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Occasionally, it is possible to bring together experiment, theory, and simulation in detail. Such an

occasion occurred during a high intensity beam physics study in the Spallation Neutron Source (SNS). A

transverse dipole instability in the vertical direction has been observed in the accumulator ring for a

coasting beam that was stored for 10 000 turns. This instability was observed at a beam intensity of about

12 �C and was characterized by a frequency spectrum peaking at about 6 MHz. The probable cause of the

instability is the impedance of the ring extraction kickers. We carry out here a detailed benchmark of the

observed instability, uniting an analysis of the experimental data, a precise ORBIT code tracking

simulation, and a theoretical estimate of the observed beam instability.
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I. INTRODUCTION

TheSpallationNeutronSource (SNS) accelerator consists
of a 1 GeV H� linear accelerator followed by an accumu-
lator ring of length 248 meters. At design intensity, a 1 ms
pulse is stripper-foil injected into the accumulator ring,
accumulated for approximately 1000 turns, and then ex-
tracted in a single turn for delivery to a liquidmercury target.
During accumulation, the stored beam reaches an intensity
of 1:5� 1014 protons, making it the most intense proton
beam to date. The SNS accumulator ring consists of four
90� arcs separated by four straight sections. Each arc is an
achromatic focusing-defocusing (FODO) lattice, while each
straight section contains a pair of doublets for focusing. Each
straight section was designed to accommodate an insertion
for a specific function. These functions are injection,
collimation, extraction, and rf bunching, respectively. The
ring is typically operated with bare tunes of �x ¼ 6:23 and
�y ¼ 6:20.

Because the SNS ring is required to operate at this
extremely high beam intensity, transverse instabilities
have been a concern. Early estimates predicted that the
extraction kickers would present the dominant ring imped-
ance. Consequently, they were carefully designed to mini-
mize that impedance. Even so, during the design of SNS, a
broad study of transverse stability was conducted. The
approach was twofold: we studied analytic coasting beam
models [1,2] in the SNS parameter regime and applied the
results of these studies to benchmark [3] the transverse
stabilitymodel in the ORBIT code [4].With this confirmation
of the accuracy of ORBIT, we then carried out stability

calculations for realistic bunched beams obtained during
injection. For comparison with the coasting beam results,
these latter calculations were first done with single har-
monic impedances. Finally, transverse stability was calcu-
lated for the full injection process using themeasured values
of the dominant extraction kicker impedance [5]. These
studies predicted that, under normal operationwith bunched
beams, SNS would be stable. However, for coasting beams
the instability threshold is much lower. This is all that could
be concluded prior to the actual operation of SNS.
During the power ramp-up of SNS, some accelerator

physics shifts were set aside for the study of high intensity
ring stability issues. Under normal operating conditions
with bunched beams, stable beams have been achieved in
excess of 1:55� 1014 protons, or 25 �C. The bunched-
beam simulations predict stability at this intensity. In order
to induce instabilities, a number of measures have been
taken to reduce Landau damping. The ring rf buncher
voltages and beam chopper settings were modified, or
sometimes turned off altogether, so that coasting beams
could be accumulated. Also, the chromatic sextupoles were
activated in order to zero the ring chromaticity. In such
cases, three independent instabilities have been observed.
The frequency signatures of these instabilities strongly
suggest (1) a broad electron cloud instability in the 20 !
100 MHz range, (2) a low frequency resistive wall insta-
bility at�100 kHz, and (3) a transverse (extraction kicker)
impedance-induced instability in the 4 ! 10 MHz range.
The observations of these instabilities have been discussed
in Refs. [6,7], and preliminary simulation results were
shown in Refs. [8–10].
This paper treats the extraction kicker instability by

bringing together the experimental results and theoretical
estimate reported in Ref. [6] and a detailed simulation of
the experiment using the ORBIT code [4]. Section II de-
scribes the extraction kickers in the SNS ring, together with
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their measured impedance. In Sec. III we describe the
analytic and computational models employed in our analy-
sis. Section IV describes studies performed during the SNS
design in which ORBITwas successfully benchmarked with
an analytic coasting beam model, and then applied to
bunched-beam calculations. Section V describes the ex-
perimentally observed extraction kicker instability.
Section VI presents the ORBIT simulation of the observed
instability. In Sec. VII we present our conclusions. We
conclude this introductory section with Table I, which
compiles the important parameters of the SNS ring.

II. SNS RING EXTRACTION KICKERS

The accumulated beam is extracted from the SNS ring in
a single turn through a Lambertson septum and then trans-
ported to the target. To perform the extraction cleanly, it is
necessary to operate the ring with bunched beams.
Bunched beams are created by chopping at low energy in
the linac, and are maintained by three first harmonic and
one second harmonic rf cavities in the ring. The ring rf
system is described in Ref. [11]. Two kicker assemblies,
each consisting of seven pulsed magnet modules, carry out
the extraction by kicking the beam vertically downward.
The assemblies are housed in the ring straight section
opposite the injection chicane on either side of the sec-
tion’s upstream quadrupole doublet. The Lambertson ex-
traction septum is located downstream of the kicker
assemblies. The kickers are operated at a frequency of
60 Hz with a rise time of 200 ns and a flattop of 750 ns.
They are designed as ferrite core rectangular window
frame magnets, each powered individually by its own pulse
forming network (PFN) located remotely in the modulator
building. In order to optimize the beam acceptance and
coupling impedance, the 14 kicker magnets have various

apertures, heights, and lengths. In addition, a coaxial cage
was added in the extraction kicker power supply to reduce
inductance in terminating resistor circuit and improve the
coupling impedance, and the kicker ferrite was coated with
TiN stripes to minimize eddy currents and heating.
Detailed descriptions of the mechanical design of the
kickers and of their pulsed power systems are given in
Refs. [12,13], respectively. The structure of an extraction
kicker magnet is shown in Fig. 1, which was taken from
Ref. [12].
The measurements of the SNS extraction kicker imped-

ances are thoroughly described in Ref. [5]. The horizontal
and vertical impedances are different. The horizontal im-
pedance is primarily reactive and has only a small resistive
component due to the ferrite. The vertical component
depends additionally on the kicker magnet termination,
and it is this component that is important from the stand-
point of stability. In order to address both the contributions
of eddy currents in the magnet and the PFN, the impedance
measurements were performed by three different methods:
twin-wire measurements with external reference, twin-
wire measurements with shorted busbar as reference, and
direct measurements at the busbar. Although measure-
ments were carried out only for a prototype and for the

TABLE I. SNS ring parameters.

Parameter Units Design Present production Instability

Circumference meters 248 248 248

Kinetic energy GeV 1.0 0.925 0.860

Bunch population �1014 protons 1.5 1.0 0.77

�, Relativistic gamma 2.066 1.986 1.917

�, relativistic beta 0.875 0.864 0.853

�T , gamma transition 5.246 5.246 5.246

�, phase slip factor �0:198 �0:217 �0:236
�x, �y tunes 6.23, 6.20 6.23, 6.20 6.23, 6.20

Revolution frequency MHz 1.058 1.044 1.031

Ring rf harmonics 1, 2 1, 2 Off

Ring rf voltages keV 40, 20 15, 9 Off

Ring bunch length meters 165 174 248 (coast)

rms energy spread MeV 3.5 2.5 0.5

�x, �y, chromaticity �9:40, �7:32 �9:40, �7:32 �0:0, �0:0
"x, "y rms emittances mm-mradian 30, 30 �30, �30 �30, �30
h�yi Average beta-y ring, kickers meters 6.36, 9.30 6.36, 9.30 6.36, 9.30

FIG. 1. Extraction kicker magnet cross section and view.
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smallest extraction kicker, an analytic model that incorpo-
rates the magnet geometry [14,15] was used to scale the
combined measurements to estimate the overall impedance
of the extraction kicker system. The result is shown in
Fig. 2, which was taken from Ref. [5].

The values of the impedances used in the simulation
presented in Sec. VI of this paper were based on the models
presented in Refs. [14,15]. We present them here for ref-
erence in Fig. 3, which shows good agreement with the
experimental estimates plotted in Fig. 2.

III. ANALYTIC AND COMPUTATIONAL MODELS
FOR TRANSVERSE STABILITY STUDIES

In this section we present the analytic and computational
models employed in these studies. Theoretical work on
transverse dipole instabilities for coasting beams is a robust
field. Initial models [16,17] assumed linear space charge,
which can be described using an impedance formulation, to
develop dispersion relations that were used to determine
regions of stability. A number of these models can now be
found in textbooks [1,18,19]. Early attempts to include the
space-charge nonlinearity involved the modification of
these dispersion relations [20–22]. During the past decade
there have been advances in understanding the effect of
space-charge nonlinearity on transverse dipole instability
[23–27]. In Ref. [23], Blaskiewicz applied first order

perturbation theory to a one-dimensional Vlasov model
to obtain a dispersion relation incorporating nonlinear
space charge. Application of this equation to a number of
model transverse beam distributions found that linear
space-charge models are adequate when Landau damping
arises from chromatic effects or phase slip, but that non-
linear space charge modifies stability boundaries in the
presence of cubic lattice nonlinearities from octupoles or
fringe fields. Starting with a two-dimensional model,
Pestrikov obtained a complicated integral equation in
Ref. [24]. However, in order to make further progress he
dropped back to a one-dimensional approach in Ref. [25]
and essentially reproduced the results of Blaskiewicz. In
Ref. [26], Kornilov et al. solved Mohl’s dispersion relation
from Ref. [22] and compared the results with particle-in-
cell (PIC) calculations using the code PATRIC [28]. They
focused on the case of strong space-charge and octupolar
lattice nonlinearities and found that nonlinearity of the
space-charge force can significantly affect stability
boundaries. It should be noted that their numerical calcu-
lations used a 2D space-charge solver with no longitudinal
slicing. Other authors (e.g., [29]) have argued for the linear
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FIG. 3. Impedance of the SNS extraction kicker system used in
simulations, based on Refs. [14,15].

FIG. 2. Estimated coupling impedance of the SNS extraction
kicker system, from Ref. [5].
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treatment of space charge in collective stability analysis
because, unlike Landau damping from chromaticity or
lattice nonlinearities, the space-charge nonlinearity moves
with the beam. In Ref. [27], Burov and Lebedev delineate
the domain of validity of the rigid beam instability treat-
ment for the case where the spread of lattice frequencies is
small compared to the separation between coherent and
average incoherent frequencies and where the instability
growth rate is slow. Using a rigid beam model applied to
Gaussian beams and to chromatic and octupolar frequency
spreads, they calculate Landau damping and threshold
space-charge tune shifts versus coherent growth times.
They find that, although rigid beam stability diagrams are
not valid over most of parameter space, they are valid for
most cases of practical interest.

As with coasting beams, the theoretical analysis of
bunched-beam stability including synchrotron motion
was first conducted a long time ago [30–32] and the
resulting models have since been included in textbooks
[1]. These early studies did not incorporate space charge.
Balbekov [33] was the first to consider the effects of space
charge in bunched beams, working in the limit that the
space-charge tune shift is small compared to the synchro-
tron frequency. Later, Blaskiewicz [34,35] developed an
analytic description of coherent modes without restrictions
on the relative values of the space-charge tune shift, the
synchrotron tune, and the coherent tune shift. However,
this work was restricted to short-range wake forces, a
square well model, and an air-bag distribution. In recent
papers, Burov [36] treated general distributions and wake
functions in the limit that the space-charge tune shift is
much greater than the synchrotron tune and the wake-
driven coherent tune shift, and Balbekov [37] considered
the general problem in the limit that the instability growth
rate is small compared to the synchrotron and space-charge
frequency shifts. Balbekov’s main conclusion is that the
space-charge tune spread causes significant Landau damp-
ing which suppresses most transverse modes.

In the present work, we employ analytic calculations in
two ways: first in order to benchmark the transverse im-
pedance model in the ORBIT code; and second to estimate
the magnitude of the impedance from the growth rate of the
experimentally observed instability. We use a simple
model for coasting beam stability in which space charge
is treated through an impedance formulation. We restricted
benchmarks of the model to coasting beams with trans-
verse Kapchinskij-Vladimirskij (KV) distributions [1,38],
which are characterized by linear space charge forces, thus
avoiding the complications of nonlinear space charge and
bunched beams. Because the observed instability involves
a coasting beam with corrected (� zero) chromaticity and
significant space-charge tune shift, this simple analytic
model should again be reasonably applicable. Our specific
analytic formulation was discussed in detail in Ref. [2], and
we briefly repeat it here, adding the effect of chromaticity.

Consider a beamwith dipole momentDðz; �; �Þ in which
z, �, and �, are, respectively, the longitudinal coordinate in

the bunch, the energy deviation � ¼ �E
ETot

¼ �2 �p
p0
, and the

commoving position coordinate � ¼ s
� , where � is the

periodic length. Assume that the beam receives an imped-
ance kick once each lattice period and undergoes betatron
oscillations between kicks. The equation for Dðz; �; �Þ is
d2D
d�2

þ KðsÞ�2D ¼ F
�m ð��cÞ2, where KðsÞ is the transverse

focusing function, F is the force of the impedance kick,
m is the particle mass, c is the velocity of light, and �
and � are the usual relativistic factors. We define a nor-
malized dipole momentDN ¼ D

ffiffiffiffiffiffi

�s"
p and a phase coordinate

	 ¼ 1
2
�b

R

s
s0

ds
�s
, where �b is the betatron tune, �s is the

Courant-Snyder beta function, " is the emittance of
the beam, and s0 is some chosen reference position in the
lattice. The equation for DN for a general periodic lattice

can be written ðd2DNÞ=ðd	2Þ þ ½2
ð�b þ ��bÞ�2DN ¼
F
�m ð2
�b�c Þ2 ffiffiffiffiffiffiffiffiffiffiffi

�3
s="

p

, where ��b is the energy-dependent

tune shift. We assume ��b ¼ � �p
p0

¼ � �
�2 , namely, that

the tune shift is due to the chromaticity, �.
To analyze this equation, some further assumptions are

made. For the localized impedance, we assume a single
harmonic, so that Z? ¼ Z?ðn!0 þ!bÞ for lattice fre-
quency !0, betatron frequency !b, and integer mode
number n. The force with this single harmonic is then
given by the equation F ¼ �RefiqIDðz; �;	ÞZ?ðn!0 þ
!bÞ��ðs� s0Þg, where q is the charge, I is the current,
��ðs� s0Þ is the periodic delta function with period �,
and s0 is now the location of the impedance. The normal-
ized dipole moment can then be factored into rapidly and
slowly varying parts:

DNðz;�;	Þ¼dsð�;	Þexp
�

i

�

2
n
z

�
þ
Z dz

�s

þ2
�b	

��

;

where dsð�;	Þ varies slowly and is independent of z.
We also note that the total derivative is d

d	 ¼ @
@	þ

dz
d	

@
@z þ d�

d	
@
@� , where dz

d	 ¼ 2
�b��
�2 �s,

d�
d	 ¼ 0, and � ¼

1
�2 � 1

�2
T

is the phase slip factor. Assuming that � and dds
d	

are small quantities and that d
2ds
d	2 is negligible, substitution

of the expression for DNðz; �;	Þ into its dynamic equation
yields a first order equation for dsð�;	Þ.
We then make use of the fact that the collective force F

is small and apply the method of averaging to take the
average of the force term over K turns, where K � 1. We
include the effect of the energy distribution in the force
term by replacing the dipole moment by its integral over
the unit-normalized energy distribution gð�Þ. The resulting
equation is

@dsð�;	Þ
@	

þ i�ð�Þdsð�;	Þ¼�
Z 1

�1
gð�Þdsð�;	Þd�; (1)
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where�ð�Þ¼2
�
�2 ½ðnþ�bÞ�þ�� and �¼�NrpZ?ðn!0þ!bÞ

��Z0
�

2
�s0

� . The remaining quantities in these equations are the

number of protons N, the classical proton radius rp, and

the impedance Z0 ¼ 377 �. Following the analysis of
Ref. [1], we assume the dependence ds / e�i2
�	, where
� is complex and is expressed in units of the fundamental
ring frequency. Instability occurs when the imaginary part
of � is positive, and the stability boundary lies on the real
axis in the� plane. Then, manipulating Eq. (1), we obtain
the dispersion relation

hðnÞ � � NrpZ?ðnþ �bÞ�2ETot

2
i��Z0jðnþ �bÞ�þ �j
2
�s0

�

¼ 1
R1
�1

gð�EÞdð�EÞ
�E� �2ETot

jðnþ�bÞ�þ�j�

� 1

að�Þ þ ibð�Þ : (2)

By plotting 1
að�Þþibð�Þ as evaluated from the integral in

Eq. (2) in the complex plane for real values of �, we
determine a stability diagram. By comparing this with
hðnÞ as evaluated from the first line in Eq. (2), we can
determine the stability as a function of the parameters in
the equation. In particular, we concern ourselves with the
beam energy distribution gð�EÞ, the mode number n, the
value of the impedance, and the chromaticity �. We used
the approach of Eqs. (1) and (2) to benchmark ORBIT’s
impedance model.

If an observed instability is well above threshold (which
is our case), then the growth rate should not be overly
sensitive to the beam distribution. Then, treating space
charge linearly and ignoring Landau damping by assuming
a delta function energy distribution, Eq. (1) can be solved
to relate the impedance to the growth rate as

Re ðZÞ ¼ 2��2E0

��s0I
; (3)

where Z is the impedance in�=m, E0 is the proton mass in
eV, � is the growth time in turns,�s0 is given in meters, and

I is the average beam current in amperes. The analytic part
of our strategy in analyzing the observed instability will be
to use the measured growth time in Eq. (3) to estimate the
driving impedance, which can then be compared to the
measured value. The assumptions used to derive Eq. (3)
lead to the overestimation of the growth of a real beamwith
energy spread. Therefore, the experimental growth time
should be longer than that from Eq. (3), and its use in
Eq. (3) should result in an impedance prediction that is
somewhat lower than the actual value.

The computational model used in this work is contained
in the ORBIT code [4]. ORBIT is an open source particle
tracking code with a wide variety of models that can be
applied to many accelerator problems. Several different
models are used in the benchmarks and design study results
presented in Sec. IV. We use the most realistic choices to

carry out the simulation of the experimentally observed
instability presented in Sec. VI. For tracking purposes, one
can specify any initial particle distribution. Alternatively,
ORBIT has a stripper-foil model through which a statisti-

cally generated distribution can be injected turn by turn.
The foil model allows for chopping (bunched beams) and
also includes a Monte Carlo treatment of Coulomb,
Rutherford, and nuclear elastic and inelastic scattering,
both for injected and circulating beams. For injection in
SNS simulations, transverse painting is carried out using
time-dependent kicker elements with their actual wave-
forms, lengths, and locations in the lattice to obtain real-
istic beam distributions. At its simplest, single particle
tracking can be done using the first or second order trans-
port matrices from the MAD code (version 8) [39]. For more
realistic studies, ORBIT has symplectic models for all mag-
netic lattice elements and drifts. Hard-edge fringe fields
can be included symplectically using a formulation given
by Forest [40]. ORBIT contains rf cavity models for accel-
eration and bunching. Collective forces are treated using
particle-in-cell (PIC) methods. Longitudinal and trans-
verse (dipole) impedances are implemented as localized
elements using fast Fourier transforms (FFTs), and the
values of the impedances at the desired frequencies must
be provided. The longitudinal impedance model also in-
cludes the option of treating longitudinal space-charge
forces as impedances using the formulation in Ref. [1].
This option is not used when the 3D space-charge model is
invoked. Space charge is formulated using FFTs and meth-
ods described in Ref. [41]. There are two space-charge
models. The simplest is a 2D model in which bunch factor
effects are taken into account by weighting the applied
force by the local current density. There are two variants of
the 2D model: a direct force solver and a potential solver
with conducting wall boundary conditions. We refer to the
other space-charge model in ORBIT as the 3D model. The
3D model is actually a succession of 2D slices with a 2D
potential solver on each slice. Again, conducting wall
boundary conditions are used. Transverse and longitudinal
forces are calculated by numerical differentiation of the
potential. The 3D model is accurate when the longitudinal
bunch scale length is much greater than the beam pipe
radius, which is the case in most synchrotrons and certainly
in SNS. The 3D solver is used whenever transverse imped-
ances are considered, because the slicing incorporates the
longitudinal variation of the transverse dipole moments,
which is essential to the physics. The other ORBIT models
employed in these calculations are a complete set of aper-
tures, which are treated as completely absorbing, to ac-
count for beam losses during the simulation.

IV. TRANSVERSE STABILITY SNS BENCHMARK
AND DESIGN STUDIES

In this section we present results of transverse sta-
bility studies performed during the SNS design. Model
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benchmarks using the SNS lattice were carried out for
coasting beams with linear KV space-charge distributions.
Analytic estimates were made for stability boundaries and
then compared with numerical calculations. The purpose
of the benchmark calculations was actually twofold:
in addition to validating ORBIT’s impedance model, the
benchmark calculations provided the first steps in an in-
creasingly realistic simulation of SNS beam stability.
Accordingly, the benchmark studies were extended to
bunched beams, for which all calculations were numerical.

The benchmark comparisons between ORBIT and the
analytic model were carried out using the SNS ring lattice
for a number of scenarios. In all, we used the design tunes
of �x ¼ 6:23 and �y ¼ 6:20. Tracking was done using,

alternatively, linear MAD matrices or a fully symplectic
routine. Tracking with MAD matrices incorporates Landau
damping only through the phase slip factor which,
for SNS (with �T ¼ 5:246 and � ¼ 2:066 at 1.0 GeV) is
� ¼ 1

�2
T

� 1
�2 ¼ �0:198. In addition to the phase slip factor,

symplectic tracking incorporates chromatic and fringe field
effects. Symplectic tracking was carried out both for natu-
ral chromaticity, which takes the value � ¼ �7:320 in
SNS, and for zero chromaticity, obtained by adjusting the
sextupole fields. For the ‘‘slow mode’’ and natural chro-
maticity, the phase slip and chromatic terms in Eqs. (1) and
(2) are of comparable size when n ¼ 42, with chromatic
effects dominant at smaller values of n. We also did the
calculations both with and without space charge, which we
treated analytically as an imaginary contribution to the
transverse impedance. We examined the modes n ¼ 10,
which is in the dominant peak of the bunched-beam spec-
trum, and n ¼ 25, to benchmark ORBIT at shorter wave-
length. Initially we studied a coasting KV beam with peak
emittance "x ¼ "y ¼ 140 mmmrad, zero energy spread

(a delta function distribution) and N ¼ 3� 1014 protons,
which is comparable to the peak density in SNS with
longitudinal bunching included. These parameters give a
space-charge tune shift �� ¼ �0:078. For natural chro-
maticity, an energy spread of 16 MeV would be required
for the chromatic tune shift to overlap the space-charge
tune shift. For the delta function distribution, the analytic
stability diagram predicts that all positive real impedances
lead to instability, regardless of imaginary impedance val-
ues (space charge), and that negative real impedances
result in stability. The ORBIT calculations, performed for
n ¼ 10 under the variety of assumptions discussed above,
were completely consistent with the analytic results. The
delta function distribution can be considered a limiting
case of the Lorentz distribution at zero energy spread. As
a second case, we considered the Lorentz distribution, for
which the dispersion relation predicts a straight-line stabil-
ity diagram with the stability boundary at some positive
real impedance, again independent of the imaginary value.
ORBIT calculations for the Lorentz distribution again

agreed with the analytic stability results. For several cases

in which space charge was ignored, the agreement was
precise for both n ¼ 10 and for n ¼ 25, regardless of the
selection of particle transport model or the selection of
zero or natural chromaticity. All cases with the impedance
set above threshold, even by only a few percent, proved to
be unstable while all cases with the impedance set below
threshold were stable. Because of Landau damping, in-
creasing the energy spread or the chromaticity stabilized
the beams by increasing the threshold. For cases with space
charge included and n ¼ 10, ORBIT again obtained precise
agreement with the analytic model.
As a next step toward a realistic extension of the coast-

ing beam calculations, we constructed an ‘‘SNS coasting
beam’’ as follows: Using ORBIT, we injected a full intensity
bunched beam of 1:5� 1014 protons over 1060 turns into
the SNS ring. The dynamics included transverse painting,
symplectic tracking, space charge, the ring rf focusing, and
the longitudinal and transverse impedances from the ex-
traction kickers, which dominate the ring. The beam dis-
tribution at the longitudinal center (peak) of the bunch was
then used to generate a coasting beam of the same shape
and intensity. The resulting transverse horizontal and ver-
tical beam profiles are shown in Fig. 4. Although the
transverse distribution is not uniform and results in non-
linear space-charge forces, the maximum incoherent
space-charge tune shift is approximately �� � �0:2,
which is significantly larger than the coherent tune shift,
and the linear analytic space-charge formulation should be
applicable. The resulting energy distribution, shown in
Fig. 5, was fit by simple functions that could be used in
Eq. (2) to provide stability diagrams. The distribution was
well represented by the sum of rectangular and Gaussian
contributions, as shown in the figure. The bunch factor for
this case in the ORBIT injection simulation was 0.4, so we
used N ¼ 3:75� 1014 protons in the calculations and
coasting beam simulations here.
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beam obtained from the ORBIT injection simulation.
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The stability diagram for the SNS coasting beam is
shown in Fig. 6, which plots 1

að�Þþibð�Þ for real values

of �. By comparing hðnÞ in Eq. (2) to the plot, the axes
can be seen to correspond to imaginary (horizontal) and
to real (vertical) impedances, respectively. The region
above the curve is unstable and the region below is stable.
The stability diagram is valid for different values of phase
slip factor, chromaticity, intensity, and mode number, but
the scales depend on all these factors through Eq. (2). For
n ¼ 10 and the SNS case considered here, at zero chro-
maticity a change of 0.001 on either axis in Fig. 3 corre-
sponds to 11:2 k�=m, and for natural chromaticity a
change of 0.001 represents 105:5 k�=m. In comparison,
the extraction kicker impedance is ZR � 30 k�=m, ZI �
110 k�=m at n ¼ 10 (about 4 MHz for the slow mode)
and the space-charge impedance is ZI � 3:5 M�=m.

The analytic instability thresholds from the stability dia-
gram in Fig. 6 have been compared with computational
ORBIT results for a real impedance of n ¼ 10 and several

cases. The results show that ORBIT is in good agreement
with the analytic predictions, as shown in Table II. The
cases are as follows: (1) linear MAD tracking, no space
charge; (2) symplectic tracking, corrected chromaticity, no
space charge; (3) symplectic tracking, natural chromatic-
ity, no space charge; (4) linear MAD tracking, with space
charge; and (5) bunched beam, natural chromaticity, no
space charge. Thus, in case 1 the only Landau damping
comes from the phase slip; in case 2 nonlinearities are
added through sextupoles and the hard-edge fringe fields;
case 3 adds the effect of natural chromaticity by turning off
the sextupoles; case 4 considers space charge in the pres-
ence of phase slip; and case 5 treats the actual injected
bunched beam. The ORBIT threshold for case 2 is slightly
high compared with the analytic prediction due to the
additional damping from the fringe field nonlinearities.
Case 4 shows the destabilizing effect of space charge for
coasting beam cases. Finally, case 5 was calculated using a
bunched beam and, comparing with the otherwise equiva-
lent case 3, we see that the bunched beam is much more
stable. Thus, coasting beam studies, although providing the
opportunity to benchmark against analytic calculations, are
not relevant for normal SNS operation.
Because SNS operates with bunched beams, and be-

cause coasting beam predictions differ significantly from
bunched-beam calculations, we also carried out several
bunched-beam simulations with ORBIT. These were done
for the design intensity of 1:5� 1014 protons, injected
over 1060 turns, again using the design tunes. The calcu-
lations included transverse injection painting, the ring rf
longitudinal focusing, the extraction kicker longitudinal

TABLE II. SNS coasting beam stability results: N ¼ 3:75�
1014 protons, n ¼ 10.

Case Analytic threshold

( k�=m)

ORBIT stable

(k�=m)

ORBIT unstable

(k�=m)

1 25.6 25 30

2 25.6 30 40

3 242 200 300

4 0 0 10

5 800 1000

TABLE III. SNS bunched-beam stability results: N ¼ 1:5�
1014 protons, ðextraction kicker impedanceÞ � Z.

Case No space charge No space charge Space charge Space charge

Stable� Z Unstable� Z Stable� Z Unstable� Z

1 0.5 0.6 1.5 2

2 0.6 0.8 2 3

3 5 7 3 4
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FIG. 5. The red curve shows the energy distribution of the SNS
coasting beam obtained from the ORBIT injection simulation. The
blue points show the fit of the analytic functions (rectangle plus
Gaussian) to the simulation.
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impedance, the transverse impedance (we used 32 modes)
as shown in Fig. 3, and variations on the single particle
transport and presence of space-charge forces. In all cases,
thresholds were obtained in terms of impedances by multi-
plying the measured extraction kicker impedance by vary-
ing coefficients. The results are shown in Table III, both
without and with space charge. The cases are as follows:
(1) linear MAD tracking; (2) symplectic tracking, corrected
chromaticity; and (3) symplectic tracking, natural chroma-
ticity. The results of case 3 show, as in the coasting beam
calculations, that chromaticity leads to significant stabili-
zation. We also see from cases 1 and 2 that, if space charge
is neglected, SNS at zero chromaticity is predicted to be
unstable at the extraction kicker impedance. The important
columns are those including space charge. Unlike the
coasting beam case in Table II, for which space charge is
strongly destabilizing, the effect of space charge on the
SNS bunched beam is stabilizing for the zero chromaticity
case and somewhat destabilizing at natural chromaticity.
Most important, these calculations predict that SNS will be
stable with at least a factor of 2 to spare over the measured
extraction kicker impedance. Although the stability of
bunched beams is an area of active theoretical research
[33,34,36,37], we do not consider an analytic treatment
here.

From these studies, we conclude that, for coasting
beams, the ORBIT code benchmarks very well with analytic
results of instability thresholds, including the effects of
phase slip, chromaticity, and space charge. These beams
are stabilized due to Landau damping by increasing the
energy spread and/or the chromaticity. For coasting beams,
when the linear treatment of space charge is appropriate, it
tends to be destabilizing, as the imaginary space-charge
impedance shifts the beam away from the stabilizing
Landau-damped portion of the stability diagram. Also,
coasting beam results are found to be less stable than those
of bunched beams for otherwise similar cases. The coast-
ing beam model predicts instability for SNS ring energy
distributions and intensities, while realistic simulation with
3D space charge shows that bunched beams are stable,
even for zero chromaticity. Unlike coasting beams,
bunched beams are not significantly destabilized by
space-charge effects. The greater stability of bunched
beams is due to several factors, including the coupling of
many modes and the spread of betatron tunes along the
longitudinal coordinate due to vacuum chamber and bunch
factor effects. Ultimately, real bunched-beam dispersion
relations will be required to describe analytically our par-
ticular SNS Ring situation.

V. THE OBSERVED EXTRACTION
KICKER INSTABILITY

Section IV shows that the Spallation Neutron Source
accumulator ring was designed and constructed to be stable
at the full intensity of 1:5� 1014 protons. Bunched-beam

stability calculations using ORBITwith the extraction kicker
impedance show longitudinal stability up to 8�
1014 protons [42], while Table III shows that transverse
stability at 1:5� 1014 protons is predicted for up to 3 to 4
times the known impedance. However, for coasting beams
in SNS, Table II shows that analytic and ORBIT calculations
for mode number n ¼ 10 and 1:5� 1014 protons predict
vertical instability when ReðZÞ> 0 k�=m at zero chroma-
ticity and when ReðZÞ 	 250 k�=m at natural chromatic-
ity. Because the measured impedance of the extraction
kickers in the vicinity of n ¼ 10 is ReðZÞ � 30 k�=m, it
is appropriate to use coasting beams and corrected chro-
maticity to look for this instability experimentally.
The extraction kicker instability has been observed

under these conditions in the course of high intensity
beam studies. The scenario was the following: The ring
tunes were set at �x ¼ 6:23 and �y ¼ 6:20. The chroma-

ticity was corrected to zero and the rf buncher cavities were
turned off. The choppers were also turned off so that a
continuous coasting beam was accumulated. An 860 MeV
beam of 7:7� 1013 protons, more than 12 �C, was in-
jected for 850 turns and subsequently stored until the
beam was lost in the ring. The evolution of the beam was
followed for 10 000 turns. The observed instability began
at about 1200 turns and saturated somewhat beyond
4000 turns. It was active in the transverse vertical direction
with dominant harmonic at 6 MHz and noticeable excita-
tion in the 4 ! 10 MHz range, as shown in Fig. 7.
Interpreting this to be a ‘‘slow’’ mode, the frequency is
consistent with dominant harmonic n ¼ 12, and excitation
in the range 10 
 n 
 16. Because the SNS ring frequency
is roughly 1 MHz and the betatron tunes are slightly above
six, mode numbers for the ‘‘slow mode’’ correspond
roughly to the observed instability frequency in MHz
plus six. The observed signal range agrees well with the

FIG. 7. Evolution of experimental turn-by-turn vertical har-
monic spectrum of the extraction kicker instability.
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predicted range of dominant unstable mode numbers from
the extraction kicker impedance.

The experimental results for this case have been presented
in Ref. [6], and the growth rate of the 6 MHz (n ¼ 12)
harmonic was used with Eq. (3) to infer the extraction
kicker impedance at that frequency. The resulting prediction
of 28 k�=m is in excellent agreement with the laboratory-
measured impedance of 30 k�=m. We have now performed
a precise simulation of this case, using ORBIT and matching
all known experimental details as closely as possible.

VI. SIMULATION OF OBSERVED EXTRACTION
KICKER INSTABILITY

We used the actual ring settings with �x ¼ 6:23 and
�y ¼ 6:20 and zero chromaticity. The ring rf cavities

were turned off and a continuous coasting beam of
7:7� 1013 protons at 860 MeV was injected for 850 turns
and stored up to 10 000 turns. The injected beam rms
energy spread was taken to be 0.5 MeV, consistent with
observation, and the nominal SNS transverse injection
painting was employed. Tracking was carried out using
symplectic single particle transport, the laboratory-
measured longitudinal and transverse impedances for the
extraction kickers, and the 3D space-charge model. In
addition, the ORBIT foil scattering model was activated
and a complete set of apertures was included to incorporate
beam losses during accumulation and storage. The number
of macroparticles in the simulation was 4:25� 106, about
double the number required for convergence of the 3D
space-charge model.

One of the more impressive results presented in Ref. [6]
was the above-mentioned agreement between the extrac-
tion kicker impedance calculated from the observed
growth rate of the instability using Eq. (3) and that mea-
sured in the laboratory. There are 14 extraction kickers
distributed over a length of about 10 m in the SNS ring. The
vertical beta function at the kickers varies from a minimum
of 6.4 m to a maximum value of 13.5 m, with an average
value of 9.3 m. The measurement gave an experimental
growth time of 1036 turns. In estimating the value of
28 k�=m using Eq. (3), a value �s0 ¼ 6 m, which is close

to the average for the entire ring, was assumed. If, instead,
the average value of �s0 ¼ 9:3 m at the extraction kickers

is used, the estimated impedance is 18 k�=m, which is
lower than the lab value of 30 k�=m. However, Eq. (3)
was derived under the assumptions that we are far from
threshold and that the energy distribution is a delta func-
tion, thus ignoring Landau damping. Both these assump-
tions overestimate the growth of a real beam with energy
spread. Therefore, we expect the experimental growth time
to be longer than that from Eq. (3), and its use in Eq. (3)
should result in an impedance prediction that is somewhat
lower than the actual value.

The ORBIT simulation was carried out with a single
extraction kicker impedance node using the experimentally

measured impedance values from Fig. 3 and placed at a
position among the extraction kickers where the beta func-
tion satisfies�s0 ¼ 9:3 m. The result, shown in Fig. 8, is an

exponential growth time for the n ¼ 12 harmonic that is
completely consistent with themeasured time of 1036 turns.
This impressive result is an important testimony to the
necessity of getting all the details correct when performing
a quantitative comparison between experiment and simula-
tion. In reaching the result of this simulation, we made a
number of false starts [8–10]. Erroneous assumptions in-
cluded the use of chopped beams, the use of (too large)
impedances from a previous design of the extraction
kickers, and the placement of the impedance node at the
geometric center of the extraction kickers rather than at a
location with the average beta function. With hindsight,
mistakes such as these appear to be foolish. However, in
simulating a complicated particle accelerator, there are
many details, each of which can affect the results. As
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FIG. 8. Vertical n ¼ 12 harmonic (in blue) versus turn number
in the ORBIT extraction kicker instability simulation. The red line
depicts an exponential growth time of 1036 turns.

FIG. 9. Evolution of simulated turn-by-turn vertical harmonic
spectrum of the extraction kicker instability.
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each of these errors was rectified, the simulation improved,
until we now achieve the correct growth rate for the
instability.

We have completed the calculation to 10 000 turns. The
evolution of the experimental and simulated turn-by-turn
spectra shown in Figs. 7 and 9, respectively, display
activity over a similar range of frequencies, although the
simulation shows somewhat more spreading than the ex-
periment. Also, most of the activity occurs after 5000 turns,
which is after the completion of the linear growth. The
experimental signals were extracted from an FFT of high
bandwidth beam position monitor data. The simulated
signals are harmonics of the beam centroid oscillations,
measured in millimeters. Thus, although the agreement
between simulation and experiment is excellent in the
linear growth phase of the instability, as shown in Fig. 3,
it is only qualitative during the nonlinear latter stages of the
evolution. During this time other effects, such as beam
loss, can complicate the comparison.

VII. CONCLUSIONS

During one of the dedicated high intensity accelerator
physics studies in SNS, the extraction kicker instability was
observed experimentally and documented. Subsequently, a
simple theoretical analysis using Eq. (3) was applied to the
observed growth rate of the dominant n ¼ 12 harmonic to
give an estimate of the extraction kicker impedance that
was in reasonable agreement with the measured value [5,6].
In this paper we presented a careful simulation of the
observed extraction kicker impedance instability using
the ORBIT code and the detailed parameter values from
the experiment. In particular, we considered a coasting
beam, accumulated with the observed lattice settings, in-
jection scenario, beam intensity, energy spread, and chro-
maticity. We also included space charge, foil scattering, and
beam losses during injection and storage of the beam for
10 000 turns. Before presenting the simulation results, we
showed the excellent benchmarks of ORBITwith theory for a
variety of SNS cases including the effects of space charge
and Landau damping due to energy spread, phase slip, and
chromaticity as well as the predictions of ORBIT for SNS
stability of coasting and bunched-beam cases. In the simu-
lation of the experiment, we found that the growth rate of
the n ¼ 12 harmonic agrees precisely with the experimen-
tally observed value. Comparison of the spectral evolution
of the experiment and simulation out to 10 000 turns shows
qualitatively similar results, with harmonics in the range
n ¼ 10–16 dominant.
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