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We present a power-fit formula, obtained from a variational analysis using three-dimensional free-

electron laser theory, for the gain length of a high-gain free-electron laser’s fundamental mode in the

presence of diffraction, uncorrelated energy spread, and longitudinal space-charge effects. The approach

is inspired by the work of Xie [Nucl. Instrum. Methods Phys. Res., Sect. A 445, 59 (2000)], and provides a

useful shortcut for calculating the gain length of the fundamental Gaussian mode of a free-electron laser

having strong space-charge effects in the 3D regime. The results derived from analytic theory are in good

agreement with detailed numerical particle simulations that also include higher-order space-charge

effects, supporting the assumptions made in the theoretical treatment and the variational solutions

obtained in the single-mode limit.
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I. INTRODUCTION

High-gain free-electron lasers (FELs) operate on the
principle that tunable, narrow bandwidth light pulses can
be emitted and amplified many orders of magnitude by the
strong beam-radiation instability affecting a relativistic
electron beam (e-beam) traversing a periodic undulator.
The distance along the undulator it takes for the power of
the emitted light to increase by a factor of e during the
exponential growth regime is known as the power gain
length. It is given in the one-dimensional, cold-beam
limit as

L1D ¼ 1

2
ffiffiffi
3

p
ku�

; (1)

where � is the well-known Pierce parameter [1], given by
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Here, ku is the undulator wave number, K ¼ eBu=mcku is
the dimensionless undulator parameter, with peak mag-
netic field Bu. The Lorentz factor � is the electron beam
energy in units of the rest energy mc2, while the Lorentz
factor relating the average longitudinal beam motion to the

laboratory frame is �z ¼ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

2

q
. The factor account-

ing for the coupling of the electron motion to radiation
emission in the case of a planar undulator is ½JJ� ¼
J0½K2=ð4þ 2K2Þ� � J1½K2=ð4þ 2K2Þ�, where J0 and J1
are Bessel functions of the first kind. The relativistic
plasma wave number is

�p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ie
IA��

2
z�

2
x

s
; (3)

where �x is the rms electron beam size, Ie is the electron
beam peak current, and IA ’ 17 kA is the Alfvén current.
The power gain length is one of the most important

parameters in the design of a high-gain FEL, as it deter-
mines the overall size (and thus cost) of the undulator
system needed for the FEL to reach saturation. One-
dimensional theory, however, does not entirely capture
the complexity of high-gain FELs operating in the infrared
or visible wavelength region where various strong three-
dimensional effects can be detrimental to performance and
ultimately degrade the gain. For these 3D FELs the gain
length Lg exhibits a sensitive and complicated dependence

on diffraction (the tendency of the light to spread while
propagating), the detuning from resonance, and the uncor-
related energy spread and longitudinal space charge in the
e-beam. Given the large number of physical parameters
that influence the dynamics, it is useful to describe these
effects using scaled parameters that individually represent
the essential features of the FEL system [2]. Here we focus
on the three of highest relevance to optical regime FELs:
the diffraction parameter, �d ¼ L1D=2k�

2
x, which quanti-

fies the extent to which transverse effects contribute to the
gain for a FEL with wavelength � ¼ 2�=k; the scaled
energy spread parameter �� ¼ 2ku��L1D, which captures

the contribution of the rms uncorrelated e-beam energy
spread ��; and ��p ¼ 2�pL1D, the space-charge parameter,

which is scaled to be twice the plasma phase advance over
a one-dimensional gain length. Even in terms of this re-
duced set of parameters, determination of Lg for design

and optimization of the FEL system requires either nu-
meric solutions to the governing equations or fully 3D
numerical particle simulations, which are often time con-
suming. Therefore, it would be useful to quickly evaluate
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the performance of the FEL system without having to
resort to these more time intensive and computationally
costly methods.

For short-wavelength FELs in which emittance effects
can play an important role and where space charge can be
neglected ( ��p ! 0), Xie [2] provided a power-fit formula

that has proven to be extremely useful for quickly predicting
the growth rate of the dominant Gaussian optical mode. The
condition of neglecting space charge is usually easily sat-
isfied for these high energy (�� 104), short-wavelength
FELs such as the Linac Coherent Light Source (LCLS) [3]
where �� 10�4 and ��pL1D � 1. However, many FELs of

current interest do not operate in this regime. The longitu-
dinal space-charge field begins to counteract the micro-
bunching process as ��p nears unity (�p approaches L�1

1D ),

which occurs as � ! �p�u as evidenced in Eq. (2). Space-

charge effects are of interest for low energy Raman
FELs where the beam charge density is sufficiently
high [4–6]. The performance of the FEL in this limit
is fundamentally changed by collective space-charge ef-
fects. Of relevance recently are IR-optical self-amplified
spontaneous emission (SASE) high-gain FELs that are
based on very high-brightness electron beams at relatively
low energy (��102), and thus potentially are susceptible to
both space-charge and diffraction effects. For instance, the
�800 nmVISA FEL [7] was characterized by��5�10�3,
giving L1D ’ 10 cm, but with diffraction and space-charge
effects the actual measured gain length was 18 cm. While
diffraction is always a notable degrading effect to the
gain for IR-optical FELs, space charge may often play a
larger role than the electron beam energy spread or
emittance.

FELs also have long been considered candidates as high
average power light sources [8] since the e-beam that acts
as the gain medium does not suffer from thermal loading
and excitation bandwidth constraints that limit conven-
tional sources. FEL oscillators first demonstrated the
progress made in realizing this application [9]. More re-
cently, there has been increased interest in obtaining high
average power using high-gain amplifiers operating at
�100 MeV e-beam energies and Ie � 1 kA currents where
longitudinal space charge will strongly affect the FEL
performance [10,11]. We note in this regard that the
e-beam used in such FELs will operate in a space-charge
dominated, rather than emittance dominated, mode, and
thus the dominance of space charge over emittance effects
in the longitudinal FEL dynamics should not be surprising.
Similarly, the investigation of longitudinal space-charge
waves in high-brightness beams is still currently of great
theoretical interest [12,13], following past emphases on
understanding transverse beam-plasma oscillations [14].
With all this in mind, we note that there is currently no
handy formulation for quickly predicting important FEL
characteristics when space charge has significant influence,
despite the fact that there has been strong historical interest

and recent experimental investigations into FELs that
operate under these conditions. While some progress has
been made to this end in [15], the numerical algorithm
produced therein suffers the same time-consuming con-
straints as mentioned previously.
For the above reasons, here we revisit the power-fit

approach of Xie, including in the fit analysis space
charge as a relevant parameter while ignoring the negli-
gible effect of e-beam emittance, �x, in the limit that �� ¼
2kL1D�

2
x=�

2
x ! 0, or �� � 2�� in the presence of energy

spread, and
ffiffiffiffiffiffiffiffiffiffiffiffi
���d

p � 1. We follow the analysis of [16,17]

and solve the three-dimensional integro-differential FEL
equations for the FEL field amplitudes in the limit where
the FEL signal field is dominated by the fundamental
Gaussian mode. We express, similar to Xie, the gain length
of the three-dimensional mode Lg as

	ki ¼ L1D

Lg

¼ 1

1þ�0;0

; (4)

where 	ki is maximized at the optimal detuning to yield
the shortest possible gain length and �0;0 is expressed as a

power fitting formula that is a function of �d, ��, and ��p.

The fit is obtained from numerical solutions to the analytic
theory presented in the next section, and shows excellent
overall agreement with results from numerical particle
simulations performed with GENESIS 1.3 [18] that also
include higher-order space-charge distributions. We em-
phasize that the results obtained in the following sections
are in general limited to FELs that operate from the optical
to the far IR, or otherwise satisfy the stated parametric
constraints.

II. ANALYTIC MODEL

The three-dimensional high-gain FEL equations in the
presence of uncorrelated energy spread and non-negligible
space-charge effects have been explored in previous work
[16]. Under a slowly varying transverse field approxima-

tion, E?ðx; tÞ ¼ Re½~Esðx?; zÞeikðz�ctÞ�, the integro-
differential equation that describes the FEL field amplitude
evolution along the undulator is given as

DðzÞ ~Es ¼ i
k
0ec

2

�mv2
0

Z z

0
dz0

�½JJ�eK2

4�2
~Es þ e

k2
Dðz0Þ ~Es

�

�
Z 1

�1
d�

@F0

@�
ei½ðk=�2

z Þ���0�ðz0�zÞ; (5)

where DðzÞ ¼ r2
? þ 2ik @

@z is the paraxial wave operator,

� ¼ ð�1 � �Þ=� is the relative energy deviation of an
electron with energy �1 from the nominal beam energy
�, F0 ¼ F0ðx?; �Þ is the unmodulated e-beam distribution
which stays fixed during transport, �0 ¼ k=�2

z � ku is the
detuning, and �2

z ¼ 1=ð1� v2
0=c

2Þ is the relativistic longi-
tudinal energy factor. Zero initial modulation in the beam
has been assumed, as has the condition k�x=�z � 1,
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which stipulates that the e-beam profile is large compared
to the microbunching wavelength in the moving frame.
Under this latter constraint the space-charge fields are
assumed to be predominantly longitudinal. Further, to
make the analysis more tractable, the transverse variation
of the charge density distribution is also neglected.

In the single-mode limit, the FEL is assumed to be
dominated by a fixed-profile transverse mode that grows
exponentially in amplitude along z. The field can then be
written simply as

~E s ¼ Ep;lup;lðx?Þ expði	kzÞ; (6)

where Ep;l is the mode amplitude and 	k ¼ 	kr � i	ki is

the complex wave number associated with the FEL pro-
cess. By inserting this into (5), one can calculate the gain
length Lg ¼ 1=2	ki of the ðp; lÞmode in the linear regime,

where the dominant, exponentially growing solutions are
characterized by 	ki > 0. The modal profile distribution
up;lðx?Þ is any suitable function with indices p and l to

describe the mode of interest.
Following [17], a Laguerre-Gaussian basis provides

a convenient description for a FEL with cylindrical
symmetry:

up;lðx?Þ ¼ exp

�
il�� r2

w2

��
r

ffiffiffi
2

p
w

�jlj
Ljlj
p

�
2r2

w2

�
; (7)

where Ljlj
p is a Laguerre polynomial. With an uncorrelated

Gaussian e-beam distribution, F0 ¼ n0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2��2

�

q
Þ�1 �

exp½�r2=2�2
x � �2=2�2

��, Eq. (5) reduces in the single-

mode limit to an expression that yields the complex wave
number 	k for the ðp; lÞ mode,

½S1��p
2Fp;l�

�
	kþ�d

�
ð2pþjljþ1Þ

�
¼�

�
2ffiffiffi
3

p
�
3
Fp;l: (8)

Scaled variables have been introduced: 	k ¼ 2L1D	k
is the scaled complex wave number and �2 ¼ w2=4�2

x is
the complex spot size parameter. The energy spread con-
tribution to the gain is given by the term

S1 ¼ �2
ffiffiffiffiffiffiffi
2�

p
�3
�

�Z
d ��

�� expð� ��2=2�2
�Þ

	k� ��þ 2 ��

��1
; (9)

where �� ¼ 2L1D�0. The coupling between the optical
modes and the transversely Gaussian e-beam profile is
given by

Fp;l¼ ð2pþjljÞ!
p!ðpþjljÞ!

�2p

ð�þ1Þ2pþjljþ1

� 2F1

�
�p;�p;�2p�jlj;1� 1

�2

�
; (10)

where 2F1ða; b; c; xÞ is the hypergeometric function.
By virtue of the ��2pFp;l term in (8), the effect of longi-

tudinal plasma oscillations for higher-order FEL modes are
included. This is a quasi-three-dimensional extension of a

purely one-dimensional model that takes into account, as a
first-order approximation, the modification to the space-
charge field profile due to the structure of the optical modes
that map to the transverse microbunching profile. Averaged
over the beam, this modifies the effective plasma wave
number by the coupling factor Fp;l.
In general, solutions to (8) can be found for a mode ðp; lÞ

by application of the variational condition 	ð	kÞ=	� ¼ 0

as in [2,19]. The scaled complex wave number 	k and spot
size parameter � can then be determined by solving the
two resulting equations.

A. One-dimensional limit

In the 1D limit, the transverse variation of the e-beam
and the fields is neglected. The diffraction parameter be-
comes vanishingly small �d ! 0, and the degeneracy of
the modes sends the coupling factor to unity Fp;l ! 1.

Equation (8) is then given simply as

½S1 � �p
2�	k ¼ �

�
2ffiffiffi
3

p
�
3
: (11)

In the additional limit of vanishing energy spread for a cold

beam, �� ! 0, Eq. (9) reduces to S1 ¼ ð	k� ��Þ2 and we

obtain the familiar cubic equation for 	k of the 1D high-
gain FEL,

½ð	k� ��Þ2 � ��2p�	k ¼ �
�
2ffiffiffi
3

p
�
3
: (12)

Figure 1 depicts how the scaled gain of the cold-beam 1D
system varies with the detuning for several values of the
space-charge parameter [20]. At resonance ( �� ¼ 0) and in
the absence of space-charge effects ( ��p ¼ 0) dominant

solutions to (12) are simply 	k ¼ 2L1D	k ¼ 1=
ffiffiffi
3

p � i,
and the 1D gain length is retrieved from L1D ¼ 1=2	ki.
In the collective regime where space-charge effects are
significant, it is straightforward to show that the shortest

gain length (the maximum of 	ki) is obtained at a detuning
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FIG. 1. Detuning gain curves in the 1D limit for ��p ¼ 0, 0.5, 1,
2, and 3.
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of �� ¼ � ��p, in the limit 	ki � ��p [21]. The enhanced

oscillatory effects of space charge on the FEL-induced
charge wave serve to move the frequency into optimized
resonance at this detuning.

B. Fundamental mode

For the fundamental Gaussian mode ðp; lÞ ¼ ð0; 0Þ, the
variational constraint 	ð	kÞ=	� ¼ 0 applied to the 3D
single-mode expression in (8) yields the equations

�
S1�

�p
2

1þ�

��
	kþ�d

�

�
þ
�
2ffiffiffi
3

p
�
3 1

1þ�
¼0;

�
�
S1�

�p
2

1þ�

�
�dð1þ�2Þ

�2
þ�p

2

�
	kþ�d

�

�
¼
�
2ffiffiffi
3

p
�
3
:
(13)

Figures 2–4 illustrate how �d, ��p, and �� affect the gain

curves of the fundamental mode according to (13). Each
contribution pushes the peak of the gain curve into the
detuning region �� < 0 where the e-beam energy is above
the resonant energy. The maximum in the detuning curve
varies in a complicated way with the parameters that

specify the FEL. While these effects have been studied
previously [20,22], they serve to demonstrate that the
desired power-fit formula, calculated over a wide range
of accessible parameters that still yield high-gain solutions,
would be a useful tool over numerical solutions of the full
equations for quick determination of the peak gain.

III. POWER-FIT FORMULA

Numerical solutions to the full variational equations
taken from Eq. (8) are fit to a power formula over the
constituent parameter space of �d, ��, ��p, and ��. At the

detuning value that minimizes the gain length for given
values of ð�d; ��; ��pÞ, the fit is found to be

�0;0 ¼ 0:450�0:570
d þ 3:00�2

� þ 0:196 ��1:91p

þ 51:0�0:950
d �3

� þ 0:0988�0:230
d

��1:21p

þ 0:0375�0:875
�

��12:7p þ 2:35�11:9
d �14:9

�
��11:4p : (14)

We note the precise agreement with Xie’s fitting formula
for the parameters �d and �� when ��p ¼ 0. To illustrate

the utility of this formula and in the spirit of Xie we use the
representative parameters for the MW class FEL amplifier
from [10] where E ¼ 65 MeV, K ¼ 1:26, �u ¼ 1:8 cm,
�n ¼ 2:0 mmmrad, I ¼ 600 A, �� ¼ 5� 10�4, and

�x ¼ 100 
m. We find �d ¼ 0:641, �� ¼ 0:028, and
��p ¼ 0:400. The effects of diffraction, energy spread,

and longitudinal space charge conspire to extend the gain
length from L1D ¼ 0:081 m ! Lg ¼ 0:114 m.

IV. SIMULATION AND RESULTS

The FEL simulation code GENESIS 1.3 [18] was used to
evaluate the accuracy of the fitting formula in (14). Nearly
14 000 time-independent simulations were performed
using a large range of rms transverse electron beam sizes
(�x ¼ 100–600 
m), relative rms energy spreads (�� ¼
0–1� 10�3), and beam currents (I ¼ 200–2000 A) in
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FIG. 3. Contribution of space charge on 3D system: ��p ¼ 0,
0.5, and 1 with �� ¼ 0, �d ¼ 0:5.
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FIG. 2. Detuning curves of the fundamental (0, 0) mode for
�d ¼ 0, 0.5, 1, and 1.5 with ��p, �� ¼ 0.
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FIG. 4. Contribution of energy spread on 3D system: �� ¼ 0,
0.2, and 0.4 with ��p ¼ 0, �d ¼ 0:5.
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order to sample a significant portion of the scaled parame-
ter space where the analytical model is applicable (see
Table I). As with the analytic model, the detuning was
adjusted to obtain the shortest gain length for each set of
parameters. At each optimized detuning value we obtain a

scaled value of the gain, denoted by 	ki
G.

To quantify the agreement between the analytic model fit
in (14) with results from GENESIS simulations, we define a

variance of the form �2 ¼ 1
N

P
N
j ð	kiðjÞ � 	kGi;jÞ2, where

	kiðjÞ is the value of the scaled gain from the analytic fit at

the point ð�d;j; ��;j; ��p;jÞ, and 	kGi;j is the numerical value

from GENESIS at the same point. Good agreement is found,
with a variance of�2 ¼ 5:4� 10�4 over the entire parame-
ter space. For comparison, an independent power fit was
performed according to the data points from GENESIS.

We denote this fit by the scaled gain function 	kFi ¼
	kFi ð�d; ��; ��pÞ. Using the fit function 	kFi in place of the

analytic fit function 	ki, the variance was nearly the same
value,�2 ¼ 4� 10�4, demonstrating that themodel in (14)
provides a reliable measure of the scaled gain length.
Figure 5 shows the qualitative consistency between the
analytic contour from (14) and data points obtained through
GENESIS simulations for the specific case of �� ¼ 0.

Figure 6 shows the relative difference between the ana-

lytic and simulated fits, given by �F ¼ 1� 	ki
F=	ki. The

two fits agree across the scaled parameter space for�� ¼ 0

to within 4%. Figure 7 also shows the relative difference, in
this case as a function of energy spread and space charge

for �d ¼ 0:5. This plot indicates that the two fits are in
better agreement as the energy spread increases. Therefore,
the 4% relative difference seen in Fig. 6 where �� ¼ 0 is

the largest error found across the scaled parameter space.
It is worth noting that, as the diffraction parameter

increases, the difference between the analytic and simu-
lated fits increases as well. This can be seen in Fig. 5 where
the analytic contour lies slightly above the simulated data
values for large values of the diffraction parameter. This
illustrates the limitations of the theory as the FEL system
becomes more three dimensional in nature. It occurs be-
cause, as the diffraction parameter increases and the FEL
becomes more sensitive to 3D effects, the transverse mode
profile of the FEL light also increases. When the optical
mode becomes larger than the e-beam, the shape of the
profile begins to differ from that of the simple Gaussian
assumed in the single-mode analytic model. This behavior

TABLE I. Scan parameters. Simulations (theory).

Parameter Symbol Values

Diffraction �d ¼ L1D=2k�
2
x 0:04ð10�4Þ–0:98ð1Þ

Energy spread �� ¼ 2ku��L1D 0ð10�4Þ–0:34ð0:4Þ
Space charge ��p ¼ 2�pL1D 0:16ð10�4Þ–0:42ð1Þ
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FIG. 5. Analytic fit contour and simulated data points for
�� ¼ 0.
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FIG. 6. Relative difference between the analytic and simulated
fits for �� ¼ 0.
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FIG. 7. Relative difference between the analytic and simulated
fits for �d ¼ 0:5.
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is depicted in Fig. 8 where the theoretical and simulated
optical profiles for two different regimes are compared. For
small �d the system tends to be more 1D and the optical
mode is well inside the e-beam. The agreement is excellent
in this case, both in the predicted optical spot size and in
the gain length. But as �d approaches unity, the large
optical mode calculated from GENESIS clearly has richer
structure, and does not precisely match the profile pre-
dicted from theory. This occurs because the region of the
laser field near the e-beam center becomes narrowed due to
gain compared to the region farther from the axis. The
result is a sharper profile. The inability of the single
Gaussian mode description to precisely match the optical
profile for strongly 3D FELs is the primary source of the
few percent error between the single-mode solutions and
results from simulations for the predicted gain length. We
note that future work could strive to eliminate this small
error by instead using a non-Gaussian mode better suited to
describe the pinched optical profiles of strongly 3D FELs.

It is also interesting to note that the agreement between
simulated and analytic fits actually improves as both the
space charge and the energy spread increase. This can
clearly be seen in Fig. 7, where the relative difference
between the analytical and simulated fits is shown as a
function of �� and ��p for �d ¼ 0:5. Figure 9 shows that

the agreement extends to the predicted profile where, de-
spite a near doubling of the space-charge contribution, the
profiles closely match. This illustrates that the presence of
strong space-charge effects are well modeled by the theory
presented.

We note that the numerical fit to the GENESIS data points,

	kFi , was omitted. We chose not to include this result for a

variety of reasons. The power fit that was performed does
not yield a unique solution, and the coefficients that are
recovered from the fit are subject to multiple factors. These
factors include the minimization method, the function used
to minimize the residuals, and the constraints applied to
initial parameter values. Regardless of these variables,
every fit that was performed yielded similar results, where
the agreement with the analytic fit was accurate to within at
most �4%. Also, the probed parameter space from the
GENESIS simulations did not span the entire space where

the analytic model is applicable, as evidenced in Table I. In
addition, GENESIS includes only longitudinal space charge
and does so on a Fourier decomposition basis. The inclu-
sion of more Fourier coefficients in the simulation in-
creases the accuracy of the space-charge calculation at
the expense of computing time and resources. We found
that the power fits obtained through simulation were in
better agreement with the analytic model as more Fourier
coefficients were included. For these reasons, we chose to
quote only the results of the analytic fit.

V. CONCLUSIONS

We have presented a useful fit function similar to that of
Xie that can be used to quickly calculate the gain length of
the dominant three-dimensional optical mode of a FEL in
the presence of uncorrelated energy spread, diffraction,
and space charge. The formula was obtained from numeri-
cal solutions to the general 3D integro-differential FEL
equations in the single, fundamental mode limit using a
variational approach. Results have been compared to de-
tailed numerical simulations using the 3D code GENESIS

and show excellent agreement overall, with a maximum
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FIG. 9. Comparison of the transverse normalized intensity
mode profile between simulation and theory for two cases:
(a) �d ¼ 0:04, �� ¼ 0, ��p ¼ 0:23 where the mode profile

is contained within the e-beam, and (b) �d ¼ 0:45, �� ¼ 0,
��p ¼ 0:42 where the mode profile approximately matches

the e-beam. GENESIS results are represented as dashed lines
while the solid, blue lines represent results from theory for
both cases. The e-beam is shown in black (c).
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FIG. 8. Comparison of the transverse normalized intensitymode
profile between simulation and theory for two cases: (a) a quasi-1D
scenario with �d ¼ 0:04, �� ¼ 0, ��p ¼ 0:23 where the mode

profile is contained within the e-beam, and (b) a 3D scenario with
�d ¼ 0:97, �� ¼ 0, ��p ¼ 0:28 where the edges of the mode

profile lie outside the e-beam. GENESIS results are represented as
dashed lines while the solid, blue lines represent results from
theory for both cases. The e-beam is shown in black (c).
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relative error of 4% attributed to a systematic issue
inherent in the single Gaussian mode approximation for
strongly 3D systems.
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