the following set of basic rotation trans-
formations instead of O13–O24

Of1 ¼ O13ð�1ÞOT
24ð�1Þ; (45)

Of2 ¼ O14ð�2ÞO23ð�2Þ; (46)

Of3 ¼ O13ð�3ÞO24ð�3Þ; (47)

Of4 ¼ O14ð�4ÞOT
23ð�4Þ: (48)

The ��1;2 is much more sensitive to Of1 and Of2 than to

Of3 and Of4 rotation. Typically, most BPM-by-BPM tune

variation can be reduced with Of ¼ Of1Of2. Because

jf2z=f1zj and c 2z � c 1z tend to be approximately constant
all over the ring, Of3 and Of4 add a constant shift to ��1;2

though this shift has a different value for horizontal and for
vertical BPMs. Thereby after the �1 and �2 angles are
determined by minimizing the ��1;2 independently in

each plane, then usually there is some remaining constant
difference between the tunes calculated at horizontal and at
vertical BPMs. This difference can be minimized with a
proper selection of �3 and �4 angles. If the mode mixing is
strong (i.e., the angles are large), then several iterations of
the described procedure are required. In the case of strong
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FIG. 6. Tunes calculated at each BPM using Eq. (37) and the similar one for �2. �1ðXÞ—betatron tune �1 calculated at
horizontal monitors, �1ðYÞ—the same for vertical monitors. In order to compare these results with the FFT of temporal
modes (solid lines) the tunes are plotted along the horizontal f axis, (vertical s axis shows the positions of monitors
along the ring). Fourier bandpass filter from 0.413 to 0.429 (hard edge) was applied to signals before MIA for better
accuracy.
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mode mixing it is helpful to try several different ICA
algorithms as the first step (instead of plain SVD) in the
described mode untangling technique.

The smallness of �� is not a critical requirement, we
employ it here just in order to explain the selection of the
new set of basic rotations. The described algorithm also
works for large ��� 0:1.

Figure 6 shows the result of our method applied to
untangle the betatron modes for the Tevatron turn-by-turn
measurements presented in Fig. 2. As we can see from
Fig. 6 in this typical case of the Tevatron turn-by-turn
measurements, it is hard to determine the quality of beta-
tron mode separation looking at the Fourier amplitudes of
temporal modes. On the other hand, our new criterion
provides a clear answer to this question and makes it
possible to further improve the mode separation. The initial
mode separation provided by the PCA in Fig. 6 is actually
quite good, since the Fourier amplitudes of temporal
modes before and after rotation are almost identical
(although this is not a typical situation).

The coupled betatron functions calculated from the un-
tangled modes (see Fig. 7) show good agreement with the
linear model calibrated using the orbit response matrix
measurements [10,11]. As a measure of quality of optical
function determination, we will use the rms-averaged (over
all BPMs) difference between the model value of optical
function and its value given by the MIA. Figure 7 may
serve as a typical example of how such rms average reflects
the actual error distribution.

In order to benchmark our method of betatron mode
untangling against some ICA algorithms, we have made
the many-particle tracking simulation of Fig. 2 measure-
ment with similar decoherence of betatron oscillations and
similar chromatic tune spread in the beam. The errors of

optical function determination for each algorithm applied
to this simulated data are shown in Table I. Also it was
possible to calculate the same optical functions using the
conventional Fourier analysis [2] since in this particular
case there is no overlap between the synchrobetatron
sidebands corresponding to the different tunes. The MIA
accuracy limit in Table I is the best possible accuracy of
determination of optical functions using the four linear
orbits (four spatial modes) from the SVD decomposition

FIG. 7. Coupled betatron amplitude functions at BPMs (dots) obtained from the columns of matrix Vf and compared to the model
values (solid lines). The relative difference between the model values of optical functions and their measured values (�jf1xj ¼
jf1xjmeasured � jf1xjmodel) is shown on the right. The same measured turn-by-turn data was used as in Fig. 2. The model was calibrated
with the orbit response matrix technique [10,11]. However, since we do not know the real optics it is not clear which method (orbit
response or MIA) provides the best accuracy.

TABLE I. Our method compared to several ICA algorithms
and conventional harmonic analysis of turn-by-turn data. This
table shows the errors of determination of betatron amplitudes
via MIA. For example, �jf1xj ¼ jf1xjMIA � jf1xjmodel (rms av-
erage over horizontal BPMs). Very similar results are obtained
for the accuracy of phase advance determination. The turn-by-
turn data was generated via tracking simulation with parameters
similar to the measurement presented in Fig. 2.

Methoda �jf1xj=jf1xj �jf1yj=jf1yj �jf2xj=jf2xj �jf2yj=jf2yj
JADE 0.0100 0.050 0.194 0.096

Plain PCA 0.0080 0.041 0.225 0.044

Fast ICA 0.0076 0.037 0.133 0.029

AMUSE 0.0073 0.040 0.120 0.027

EVD 0.0078 0.042 0.073 0.014

Our method 0.0080 0.042 0.055 0.011

Fourierb 0.0077 0.041 0.050 0.007

MIA limit 0.0005 0.001 0.005 0.001

a
MATLAB implementations of JADE, AMUSE, and EVD (see
Appendix) algorithms are taken from the ICALAB package [12].
Fast ICA algorithm is from a different package [13].
bIn the conventional harmonic analysis of turn-by-turn data [2],
we used the precise values of tunes obtained with Laskar’s
numerical analysis of fundamental frequencies (NAFF) [14]
which is implemented in the SDDS toolkit [15].
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of the beam history matrix B. In a tracking simulation this
MIA accuracy limit can be easily found since we know the
real lattice functions, i.e.,

Vf;limit ¼ VObest ¼ VVTVf; (49)

where Obest ¼ VTVf is the best possible mode untangling

matrix (note that VVT � I but VTV ¼ I). The difference
between the model optics Vf and the best possible ‘‘mea-

sured’’ optics Vf;limit is caused by nonlinearities in particle

motion as well as by the finite number of beam turns N
(which is limited by the decoherence of betatron oscilla-
tions in our case). In real measurements this limit on the
MIA accuracy is also worsened by the accuracy of BPM
measurements.

As can be concluded from Table I, our method has
the following property when compared to the rest of
ICA algorithms: it significantly improves the accuracy
of one betatron function determination (i.e. f2y) at the

expense of some slight increase of the errors for another
function (f1x).

None of the considered MIA algorithms outperforms the
conventional Fourier analysis in Table I. However, the
Fourier analysis is less accurate than MIA in the case of
some overlap between the synchrobetatron sidebands
(but when we still can find the central peaks).

In order to investigate how the separation between tunes
[i.e. the Eq. (16) condition] affects the accuracy of optical

function measurements, we have performed another set of
tracking simulations. The tune separation was regulated
with skew quadrupoles, namely, in the beginning the
minimum tune separation (the tune split parameter) was
corrected to zero and the working point was placed close to
the coupling resonance. Then using skew quadrupoles the
tune split parameter was gradually increased and at each
step the tracking simulation was performed providing the
data for the MIA. The results of these tracking simulations
are shown in Fig. 8.

VI. VIBRATING MAGNET LOCATION

To locate the source of the vibrational mode (u6 in Fig. 3
or u2 and u3 in Fig. 9), we use an approach similar to the
action and phase jump analysis [16]. Since the beam orbit
in the region free of vibrating magnets is a free betatron
oscillation, it can be represented as a superposition of four
linearly independent orbits. The coefficients of this super-
position, i.e., four initial conditions for the beam orbit, can
be calculated using data from any four nearby monitors
(combined function monitor is treated as two separate
monitors here). These initial conditions plotted as a func-
tion of BPM sequence position along the ring should have a
sudden change in the point where the beam oscillation is
driven by the magnet vibration. In the case of sufficiently
weak coupling, one can calculate two of the four initial
conditions with any pair of nearby monitors operating in
the same plane. In terms of MIA this is written as

vvibrðs1Þ ¼ C1vb1ðs1Þ þ C2vb2ðs1Þ
vvibrðs2Þ ¼ C1vb1ðs2Þ þ C2vb2ðs2Þ;

(50)

where vvibr is the spatial component of vibrational mode,
vb1 and vb2 are the two linearly independent orbits in one
plane (i.e., v1 and v2 modes in Fig. 3).
From Eq. (50) both initial conditions C1 and C2 as

functions of BPM pair location in the ring can be found.
It is more convenient to use the initial phase and amplitude
of betatron oscillation defined as arctanðC1=C2Þ=2� and
C2
1 þ C2

2. If there is one local source of vibrational mode,

FIG. 8. Accuracy of betatron function determination versus
tune separation. The turn-by-turn data was obtained via many-
particle tracking simulations with different skew-quadrupole
settings. Notations are the same as in the Table I. ‘‘EVDþ
rotation’’ means that the EVD algorithm (see Appendix) instead
of plain SVD was used as initial step in our rotational mode
untangling method. This approach provides the best accuracy.

FIG. 9. Slow MIA modes. Low-pass Fourier filter (f < 0:004)
was applied to BPM readings prior to SVD.
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then there should be a single jump of the initial phase while
amplitude remains constant. Figure 10 shows the initial
phase calculated for the v2 mode in Fig. 9. As we can see
this MIA mode is driven by a single local source. On the
other hand, the same procedure applied to the less signifi-
cant v3 mode in Fig. 9 reveals that there are two vibrating
quadrupoles located near different interaction points of the
collider. The v3 mode is the result of both these vibrations.
In fact it was already evident from Fig. 9 that there are two
local sources of this mode: we can see that the amplitude of
the v3 mode experience changes in two locations, while the
amplitude of the v2 mode remains constant. Note that the
amplitude variation of the v6 mode in Fig. 3 is caused by
residual mode mixing. That is why the low-pass Fourier
filter applied in Fig. 9 is essential for determination of
vibrating quadrupole locations.

VII. CONCLUSION

We applied model-independent analysis to the turn-by-
turn BPM measurements of coherent betatron oscillations
excited by the transverse kicker in the Tevatron. In order to
obtain the amplitudes and phase advances of coupled
betatron oscillations, we have developed a new approach
to rotational MIA mode untangling, which is based on the
assumption that the betatron phase advance calculated
between a BPM and the same BPM shifted by one turn is
equal to the betatron tune and does not depend on the BPM
position in the ring.

The main advantage of this method is that it can be used
to untangle the mixed betatron modes in the proximity of
the linear coupling resonance when there is an overlap
between synchrobetatron sidebands corresponding to the
different betatron tunes. However, the obvious disadvant-
age of our method of betatron function determination in

this case is that the temporal modes are assumed to be
mutually orthogonal. Therefore the fractional parts of be-
tatron tunes cannot be too close because the condition (16)
should be satisfied. This sets the lower limit on the number
of turns to be recorded before the betatron oscillations in
the beam decohere, namely, N��=2�> 4 for typical
Tevatron parameters (according to Fig. 8). One can effec-
tively increase N by treating several repeated measure-
ments as a single BPM readout. In particular it is helpful
to combine measurements with horizontal and vertical
kicks.
Although according to Table I and Fig. 8 in the case of

no overlap between synchrobetatron sidebands the accu-
racy of determination of optical functions via MIA is
typically the same or worse than that of conventional
Fourier analysis, our algorithm can help to find the central
peak which is not always obvious in the Fourier spectrum
of betatron oscillations with large chromatic tune spread as
can be seen in the Fig. 2, for example.
Another application of our criterion for betatron mode

separation may be the identification of malfunctioning
BPMs. After the BPM-by-BPM tune spread is minimized
via rotation, the tunes calculated at noisy and malfunction-
ing BPMs deviate from the main distribution.
We have also shown that MIA can be used to locate

some unintended sources of transverse beam oscillations
like the vibrating quadrupoles in the Tevatron.
So far we have used the turn-by-turn measurements only

to verify the predictions of the Tevatron model which was
calibrated with the orbit response matrix method. However,
our final goal is to use turn-by-turn data from the Tevatron
(as well as from other Fermilab accelerators) for model
calibration, similarly to the technique developed at the PEP-
II collider [17,18]. The model calibration can also provide
the BPM tilts and gain factors which should further improve
the accuracy of optical function measurements.
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APPENDIX: EVD ALGORITHM

We use the ICA algorithm called EVD from the ICALAB

[12] package version 2.2 (the ‘‘user_alg3.m’’ MATLAB

script written by Andrzej Cichocki and Pando Georgiev).
We describe this algorithm here because the ICALAB v2.2
package is outdated and it cannot be obtained directly from
the Web site [12].
The first step of EVD is the standard data whitening

procedure using the SVD of covariance matrix BTB which

FIG. 10. Vibrating quadrupole location. The initial phase of
the betatron oscillations excited by the vibrating quadrupole is
shown. The phase was calculated using the pairs of horizontal
monitors one after another.
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is given by BTB ¼ V�2VT . The whitened data matrix is
obtained as

Z ¼ B ~V ~��1; (A1)

where ~V and ~� are the truncated versions of V and �, with
only the largest singular values and the corresponding
columns of matrix V retained. Therefore in our case of
coupled betatron oscillations Z has four columns.

Then several time delayed covariance matrices are con-
structed as follows:

Cnmð�Þ ¼ hznðtÞzmðtþ �Þit; (A2)

where Cnm is the covariance matrix element, znðtÞ is the tth
element of the nth column of matrix Z, h. . .it stands for the
averaging over turn number t, and � is the time delay
(we use � ¼ 1; 2; 3; 4). After that the eigenvalue decom-
position is used in order to diagonalize the following sum
of all these time delayed covariance matrices,X

�

½Cð�Þ þ CTð�Þ� ¼ WSWT; (A3)

where W is the orthogonal matrix, and S is the diagonal
matrix of eigenvalues. Finally, the resulting temporal
modes are obtained as the columns of matrix ZW, and
the new set of spatial modes is given by the columns of

matrix ~V ~�W.
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