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The average temporal (longitudinal) and spatial (transverse) coherence of free-electron-laser pulses in

the extreme ultraviolet at FLASH is measured by interfering two time-delayed partial beams directly on a

CCD camera. Wavelengths between � ¼ 32 nm and � ¼ 8 nm are examined. A decrease of the

coherence time for the fundamental wavelengths from �c¼ð6�0:5Þ fs at 32 nm to �c ¼ ð2:9� 0:5Þ fs
at 8 nm is measured. At � ¼ 8 nm the fundamental wavelength and the third harmonic of 24 nm are

compared to each other. For 8 nm radiation as third harmonic of 24 nm a coherence time of �c ¼
ð2:5� 0:5Þ fs is observed. The spatial coherence of 24 and 8 nm fundamental pulses are found to be very

similar. The visibility decreases to 50% of the maximum visibility at about 3.2 mm overlap of the partial

beams, which corresponds to 42% of the beam diameter at a distance of 90 m from the exit of the

undulator. These results are analyzed in terms of the Gaussian Schell model resulting in six contributing

modes to the total radiation. In addition, the correlation of the visibility between the fundamental radiation

at 24 nm and its third harmonic at � ¼ 8 nm is investigated for identical shots.
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I. INTRODUCTION

Among the light sources available in the extreme ultra-
violet (XUV) and soft x-ray regime self-amplified sponta-
neous emission (SASE) generated by free-electron lasers
(FEL) provides widely tunable ultrashort light pulses with
high pulse energies [1]. Since 2005 FLASH at DESY in
Hamburg is operating as a user facility, by now providing
radiation down to 4.12 nm. In 2009 the first hard x-ray FEL
Linac Coherent Lights Source (LCLS) started its operation
in Stanford [2]. The intense radiation generated by such
sources enables innovative experiments in various fields of
research such as single shot coherent diffraction imaging
[3,4], cluster physics [5], and surface reaction dynamics
[6]. For the first type of experiments, in particular, but not
only, a precise knowledge of the longitudinal and trans-
verse coherence of the light pulses is required. Further, an
understanding of the formation of coherence during the
SASE process is important for the optimization of electron
bunch formation. Substantial contributions to the theoreti-
cal description of the FEL process have been published in

recent years [7–11]. Still an experimental verification of
the essential temporal and spatial beam properties for
different operating parameters of the FEL in particular at
different wavelengths is of great interest. Recently, mea-
surements of the average pulse duration of the free electron
laser in Hamburg (FLASH) yields values around 30 fs,
both by means of two-photon double ionization of helium
[12] and for single shots by electric field streaking driven
by THz radiation from synchronized undulator pulses [13].
First measurements of the temporal coherence of FLASH
pulses at � ¼ 24 nm using a linear autocorrelation re-
vealed a coherence time of �c ¼ 6 fs and a multiple pulse
substructure [14]. Schlotter et al. supplemented these find-
ings at longer and shorter wavelengths of � ¼ 33:2 nm and
� ¼ 9:6 nm [15]. Measurements of the spatial coherence
of FLASH pulses applying a Young double-slit experiment
at � ¼ 13:7 nm at a distance of z ¼ 20 m from the source
showed a coherence length of about � ¼ ð300� 15Þ �m
in the horizontal and vertical directions. The beam radius
(half width at half maximum of a Gaussian function) at this
distance from the source is about 890 �m [16].
In this paper a characterization of the temporal and

spatial coherence of FLASH generating fs pulses at differ-
ent wavelengths from � ¼ 32 nm to � ¼ 8 nm is pre-
sented in order to investigate the dependence of the
coherence properties as a function of wavelength. The
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results are compared to theoretical predictions. In addition,
the temporal coherence of third harmonic radiation at
� ¼ 8 nm is determined when FLASH is set to operate
at the fundamental at � ¼ 24 nm.

II. EXPERIMENTAL

As an essential prerequisite for coherence measure-
ments, one has to ensure that the overlapping partial beams
do not show any jitter both temporally and spatially. In the
present setup this is achieved by single pulse measure-
ments at defined spatial overlap and time delay. To provide
such jitter-free replica pulses for x-ray pump/x-ray probe
experiments, a split-and-delay unit (autocorrelator) has
been developed for the use with FLASH, based on geo-
metrical wave front beam splitting by a sharp mirror edge.
Employing grazing incident angles for the XUV radiation
it covers the fundamental photon energy range of FLASH
from h� ¼ 20 eV to more than 200 eV with an efficiency
of larger than 50%. A schematic drawing of the layout of
the autocorrelator is shown in Fig. 1. Grazing angles of 3�
and 6� for the fixed and variable delay arms, respectively,
are employed to ensure a high reflectivity in the soft x-ray
regime. The left part of the incoming FEL pulse is reflected
horizontally by the beam splitter with a sharp edge into the
fixed beam path. The other part of the beam passes the
beam splitter unaffected and is then reflected vertically by
the second mirror into a variable delay line. There, a delay
between �5 and þ20 ps with respect to the fixed beam
path can be achieved with a step size of nominally 40 as.
The seventh and eighth mirrors reflect the partial beams
again into their original direction. Small angles between

both beams can be introduced in order to vary the spatial
overlap. Consequently, the distance between two points of
the spatial beam profile interfering with each other is
varied. Thus, not only the temporal but also the spatial
coherence of the FEL pulses can be measured. A more
detailed description of the autocorrelator can be found in
[14]. The autocorrelator is assembled at beam line BL3 at a
distance of 70 m downstream from the undulator. The
coherence properties of FEL pulses with wavelengths of
� ¼ 32, 24, 13, 8 (fundamental), and 8 nm (third harmonic
of � ¼ 24 nm) are investigated.
The experimental setup is shown in Fig. 2. In order to

increase the propagation distance behind the autocorrelator
both partial beams are reflected by a plane multilayer
mirror (Mo=Si) under an angle of incidence of � ¼ 10�
directly onto a XUV sensitive CCD camera at a distance of
20 m behind the autocorrelator. The mirror shows a
reflectivity of R1 ¼ 3:0% at � ¼ 8 nm and R2 ¼ 2:0% at
� ¼ 24 nm, with spectral bandwidths of�� ¼ 0:5 nm and
more than 1.5 nm at � ¼ 8 and 24 nm, respectively. For
� ¼ 13 nm and � ¼ 32 nm a mirror coated with chro-
mium was used, showing a reflectivity of R3 ¼ 0:14% at
� ¼ 13 nm and R4 ¼ 0:9% at � ¼ 32 nm, respectively.
The low reflectivity of the mirrors was used in order to
attenuate the FEL radiation so that the CCD camera is not
destroyed. Further attenuation is achieved by a gas ab-
sorber filled with N2 to ensure that the full dynamic range
of the 16 bit CCD is available. Because of the finite readout
time of the CCD, a fast shutter is used to separate individ-
ual FEL pulses. The initial repetition rate of 5 Hz is thereby
reduced to 0.5 Hz.
The partial beams are brought to an overlap directly on

the chip of the CCD camera at a distance of Ld ¼ 20 m
from the last mirror of the autocorrelator. This distance is
required to ensure that a sufficient number of pixels of the
CCD camera are illuminated by one interference fringe.

FIG. 1. Scheme of the autocorrelator. (a) The FEL pulse is
divided by the wave front beam splitter. One partial beam is
reflected horizontally into a fixed arm of the autocorrelator, the
other partial beam passes the beam splitter and is vertically
reflected into the delay stage. With the last mirror the beams
are recombined. Different overlap angles on a CCD camera can
be set by rotating the last mirror. (b) The reflectivity of a carbon
coated silicon mirror is shown as a function of photon energy
(green line). The dashed lines represent the total transmission of
the fixed (dark blue) and the variable delay arm (light blue).

FIG. 2. The experimental setup: Behind the autocorrelator the
partial beams are reflected back by a multilayer mirror to overlap
at a distance of 20 m on an x-ray CCD camera.
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The width d of the interference fringes observed is in-
versely proportional to the angle � under which the partial
beams overlap, according to

d ¼ �

sin�
: (1)

For a wavelength of � ¼ 8 nm and a typical angle of
� ¼ 70 �rad, this yields a spacing of the interference
fringes of d ¼ 114 �m. The spatial resolution of the
CCD camera amounts to s ¼ 13:5 �m per pixel. Thus,
even for short wavelengths each interference fringe is
sampled by about eight pixels. For the measurements of
the spatial coherence, the overlap angle is increased up to
200 �rad yielding a fringe width of only 40 �m with
about three pixels per fringe. A decrease of the ratio
between the width of the interference fringes d and the
pixel size s (sampling rate) causes a degradation of the
measured visibility compared to the real visibility by a
factor k, which is defined by the modulation transfer
function (MTF) of the camera due to the pixel size. This
factor has been calculated and used to correct the visibility,
see Fig. 3.

For the measurement of the harmonic radiation a sup-
pression of the intensity of the fundamental radiation is
necessary. Therefore, a Zr filter (d ¼ 200 nm) with a trans-
mission of T ¼ 55% at � ¼ 8 nm and T ¼ 0:02% at � ¼
24 nm was used. In order to detect interference fringes
from the fundamental and harmonic radiation simulta-
neously D-shaped filters are applied, which block only
part of the beam. Here again Zr is used to suppress the
fundamental, while Al (d ¼ 400 nm, T ¼ 49% for � ¼
24 nm and T ¼ 3� 10�3% for � ¼ 8 nm) suppresses the
third harmonic radiation.

In the experiments presented here, the electron bunches
are accelerated by superconducting cavities to 442 MeV for
SASE radiation at � ¼ 32 nm, to 511MeV for � ¼ 24 nm,
and up to 890 MeV for � ¼ 8 nm radiation. For the SASE
process the electron bunches are compressed to a short
spike with a peak current of I ¼ ð1–2:5Þ kA followed by
a longer tail. Undulators with an undulator period of �u ¼
2:73 cm, a length of l ¼ 27 m, 989 elements, and an un-
dulator parameter ofK ¼ 1:18 are installed. Other essential
operating parameters of FLASH can be found in [1,17].

III. METHODS

Coherence is a property of electromagnetic waves with
all partial waves in phase. This property enables the waves
to generate stationary interferences. A profound descrip-
tion of the coherence properties of light is given in terms of
statistical optics. Here the second-order correlation func-
tions play a prominent role, since for most practical cases
of SASE FEL radiation they sufficiently describe the sta-
tistical properties of an electromagnetic wave field Eðr; tÞ.
The intensity of the interfering beams passing the auto-

correlator (see Fig. 1) at the detector is then given by the
ensemble average,

Iðxd; �Þ ¼ hjE1ðxd; tÞ þE2ðxd; tþ �Þj2i; (2)

where xd is the position in the detector plane [see Fig. 4(b)],
and

E 1ðxd; tÞ ¼ E01ðxd; tÞeikz (3a)

and

E 2ðxd; tþ �Þ ¼ E02ðxd; tþ �Þeiðkzþk�xdÞ (3b)

are the amplitudes of the two beams passing the different
arms of the autocorrelator. The additional phase in Eq. (3b),
k�xd, accounts for the slightly different angle of incidence
of the second beam, see Fig. 2. This angle is given by

FIG. 3. Dependence of the modulation transfer function on the
ratio between the fringe width d of the interference pattern and
the pixel size s of the CCD camera.

FIG. 4. (a) The beam at the splitting mirror and (b) at the
detector with an overlap �xd. Because of the propagation
distance of Ld ¼ 20 m the beam appears larger here.
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� � tan� ¼ Dþ �xd
Ld

; (4)

where �xd denotes the width of the beam overlap, D the
separation of the two beams at the exit of the autocorrelator,
and Ld the distance between the autocorrelator and the
CCD camera. In Fig. 4 the geometrical quantities discussed
are illustrated. Figure 4(a) shows the distance �xm of two
points of the FEL beam on the splitting mirror of the
autocorrelator. The intensity on the detector is

Iðxd;�Þ¼½I1ðxdÞþI2ðxdÞ�
þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1ðxdÞI2ðxdÞ

q
j�12ð�Þjcos½k�xdþ�12ð�Þ�; (5)

where I1;2ðxdÞ ¼ hE2
1;2ðxd; tÞi, �12ð�Þ is the complex degree

of coherence [Eq. (7)], and �12ðxd; �Þ is the phase of the
complex degree of coherence. The first term accounts for
the intensities of the two partial beams. The second term
introduces a modulation via the cosine function. Since
�12ð�Þ decreases with increasing time delay � as well as
with increasing spatial overlap, this term vanishes for long
delays and for large distances between the points r1 and r2.
The complex degree of mutual coherence �12ð�Þ is given as
the normalized mutual coherence function �ðr1; r2; �Þ that
describes the correlations of an electromagnetic wave field
Eðr; tÞ. �ðr1; r2; �Þ is defined by the correlation function of
the wave field Eðr; tÞ at two positions r1 and r2 at two
different times t and (tþ �) [18]:

�ðr1; r2; �Þ ¼ hEðr1; tÞE�ðr2; tþ �Þi: (6)

The absolute value of the normalized correlation function

j�12ð�Þj ¼
��������

�ðr1; r2; �Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðr1; r1; 0Þ�ðr2; r2; 0Þ

p
�������� (7)

can be measured via the visibility V of the interference
fringes of two interfering partial beams. This visibility V is
given by the maximum and adjacent minimum intensity of
the interference pattern,

V ¼ Imax � Imin

Imax þ Imin

¼ j�12ð�Þjf2
ffiffiffiffiffiffiffiffi
I1I2

p
=ðI1 þ I2Þg; (8)

where I1 and I2 are the intensities of the interfering partial
beams and Imax and Imin are the maximum and minimum
intensities of the interference fringes.

A. Temporal coherence

The temporal coherence is described by j�12ð�Þj as a
function of � for fixed points r1 and r2. The coherence time
�c can be defined as the half width at half maximum
(HWHM) of j�12ð�Þj. A more general definition for an
arbitrary function is given by the rms value [18]

�c;rms ¼
Z 1

�1
j�12ð�Þj2d�: (9)

For a Gaussian function this results in a coherence time of
�c;rms � 0:85�c.

B. Spatial coherence

The magnitude of j�12ð�Þj as a function of the distance
between r1 and r1 for a constant � describes the spatial
coherence of the field. The width of this function is called
the transverse coherence length �x;y in horizontal (x) and

vertical (y) directions. In analogy to the coherence time of
the light pulse (9) the degree of transverse coherence 	 is
defined as [11,19]

	 ¼
RR j�ðr1; r2Þ2jhIðr1ÞihIðr2Þidr1dr2

½RhIðrÞidr�2 : (10)

From the mutual coherence function �ðr1; r2; �Þ [Eq. (6)],
the cross spectral density Wðr1; r2; !Þ is defined as

Wðr1; r2; !Þ ¼
Z 1

�1
�ðr1; r2; �Þei!�d�: (11)

From this expression one can readily recognize that it
forms a Fourier pair with the mutual coherence function
�ðr1; r2; �Þ. The cross spectral density constitutes a mea-
sure between the spectral amplitudes of any particular
frequency component ! of the electromagnetic field at
the spatial points r1 and r2. When the cross spectral density
Wðr1; r2; !Þ is evaluated for one point r1 ¼ r2 ¼ r it
equals the power spectrum Sðr; !Þ of the light.
Analogous to the mutual coherence function �ðr1; r2; �Þ
also the cross spectral density Wðr1; r2; !Þ can be normal-
ized:

�ðr1; r1; !Þ ¼ Wðr1; r2; !Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðr1; !Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sðr2; !Þp : (12)

For a stationary field the cross spectral densityWðr1; r2; !Þ
can be represented by a sum of independent coherent
modes [20],

Wðr1; r2; !Þ ¼ Xn
j¼0


jc
�
j ðr1Þc jðr2Þ; (13)

where 
j and c j are the eigenvalues and eigenfunctions of

the Fredholm integral equation,

Z
Wðr1; r2Þc jðr1Þdr1 ¼ 
jc jðr2Þ: (14)

If the intensity distribution IðrÞ and the complex coherence
factor j�ð�xÞj are both Gaussian, the cross spectral density
Wðr1; r2; !Þ can be represented by the well-known Gauss-
Hermite polynomials. If the intensity profile and the com-
plex coherence factor are not Gaussian, the modes have to
be found by solving the Fredholm integral equation (14)
with the corresponding cross spectral density and will
differ from Gaussian-Hermite modes.
To determine the transverse coherence of the FLASH

pulses at the entrance of the autocorrelator, the divergence
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of the beam has to be taken into account. At the large
distance from the undulator source of 70 m, the beam size
and the transverse coherence length are considered to
change approximately linearly with the propagation dis-
tance. The overlap of the two partial beams on the CCD
camera, �xd [see Fig. 4(b)], corresponds to a separation at
the splitting mirror, �xm, via

�xm ¼ Ls

L
�xd; (15)

where L ¼ Ls þ LAC þ Ld is the total distance between
the source and the detector. Here Ls denotes the distance
between the source and the autocorrelator, LAC the length
of the autocorrelator, and Ld the already mentioned
distance between the autocorrelator and the detector. A
measurement of the visibility at different overlap widths
�xd corresponds to double pinhole measurements with
pinhole separations of �xm. From Eq. (15) and

xm ¼ Ls

L
xd; (16)

the dimensions of the beam on the splitting mirror can be
retrieved from the dimensions measured on the CCD
camera.

IV. COHERENCE PROPERTIES OF
SASE FEL RADIATION

A. Temporal coherence

FLASH is a free-electron laser based on self-amplified
spontaneous emission (SASE FEL). It emits coherent XUV
radiation during a single pass of an electron bunch through
a sufficiently long undulator. According to FEL theory
[7,8,10,11,21], the emission of spontaneous undulator ra-
diation is a stochastic process. As a consequence SASE
FEL radiation, starting from shot noise, has the properties
of chaotic light [21]. The process of radiation emission is
initiated in the first part of the undulator by a density
modulation of the electron bunch with a period length close
to the resonance wavelength � of the undulator,

� ¼ �u

�
1þ K2

2

��
ð2�2Þ: (17)

Here �u denotes the period of the undulator, K is the
undulator parameter (at FLASH the undulator parameter

is K ¼ 1:18), and � ¼ ½1� ðv=cÞ2��1=2 is the relativistic
factor. The oscillating electrons interact with the radiation
produced by themselves. The electric force of the light
wave causes an energy modulation and subsequently a
longitudinal density modulation in the electron bunch
with a period similar to the resonance wavelength, thereby
inducing a microbunching of the electrons. The radiation
emitted by individual microbunches is phase locked and
therefore adds coherently, leading to a further enhance-
ment of the microbunching. Within this process, known as
self-amplified spontaneous emission (SASE), the intensity

of the FEL pulse develops exponentially with the undulator
length. In the saturation regime almost all electrons within
the coherence length Lc radiate in phase producing coher-
ent radiation. The coherence length Lc is approximately
given by [22]

Lc � �Lg=�u; (18)

where Lg is the gain length in the undulator,

Lg ¼ �u=ð4��Þ: (19)

Here � is the FEL parameter [7,23,24]

� ¼ 1

2�

�
I

IA

�
AJJK�u

2�?

�
2
�
1=3

: (20)

In this expression I describes the peak beam current, IA the
Alfvén current, and ? the rms transverse size of the
electron bunch. The coupling factor is AJJ ¼ 1 for a helical
undulator and AJJ ¼ jJ0ðQÞ � J1ðQÞj for a planar undula-
tor (AJJ ¼ 0:84 at FLASH), where Q ¼ K2=½2ð1þ K2Þ�
and J0 and J1 are Bessel functions of the first kind. At
FLASH different wavelengths are generated by tuning the
energy of the electron bunch. Hence, for constant peak
current the FEL parameter � basically is inversely propor-
tional to the relativistic factor,

� / ��1; (21)

if the other parameters are assumed to be constant for
different wavelengths. It should be noted that the trans-
verse beam size ? and the peak bunch current I are
susceptible to changes due to the daily optimization of
the linear accelerator. However, assuming for a moment
constant values in these parameters, then together with
Eqs. (17)–(19) a nonlinear dependence of the coherence
length Lc on the wavelength � of the FEL radiation be-
comes evident:

Lc / �1=2 or �c / �1=2: (22)

Because of its nature and thus arising from noise, the
radiation of SASE FELs consists of independently radiat-
ing transverse and longitudinal modes. In the time domain
the radiation is emitted in short spikes (temporal modes)
with duration �c and with a random phase relationship
between the spikes [25]. Time domain and spectral domain
of each subpulse are related to each other via a Fourier
transformation which leads to narrow spikes (spectral
modes) within the bandwidth of the undulator in the spec-
tral domain, too. In the linear autocorrelation experiments
presented here these independent modes can interact with
each other at longer time delays as a cross correlation. This
behavior causes a slower decay of the visibility at longer
time delays. Hence, calculating the coherence time with
Eq. (9) may yield higher values compared to the HWHM of
a Gaussian fit. For a flattop electron bunch with a time
duration of Tbunch, the number of longitudinal modes Ml

can be estimated via
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Ml ¼ Tbunch

�c
: (23)

However, in the experiments presented here FLASH was
operated in the femtosecond mode, where it cannot be
assumed that the bunch follows a flattop time profile.
Instead, the electron bunch is compressed to a short spike
with a peak current of I ¼ 2:5 kA which is followed by a
longer tail [1]. Thus, an estimation of the number of modes
via Eq. (23) will not be accurate.

B. Spatial coherence

One of the most outstanding features of SASE FELs is
that a high degree of spatial coherence can be achieved.
According to 3D FEL theory [8], a large number M of
transverse radiation modes is excited when the electron
beam enters the undulator, because the fluctuations of the
current density in the electron bunch are uncorrelated not
only in time but also in space. Since these different modes
have different spatial overlap with the electron beam, the
amplification they experience is different, too. Therefore
the number of modes decreases during the amplification
process. As the fundamental mode has the best spatial
overlap with the electron beam, the field amplitude is
dominated by the fundamental mode, which theoretically
contributes close to 99.9% to the radiated power [26]. In
the linear regime the degree of transverse coherence
[Eq. (10)] can be approximated by 	 ¼ 1=M. Transverse
coherence establishes quickly at an early stage of the
amplification due to the transverse mode selection. One
could mistakenly deduce that the latter effect proceeds
further at larger distances z of amplification in the undu-
lator and that the degree of transverse coherence therefore
should approach unity exponentially. But it was predicted
that at larger values of the undulator length the degree of
transverse coherence approaches unity only asymptotically
as ð1� 	Þ / 1=z [8]. At this point, one should take a closer
look at the spiky temporal and spectral structure of the FEL
pulses. In the high-gain linear regime the radiation of the
SASE FEL consists of spatial fundamental modes, how-
ever, at many different frequencies. The transverse distri-
butions of the radiation field of spatially fundamental
modes are also slightly different for different frequencies.
As a result spatial interference of these longitudinal modes
can occur and full transverse coherence is not achieved
during the SASE process. To conclude, the interdepend-
ence between longitudinal coherence and transverse co-
herence is possibly accountable for the fact that full
transverse coherence is not achieved even after completion
of the mode selection process. When the fundamental
mode reaches saturation, the higher modes are not yet
saturated. Since the amplification process still proceeds
with increasing undulator length, these modes can continue
to grow. In consequence, the degree of transverse coher-
ence may remain then even theoretically below 	 ¼ 0:9.

C. Temporal coherence of the odd harmonics

In SASE FEL employing a planar undulator spontane-
ous emission induces microbunching at the fundamental
resonance frequency of the undulator. Since the trajectory
of the particle motion is not strictly sinusoidal, the emitted
radiation also contains higher odd harmonics of the funda-
mental wavelength. The properties of the harmonic radia-
tion are described in [9]. For the fundamental harmonic the
coherence time achieves its maximal value near the satu-
ration point and then decreases. According to [9] the
longitudinal coherence of the higher harmonics evolves
in three stages. First, the longitudinal coherence increases
linearly with the undulator length z. When the process of
nonlinear harmonic generation starts to dominate over
spontaneous emission, the coherence time drops sharply.
Before the amplification process reaches saturation at the
end of the exponential regime there is a plateau where the
ratio of the longitudinal coherence of the nth harmonic to
that of the first harmonic scales with �c / 1=

ffiffiffi
n

p
. At satu-

ration point the coherence time falls inversely proportional
to the harmonic order �c / 1=n.

V. EXPERIMENTAL RESULTS

A. Temporal coherence

For the measurement of the temporal coherence both
partial beams are overlapped only in the center (�xd ¼
0:9 mm) and the temporal delay between the two pulses is
scanned. The temporal coherence of the FEL beam is
investigated for � ¼ 32, 24, 13, and 8 nm. Figure 5 displays
the observed visibility of the interference fringes (corrected
for the detector MTF) versus the delay between the partial
beams, thus representing the temporal coherence function
of FLASH pulses at � ¼ 24 nm [Fig. 5(a)] and at � ¼
8 nm [Fig. 5(b)] fundamental wavelengths. At each time
delay, the average of the visibility over ten individual pulses
is shown. Error bars give the standard deviation of this
average. At zero delay the visibility reaches an averaged
maximum of V ¼ 0:89 at � ¼ 24 nm fundamental wave-
length, and V ¼ 0:85 at � ¼ 8 nm. Occasionally also com-
plete modulation, i.e., V ¼ 1:0, is observed. The reason
why the visibility does not reach unity is an insufficient
spatial coherence, see below and discussion above. The
average temporal coherence function of the pulses reveals
two different time scales. First, the visibility rapidly de-
creases showing a Gaussian decay in the central part. For
time delays larger than 10 fs, the decrease of the visibility
slows down, revealing a weaker correlation also for longer
time scales. This behavior is a consequence of the multi-
spike structure of the spectra of the FEL pulses which has
been discussed before and in Ref. [14]. The central part of
the data is fitted with a Gaussian function from which the
coherence time can be extracted. For this central part
coherence times of �c¼ð6�0:5Þ fs and �c¼ð2:9�0:5Þ fs
are observed for 24 and 8 nm radiation, respectively.
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Corresponding values for other wavelengths are given
in Table I. We also give the rms coherence time, �c;rms,

to account for the contributions at longer times. A mo-
notonous decrease of coherence time from �c ¼ 6 fs at

� ¼ 32 nm to �c ¼ 2:9 fs at � ¼ 8 nm fundamental wave-
length is observed. Similarly, the rms coherence time de-
creases from �c;rms ¼ 9:2 fs to �c;rms ¼ 4:1 fs for the same

wavelengths.
Figure 6 displays these results as a function of the

wavelength. Also shown in Fig. 6 as a full line is the
development of the coherence time according to Eq. (22).
Assuming a gain length of Lg ¼ 1:4 m for FLASH radiat-

ing at 13 nm [1], the gain lengths and resulting coherence
times �c;rms for other wavelengths can be deduced. A

good agreement between the experimental data and this
prediction is found. Further, recently observed coherence
times by Schlotter et al. [15] of �c;rms > 8 fs at � ¼
33:2 nm and �c;rms ¼ 1:6 fs at � ¼ 9:6 nm are shown for

completeness. Also these data generally agree well with
the results obtained in this work. It should be mentioned
that the data discussed in this work are averages of the
visibility of randomly selected FLASH pulses, operating in
the femtosecond single bunch mode. The deduced coher-
ence times are based on the assumption of stable operating
conditions of FLASH over the course of data taking of
about 1.5 h. Evidently a single shot measurement of the
temporal coherence could serve to enhance the understand-
ing of the SASE process even better.

B. Spatial coherence

The spatial coherence of the FLASH pulses was mea-
sured at � ¼ 24 nm and � ¼ 8 nm. During all measure-
ments a 3 mm aperture was deployed 20 m downstream
from the undulator exit, 50 m in front of the autocorrelator.
The time delay � was set to zero for this measurements. By
increasing the spatial overlap of the two partial beams on
the CCD camera, the distance between two points of the
spatial beam profile interfering with each other is increased,

FIG. 6. Dependence of the coherence times on the wavelength.
Red dots: present results for �c (HWHM); red squares: rms value
of the data; green triangles: measurements (rms) from Ref. [15].
The line is fitted according to Eq. (22).

FIG. 5. Visibility at 24 and 8 nm fundamental wavelength
averaged over ten individual pulses at each time delay. The solid
curve is a Gaussian fit. The insets show single pulse interference
fringes at zero delay with visibilities of V ¼ 0:82 and V ¼ 0:79,
respectively.

TABLE I. The coherence time �c at different wavelength. �c is
given as the HWHM of the Gaussian functions shown in Fig. 5;
�c;rms is calculated with Eq. (9).

Wavelength Pulse energy [�J] �c [fs] �c;rms [fs]

32 nm fundamental 25 6� 0:5 9:2� 0:5
24 nm fundamental 25–30 6� 0:5 7:7� 0:5
13 nm fundamental 34–42 4:5� 1 6:8� 1
8 nm fundamental 3 2:9� 0:5 4:1� 0:5
8 nm 3rd 0.16–0.19 2:4� 0:5 3:6� 0:5
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see Fig. 4. Figure 7 shows the average visibility as a
function of the overlap �xd at the detector position and as
a fraction of the beam size at the detector (upper scale).
Again averages of ten individual pulses at each overlap are
displayed. The insets show typical individual interfero-
grams at certain overlaps. The visibility decreases with
increasing �xd as expected. The data are fitted well with
a Gaussian function. The measured HWHM and rms values
of �d at the detector are shown in Table II. At the detector
the visibility diminishes with a rms value of �d ¼ 3:0 mm
at � ¼ 24 nm (corresponding to a HWHM of 3.52 mm) and
�d ¼ 2:7 mm at � ¼ 8 nm fundamental wavelength (cor-
responding to a HWHM of 3.2 mm). Employing Eq. (16)
this yields a transverse coherence length (rms) at � ¼
24 nm of �in ¼ 2:3 mm (corresponding to a HWHM of
2.7 mm) at the entrance of the autocorrelator. Here the beam

size (rms) is in ¼ 2:5 mm (corresponding to a FWHM of
5.88 mm). These values yield a transverse degree of coher-
ence of 	 ¼ 0:42.
The mentioned pinhole may cut higher modes and

thus gives a higher degree of spatial coherence. Thus the
values given here do not necessarily describe the coherence
properties of the source, but the coherence properties
at the experimental station. Although assuming simply a
Gaussian propagation of the beam, from the beam diameter
at the entrance of the autocorrelator of in ¼ 2:5 mm one
deduces a beam diameter ð1=e2Þ of 2.9 mm at the position
of the 3 mm pinhole. Figure 8 shows simulations of the
beam profile at the detector taking into account both dif-
fraction from the pinhole and from the edge of the beam
splitting mirror. It is evident that the results of Fig. 8(c)
resemble the experimental results best. The experimental
coherence data are analyzed in the frame of the Gaussian
Schell model (GSM) by means of the mode decomposition
of the correlation function [16,19] in order to estimate the
number of transverse modes contributing to the beam
profile. The GSM is a good approximation in our case,
since the measured modulus of the degree of coherence is
well approximated by Gaussian functions (see Fig. 7) and
the intensity profile observed in our measurement can also
be considered as Gaussian (apart from the fringes due to
edge scattering at the split mirror of the autocorrelator).
The modulus of the degree of coherence j�ð�xÞj and the
corresponding intensity profile of the FLASH pulse at the

FIG. 7. Spatial coherence at (a) 24 nm and (b) 8 nm funda-
mental wavelength. The insets show typical single shot interfer-
ence pattern at different overlaps. The solid line is a Gaussian fit.

FIG. 8. Simulations of the beam profile at the detector. (a) The
beam transmitted through one arm of the autocorrelator. (b) Zero
overlap of two temporally and spatially coherent beams
[�12ð�Þ ¼ 1]. (c) A 2 mm overlap of two temporally and spa-
tially coherent beams [�12ð�Þ ¼ 1]. (d) Zero overlap of two
temporally incoherent beams [�12ð�Þ ¼ 0].
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entrance of the autocorrelator are shown in Fig. 9(a) as a
function of the spatial beam overlap�xm. The contribution

j of different modes c j to the total radiated intensity is

shown in Fig. 9(b) in a logarithmic scale. Evidently six
modes with contributions of greater than 1% have to be
considered. It is seen in Fig. 9 that these six modes suffi-
ciently describe also the coherence properties of the
FLASH pulses. It might now be conceived that this result
significantly differs from the theoretical expectation of
approximately 1–2 modes contributing to the radiation at
the end of the linear regime in the undulator. However, one
has to recognize that in the saturation regime the degree of
transverse coherence decreases again due to the fact that
higher modes continue to grow and catch up in intensity.
Furthermore, in the theoretical description idealized as-
sumptions have to be made, e.g., the transverse distribution

of the electron beam current is assumed to be Gaussian
[8,26]. The description of the beam by the GSM is an
approximation that can be applied to calculate the propa-
gation of the beam. It does not give information about the
generation of the FEL pulse in the SASE process.

C. Coherence properties of the third harmonic

In addition to the measurements at fundamental wave-
lengths, the temporal and spatial coherence at � ¼ 8 nm as
third harmonic of � ¼ 24 nm was investigated. Figure 10
shows the visibility averaged over ten single pulses as a
function of the delay between the partial beams. A maxi-
mum averaged visibility of V ¼ 0:55 is observed, with
individual pulses reaching up to V ¼ 0:71. The inset shows
a typical interferogram at �� ¼ 0 fs with V ¼ 0:71. The
data shows a coherence time of �c ¼ ð2:4� 0:5Þ fs
(HWHM), as compared to �c ¼ ð6� 0:5Þ fs for the fun-
damental at � ¼ 24 nm. For the rms temporal coherence a
value of �c;rms ¼ ð3:7� 0:5Þ fs is deduced. In comparison,

for 8 nm fundamental wavelength a slightly higher coher-
ence time of �c ¼ ð2:9� 0:5Þ fs is found. This result is in
good agreement with estimations from FEL theory [9],
which states that at saturation point the temporal coherence
should scale with 1=n, where n is the harmonic number.
Before saturation, in the exponential gain regime, the
coherence time scales with 1=

ffiffiffi
n

p
. Figure 11 shows for

the third harmonic the averaged visibility as a function of
the spatial beam overlap �xd at the detector, or as a
fraction of the beam profile. The visibility decreases with
increasing �xd as expected. A Gaussian fit to the visibility
reveals a transverse coherence length (rms) of �d ¼
2:3 mm. The absolute value of the visibility is slightly

FIG. 9. (a) The modulus of the complex coherence factor
j�ð�xÞj at the entrance of the autocorrelator for FLASH pulses
at � ¼ 24 nm (solid line, lower abscissa). The dashed line
represents the intensity distribution IðxÞ (upper abscissa). The
inset shows the ratio 
j=
0 of the eigenvalue 
j to the lowest

order eigenvalue 
0 as a function of the mode number j. (b) The
contribution of the transverse modes to the complex coherence
factor j�ð�xmÞj.

FIG. 10. Visibility as a function of pulse delay for � ¼ 8 nm
as the third harmonic of 24 nm fundamental wavelength. The
inset shows interference fringes at zero delay with V ¼ 0:71. A
coherence time of �c ¼ 2:4 fs is obtained in this case. The solid
line is a Gaussian fit.
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reduced due to the circumstance that this measurement was
taken at � ¼ 2 fs instead of � ¼ 0 fs.

Employing special filters which transmit in the upper part
the fundamental and in the lower part the third harmonic
radiation allows one to measure the visibility for both
simultaneously and therefore to investigate correlations
between both for the same pulse and thus the same electron
bunch. In the present case this is achieved by a combination
of Zr and Al filters, which separate the 8 nm third harmonic
and the 24 nm fundamental. Figure 12 shows in the inset
such a typical recording. In this case the visibility of the
fundamental amounts to Vð24 nmÞ ¼ 0:78 and that of the

third harmonic to Vð8 nmÞ ¼ 0:33. The spatial overlap was
set to �xd ¼ 2:5 mm, which corresponds to 42% of the
beam diameter for the third harmonic and 33% for the
fundamental, respectively. The main diagram in Fig. 12
shows the correlation of the visibilities between the funda-
mental and the third harmonic pulses. Two different delays
between the partial beams of � ¼ �1:5 fs (red dots) and
� ¼ þ2:5 fs (green dots) have been tested. While the visi-
bility of the fundamental varies only from V ¼ 0:6 to 0.85,
that of the third harmonic shows values between V ¼ 0:075
and V ¼ 0:375. Remarkably, data points towards the upper
end in both visibilities represent FLASH pulses which show
nearly a perfect spatial coherence with only a few modes
contributing. At the lower end of the visibilities signifi-
cantly more modes are present resulting in a suppressed
coherence for the third harmonic. It should be noted that the
recorded visibilities are susceptible also to fluctuations of
the temporal coherence, since these experiments were per-
formed at finite delays. Because the average temporal co-
herence of the fundamental with �c ¼ 6 fs is significantly
longer than that of the harmonic (�c ¼ 2:4 fs), this results
in larger visibility fluctuations for the third harmonic.
Therefore, these correlations will be the subject of further
investigations.

VI. CONCLUSION

In this paper a detailed study of the coherence properties
of free-electron-laser radiation at FLASH lasing at different
wavelengths from � ¼ 32 nm down to � ¼ 8 nm is pre-
sented. A monotonous decrease of coherence time from
�c ¼ 6 fs at � ¼ 32 nm to �c ¼ 2:9 fs at � ¼ 8 nm fun-
damental wavelength is measured. The temporal coherence

is found to scale with �1=2 which is in good agreement with
FEL theory. A transverse coherence length for � ¼ 24 nm
of 2.3 mm (rms) at the entrance of the autocorrelator is
observed, where the beam size is 2.5 mm (rms). For the
spatial coherence a Gaussian mode decomposition is per-
formed showing that the transverse coherence properties
can sufficiently be described by six modes contributing to
the radiation field, where the first three modes contribute
more than 90% to the radiated intensity. Furthermore, the
correlation of the visibility between the fundamental radia-
tion at 24 nm and its third harmonic at 8 nm is investigated
for identical shots. While the visibility of the fundamental
varies only from V ¼ 0:6 to 0.85, that of the third harmonic
shows values between V ¼ 0:075 and V ¼ 0:375.

FIG. 12. Correlation between 24 nm fundamental wavelength
and the third harmonic radiation. The inset shows interference
fringes simultaneously measured for 24 nm (upper) and 8 nm
(lower) by means of Al=Zr filters. Green dots are taken at �t ¼
þ2:5 fs, red dots at �t ¼ �1:5 fs.

FIG. 11. Spatial coherence of the third harmonic at � ¼ 8 nm.

TABLE II. The transverse coherence at different wavelength.
Measured HWHM and rms values of �d at the detector position.

Wavelength �d [mm] (rms) �d [mm] (HWHM)

24 nm fundamental 3.0 3.52

8 nm fundamental 2.7 3.2

8 nm 3rd 2.3 2.7
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