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The acceleration of polarized electron beams in the blowout regime of plasma-based acceleration is

explored. An analytical model for the spin precession of single beam electrons, and depolarization rates of

zero emittance electron beams, is derived. The role of finite emittance is examined numerically by solving

the equations for the spin precession with a spin tracking algorithm. The analytical model is in very good

agreement with the results from 3D particle-in-cell simulations in the limits of validity of our theory. Our

work shows that the beam depolarization is lower for high-energy accelerator stages, and that under the

appropriate conditions, the depolarization associated with the acceleration of 100–500 GeV electrons can

be kept below 0.1%–0.2%.
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I. INTRODUCTION

Polarized particle beams are widely used in state-of-the-
art high-energy physics (HEP) experiments [1–3]. The
beam polarization, which corresponds to the average of
the particle beam spins, is an essential beam feature,
critical to several fundamental physical problems, includ-
ing precision tests to the standard model [3], the search for
the Higgs boson [4], and the discovery of new physics, for
instance, in higher dimensions [3]. State-of-the-art and
future accelerators are aiming at the acceleration of highly
polarized electron beams. For instance, design for the
International Linear Collider (ILC) considers 0.5 TeVelec-
tron beams with polarizations above 80% (close to the
maximum polarization of 100%, where all the beam parti-
cles spins are aligned in the same direction), with typical
depolarizations below 0.1%–0.2% [5], which are mainly
associated with the beam-beam interaction at the interac-
tion point.

The maximum acceleration gradients that can be at-
tained in standard accelerators, and that directly impacts
on their size, and cost, is limited by material breakdown
thresholds. The use of plasma waves to accelerate particles
can, therefore, play an important role in future generations
of accelerators by sustaining acceleration gradients which
can be more than 3 orders of magnitude higher than
standard accelerators [6].

In plasma based acceleration (PBA), accelerating struc-
tures can be excited by either particle or laser drivers. The
most striking experiments using electron beam drivers
[plasma wakefield acceleration (PWFA)] doubled the

energy of 42 GeV electron beams in 80 cm long plasmas
[7]. These results were obtained in the blowout regime,
where plasma electrons are evacuated from the region
where the driver propagates. The resulting wakefield
structures are characterized by linear accelerating and
focusing forces, and are ideally suited for electron accel-
eration [8–10].
The most important advances using laser pulse drivers

[laser wakefield acceleration (LWFA)], also occurred in
the blowout regime, and demonstrated the acceleration of
1 GeV electron beams in cm-scale plasmas [11–15].
Several techniques were also devised in order to control
the acceleration processes [16], adjusting the bunch en-
ergy, charge [17–20], and transverse features [21].
Recently, the use of proton drivers was also proposed as
a means to accelerate electron beams even further to *
0:5 TeV in & 1 km plasmas [22]. These results show,
clearly, the capability of PBA, and in particular, the capa-
bility of the blowout regime of PBA, to accelerate
high-quality electron beams to high energies [23,24] in
controlled acceleration scenarios. However, for a future
plasma-based linear collider, or for a plasma afterburner
[7,25–28], it is important not only to achieve high final
output energies, but also to achieve low and controlled
depolarization rates.
The depolarization of an electron beam is fully deter-

mined by the temporal evolution of the direction of the
spin, s, of each beam electron. During its acceleration, the
spin of the electron can change according to two different
mechanisms: the stochastic spin diffusion from photon
emission [29,30], and the spin precession around the elec-
tric and the magnetic fields [2,31]. On one hand, the
stochastic spin diffusion is a nondeterministic process
consisting in the rotation of the spin vector in the presence
of a magnetic field, with the emission of a photon. The
Sokolov-Ternov effect [29] (spin flip) is a well-known
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stochastic spin diffusion mechanism, which can polarize
electron beams in circular accelerators. On the other hand,
the spin precession is a deterministic process, and can be
examined by treating the spin as an intrinsic electron
magnetic moment.

The spin precession is an important mechanism that has
a decisive role in the design of accelerators. In circular
accelerators, the spin precession can depolarize the beam
completely if the spin precession frequency is a multiple of
the orbital frequency (depolarizing resonance) [1,2]. In
linear accelerators (linacs) and colliders, however, the
typical depolarizations are as low as 0.1%–0.5% for
0.5–1 TeV accelerators and colliders [5]. This work is
then focused on the dynamics of spin precession in plasma
wakes, while the nondeterministic spin diffusion is left for
a future work.

This paper shows that the electron beam depolarization
during the acceleration in PBAs may fulfill the require-
ments for high energy physics experiments, provided
that the beam emittances are sufficiently low, and shows
that depolarizations of 0.1%–0.2% can be achieved in 100–
500 GeV accelerators. In Sec. II, the Thomas–Bargman-
Michel-Telegdi (T-BMT) equations, which describe the
spin precession of relativistic charged particles, are used
to derive a set of coupled equations for the spin precession
in plasma accelerators. This analysis reveals that the spin
precession is fully determined by the transverse forces that
act on relativistic particles. In Sec. III, analytical expres-
sions for the depolarization associated with zero-emittance
electron beams are derived. In Sec. IV it is shown that
externally guided propagation regimes lead to lower depo-
larization rates in comparison to self-guided propagation
regimes. In addition, it is found that the depolarization of
higher energy plasma accelerators is lower than that of
lower energy plasma accelerators. In Sec. V the model is
compared with numerical simulations in scenarios that go
beyond the validity limits of the analytical theory. Two
approaches were used: in the first approach, the prescribed
electromagnetic fields and trajectories of electrons in the
blowout regime are considered; the second approach uses
the fully self-consistent electromagnetic fields and electron
trajectories from 3D PIC simulations in QUICKPIC [32].
Finally, in Sec. VI, the conclusions are stated.

II. SINGLE ELECTRON SPIN DYNAMICS

In order to determine the polarization of the beam, the
spin precession of a single electron is first examined. For
nonrelativistic electrons, the spin precession follows:

ds

dt
¼ ��B ¼ �g

s� B

2
; (1)

where � ¼ �gs=2 is the electron intrinsic magnetic
moment, g ’ 2:002 322 8 is the dimensionless magnetic
moment of the electron (g factor), t is the time normalized

to the inverse of the plasma frequency!p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�e2n0=me

p
,

with e and me being the electron charge and mass, n0 the
plasma density, B is the magnetic field normalized to
mec!p=e, and where c is the speed of the light.

Equation (1) indicates that the spin of a nonrelativistic

(NR) electron—with relativistic gamma factor � ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
* 1, with v denoting its velocity normalized

to c—precesses around the magnetic field lines with fre-
quency�NR ¼ ��B ¼ gB=2. However, most interesting
particle acceleration scenarios use ultrarelativistic electron
beams with � � 1. In order to obtain a correct description
of the spin precession dynamics for this case, the relativ-
istic generalization of Eq. (1), which is not covariant, is
required, and given by [31]

ds

dt
¼�

��
aþ 1

�

�
ðB�v�EÞ�v

a�

�þ1
v �B

�
�s¼��s:

(2)

All the quantities in Eq. (2) are in the laboratory frame,
except for s, which is an intrinsic property of the electron
and is, for that reason, described in the electron rest
frame. Moreover, the precession frequency � is � ¼
½ðaþ 1=�ÞðB� v� EÞ � va�v �B=ð�þ 1Þ�. The quan-
tity a ¼ ðg� 2Þ=2 ’ 0:001 161 4 is the anomalous mag-
netic moment of the electron, and E is the electric field
normalized to me!p=e.

Although the T-BMTequations are strictly valid whenE
and B are homogenous, they can still be used as long as
Stern-Gerlach–type forces (FS-G) can be neglected [2], i.e.
as long as the spin dynamics does not change the electron
trajectories. These forces are proportional to FS-G/
rð� �BÞ/ ðg@=2Þr0!�B, where B / r0 cosð!�tÞ was as-
sumed, and where!�¼!p=

ffiffiffiffiffiffi
2�

p
is the betatron frequency.

Thus, Lorentz forces, proportional to FL / Eþ v�B /
r0 � FS-G / @r20=

ffiffiffiffi
�

p
, dominate the electron dynamics in

the plasma wave, validating Eq. (2) for PBAs.
Investigation of Eq. (2) in cylindrical coordinates pro-

vides a clear understanding of the physics of the spin
precession for a single electron. In cylindrical coordinates,
the spin vector is s ¼ ðsr; s�; szÞ, where si ¼ s � ei, and
where ei corresponds to the unit vectors in the radial (er),
azimuthal (e�), and longitudinal (ez) directions. In addi-

tion, ðr; �; zÞ are the radial, azimuthal, and longitudinal
coordinates. To simplify the notation, each spin component
is normalized to the absolute value of the electron spin,
such that s takes values between �1 and 1.
The electric field inside the plasma wave has both

radial and longitudinal components E ¼ Erer þ Ezez,
with Ez � Er. Moreover, for electrons with � � 1, vr �
vz ’ 1, which means that the first term on the right-hand
side of Eq. (2) coincides with the radial plasma focusing
force Fr felt by a relativistic electron:

ðB�v�EÞ¼ ðB��vzErþvrEzÞe�’ðB��ErÞe�
�Fre�; (3)
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where vr and vz are the radial and longitudinal components
of the electron velocity, and�Fr is the radial force that acts
on a relativistic electron in a plasma accelerator.
Furthermore, the magnetic field of cylindrically symmetric
plasma waves is purely azimuthal, i.e. B ¼ B�e� [8].

Since for ultrarelativistic electrons � � 1 (the most
relevant scenario for PBAs), v� � vz, where v� is the

azimuthal component of the electron velocity, then v �B ¼
v�B� � 1. Consequently, the last term on the right-hand

side of Eq. (2) can be neglected, and hence Fr fully
determines the spin precession of a single electron in
PBAs.

Inserting Eq. (3) in Eq. (2), and neglecting the v �B term
in Eq. (2) yields

dsr
dt

¼ sz

�
aþ 1

�

�
Fr þ s� _� (4a)

dsz
dt

¼ �
�
aþ 1

�

�
Frsr (4b)

ds�
dt

¼ �sr _�; (4c)

where _� � d�=dt.
Equation (4) represents a set of coupled differential

equations which describe the spin precession of a single
electron in the field structure of a PBA, valid as long as
plasma waves are cylindrically symmetric. According to
Eq. (4), the spin precession is mostly due to the anomalous
electron magnetic moment when � � 1=a ’ 103. For
� � 1=a, the anomalous electron magnetic moment can
be neglected.

Solutions for Eq. (4) can be retrieved by calculating the
transverse electron trajectory in linear focusing and accel-
erating forces. Linear focusing forces are ideal for particle
acceleration, as they preserve the transverse emittance of
the accelerated beam. This is very important for HEP
experiments which require low emittance beams in order
to achieve high luminosities. Both the blowout, weakly
relativistic and even linear regimes are characterized by
linear focusing forces as long as the electron beam
propagates close to the axis. Thus, Fr¼F? � êr¼
�x? �x?=jx?j, where F? ¼ ðFx; FyÞ and x? ¼ ðx; yÞ.
The parameter � ¼ 1=2 if the blowout is complete.
Otherwise, �< 1=2.

In the presence of uniform accelerating fields, Eaccel, the
beam relativistic factor varies with � ¼ �0 þ Eaccelt,
where �0 ¼ �ðt ¼ 0Þ. This simple model for the accelera-
tion of electrons in plasma waves is accurate for a signifi-
cant fraction of the acceleration distance, and only fails
when Eaccel is significantly reduced due to the laser pulse
pump depletion in LWFAs, or electron beam head erosion
in PWFAs, and when the acceleration distance is compa-
rable with the dephasing length in both LWFAs and
PWFAs.

Under the conditions mentioned above, the radial elec-
tron oscillations in the plasma wave ion channel are given
by [33]

ð�0 þ EacceltÞ €x?ðtÞ þ �0 _x?ðtÞ þ �x?ðtÞ ¼ 0; (5)

where x?0 ¼ ðx0; y0Þ is the initial transverse position of the
electron. Equation (5) can be solved analytically for an
electron initially located at x?0, with initial transverse
momentum p?0 ¼ �v?0, for which

ffiffiffiffiffiffiffiffiffi
��0

p
=Eaccel � 1

and
ffiffiffiffiffiffiffi
��

p
=Eaccel � 1, yielding

x?ðtÞ ¼ x?0

�
�0

�ðtÞ
�
1=4

cos

�
2

ffiffiffiffiffiffiffiffiffiffiffiffi
��ðtÞp

Eaccel

� 2
ffiffiffiffiffiffiffiffiffi
��0

p
Eaccel

�

þ p?0

ð�2��0Þ1=4
sin

�
2

ffiffiffiffiffiffiffiffiffiffiffiffi
��ðtÞp

Eaccel

� 2
ffiffiffiffiffiffiffiffiffi
��0

p
Eaccel

�
: (6)

Provided that x?0 and p?0 are known, Eqs. (4) and (6)
fully describe the spin precession dynamics of a single
electron in a PBA.
The most interesting limit for HEP applications is asso-

ciated with low beam emittances, characterized by low
average jp?0j in comparison to the average jx?0j, such
that the eccentricity of the electrons trajectory in the plane
perpendicular to the propagation direction is much higher
than one. According to Eq. (6) this occurs for hjx?0ji �
hjp?0ji= ffiffiffiffiffiffiffiffiffi

��0
p

, where hjx?0ji ’ �r is the typical transverse

width of the electron beam, and where hjp?0ji is the typical
electron beam perpendicular momentum. Equivalently, the
effects due to finite beam emittance can be neglected if the
normalized beam emittance, �N , is much lower than

�max
N ½mmmrad� � 188

ffiffiffiffi
�

p �
�̂r

10 �m

�
2
�

E0

10 GeV

�
1=2

�
�

n0
1016 cm�3

�
1=2

; (7)

where the normalized emittance is estimated according to
�N ¼ hjx?jihjp?ji, and where E0 is the initial beam energy
(we note that �N ¼ �max

N corresponds to matched PWFA
propagation regimes which minimize the betatron oscilla-
tions of the driving electron bunch). These analytical re-
sults can still be applied to unmatched regimes in the
PWFA or in configurations associated with the external
injection of electrons in plasma wakes. In fact, the beam
energy, energy spread, emittance, transverse spot size, and
number of accelerated electrons can only be effectively
controlled when electrons are externally injected at the rear
of the plasma wave [9,26]. In this case it is advantageous to
reduce the beam emittance to be as small as possible,
thereby increasing the luminosity of the bunches, entering
in a regime where Eq. (7) is valid. Later in this work we
will show that this condition is also advantageous for beam
polarization conditioning in plasma accelerators, and that
the depolarization of lower emittance beams is lower in
comparison to higher emittance bunches.
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In the conditions of Eq. (7), the electron trajectories are
almost planar, and ds�=dt � 1 which implies that s� and

s2r þ s2z ¼ 1� s2�0 are conserved, with s�0 the initial

tangential spin component. Under these conditions, the
expression for the longitudinal component of the spin is
found by combining Eqs. (4a) and (4b), yielding

szðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�s2�0

q
sin

�
�
Z t

0

�
aþ1

�

�
Frdtþarctan

�
sz0
s�0

��
; (8)

where sz0, and sr0 are the initial longitudinal and radial spin
components, and where the radial component of the spin is
given by s2rðtÞ ¼ 1� s2�0 � s2zðtÞ. Equation (8), which is

valid for arbitraryFr as long as Eq. (7) is satisfied, describes
the spin precession of a single electron in the PBA.

The radial plasma focusing force in Eq. (8) depends on
the electron trajectory as Fr ¼ Fr½rðtÞ�. The radial electron
trajectory for low emittance electron beams (hjp?0ji �ffiffiffiffiffiffiffi
��

p hjx?0ji) is obtained from Eq. (6) by replacing x?ðtÞ
by rðtÞ, and x?0 by ðx0jx0j þ y0jy0jÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

q
� r0. Thus

Eq. (8) can be rewritten as

sz½�ðtÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2�0

q
sin

�
r0�½�ðtÞ� þ arctan

�
sz0
sr0

��
; (9)

where �½�ðtÞ� ¼ �½ð1þ a�Þð�2�0=�
3Þ1=4� sin½2 ffiffiffiffi

�
p �

ð ffiffiffiffi
�

p � ffiffiffiffiffiffi
�0

p Þ=Eaccel�. Equation (9) gives the evolution of

the longitudinal spin precession component for a single

electron that propagates under linear focusing forces and
constant accelerating gradients. It shows that sz oscillates
with the betatron frequency, and that the amplitude of the
oscillations depends directly on the electron energy, since
� is a function of �. Figure 1 illustrates the evolution of sz
for a single electron according to Eq. (9) with r0 ¼
0:5c=!p, �0 ¼ 103, sz0 ¼ 0:9, and sr0 ¼ 0:1, showing

that the spin precession amplitude is on the order of
sz0=100 thus suggesting that plasma accelerators can be
efficiently used to accelerate polarized electron beams in
conditions that are relevant for high energy physics
experiments.
The qualitative evolution of sðzÞ given by Eq. (9) is

represented in Fig. 2. If the spin of the electron initially
lies in the first or second quadrants of the ðsr; szÞ phase space
[i.e. if ��<arctanðsz0=sr0Þ<0], sz reaches its maximum

global extremum, sz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2�0

q
, when � is higher than

� > �1 ¼ ½2 arctanðsz0=sr0Þ � ��4
16a4r40�

2�0

; (10)

FIG. 1. Evolution of the longitudinal spin component sz as a
function of � for a single electron with zero initial velocity, with
r0 ¼ 0:5c=!p, �0 ¼ 103, sz0 ¼ 0:9, and sr0 ¼ 0:1. The solid

lines denote the envelope of the oscillations. The dashed lines
represent szðtÞ. The amplitude of the oscillation is on the order of
sz0=100 for an electron accelerating to 1 TeV, indicating the
potential of plasma based accelerators to accelerate polarized
electron beams. The period of the oscillation of sz is equal to the
betatron oscillations period.

FIG. 2. Qualitative temporal evolution of sz (solid-gray lines)
during acceleration. Part (a) shows szðtÞ for � < �1, (b) for �1 <

�< �2, and (c) for � > �2. The solid-black lines are smax=min
z .

The circumferences show the possible trajectories of the spin in
the ðsz; srÞ phase space for constant s�. The arches on top

represent the trajectory ðsz; srÞ for the time frame correspondent
to the left plots.
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and it reaches its minimum global extremum, sz ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2�0

q
, when � is higher than

�> �2 ¼ ½2 arctanðsz0=sr0Þ þ ��4
16a4r40�

2�0

: (11)

If the spin of the electron initially lies in the third or
fourth quadrants of the ðsr; szÞ phase space, i.e. if �>
arctanðsz0=sr0Þ> 2�, then �1 (�2) is replaced by �2 (�1).
Inserting typical values for r0 � c=!p and for �0 � 103 in

Eqs. (10) and (11) yields�1 � 109 and�2 � 1011. For 1TeV
electrons where �� 106, this shows that the spin vector
never performs one complete revolution in the ðsr; szÞ phase
space during the acceleration in PBAs. This feature is in
contrastwith circular accelerators, where the spin revolution
frequency is of the same order of the orbital frequency of the
electron beam [2].

The low amplitudes of oscillation for szðtÞ and srðtÞ are
due to the low values that �ðtÞ takes for typical PBA
parameters. For �ðtÞ � 1, Eq. (9) becomes

szðtÞ ¼ sz0 þ sr0r0�ðtÞ � sz0r
2
0�ðtÞ2
2

þO½�ðtÞ3�; (12)

which reveals that sz oscillates between the maximum smax
z

and the minimum smin
z given by

smax=min
z ðtÞ ¼ sz0 	 sr0r0

ffiffiffiffi
�

p ð��0Þ1=4 � sz0r
2
0�ð��0Þ1=2

2
;

(13)

with a corresponding oscillation amplitude of

�sz ’ 2r0sr0
ffiffiffiffi
�

p ð��0Þ1=4a: (14)

Note that Eq. (14) is valid as long as sz0 or sr0 remain in the
same quadrant, i.e., � < �1. For �> �1, it is modified to

�s0z ¼ �sz þ 	, where 	¼	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�s2�0

q

smax=min

z (Fig. 2).

The evolution of �sz generally depends on the initial
amplitudes of the betatron oscillations (through r0), on the
reduction of the betatron oscillations amplitude as the
electron accelerates (through �), on the initial electron
energy (through �0), and on the focusing force (through
�). The spin precession amplitude �sz is lower for lower
r0, i.e., for beam electrons that are closer to the axis. In
addition, �sz increases throughout the acceleration, since
the integral in Eq. (8) increases as the betatron amplitude of
oscillation of single beam electrons is reduced during the
acceleration [33]. If the betatron oscillations amplitude
would be constant throughout the acceleration, the average
value of �sz over a multiple of the betatron period would
be constant since h�szi/

R
t
0ðaþ��1ÞFrdt¼0. Therefore,

at the later stages of the acceleration, when the acceleration
gradients are more significantly reduced, and when the
variations of the amplitude of the betatron oscillations
are thus more noticeable, dh�szi=dt also decreases.
Lower �’s that correspond to weaker focusing forces also

reduce �sz. Therefore, the linear regime of plasma based
acceleration can improve the polarization conditioning in
plasma accelerators in comparison to the blowout regime.
This requires, however, very narrow beams, such that the
electron beam responds only to linear focusing forces.

III. BEAM POLARIZATION

The beam depolarization rates are critical to assess the
potential of PBA for HEP experiments. The electron beam
polarization component in a given spatial direction is given
by the statistical average of s weighted by the polarized
electron beam distribution function fe [2]:

P ¼
Z

fesdxdvds

�Z
fedxdvds: (15)

We assume that the distribution function of the accelerated
electron beam can be separated by its spatial [RðrÞ), ve-
locity (VðvÞ], and spin [SðsÞ] distributions as

fe ¼ RðrÞVðvÞSðsÞ: (16)

A transversely cylindrically symmetric Gaussian density
distribution is considered, RðrÞ ¼ nb0 exp½�2r2=�2

r�ZðzÞ,
with nb0 being the peak electron beam density, �r the
electron beam transverse width, and where ZðzÞ is chosen
to provide ideal beam loading [10] which guarantees that
Ez can be the same throughout the beam. In fact, by
choosing ZðzÞ according to [10], all beam electrons accel-
erate with the same accelerating gradient, and thus P is
independent of z. For a zero-emittance, and zero-energy
spread electron beam, VðvÞ is given by VðvÞ¼	ðv?Þ�
	ðvz�vz0Þ, where vz0 ¼ ð�2

0 � 1Þ1=2=�0 is the initial

beam longitudinal velocity. The initial electron beam dis-
tribution function becomes fully characterized by choosing
SðsÞ; for the sake of simplicity, a uniformly polarized
electron beam with SðsÞ ¼ 	ðs� S0Þ is assumed. Beams
with arbitrary polarization can be examined by allowing
that S0 � 1, where jS0j coincides with the initial polariza-
tion of the beam P0. Physically this means that the average
spin of the beam electrons located between r and rþ 	r,
and between v and vþ 	v, can be less than unity. Thus, the
electron beam distribution function becomes

fe¼nbexp

�
�2r20

�2
r

�
ZðzÞ	ðv?Þ	ðvz�vz0Þ	ðs�S0Þ: (17)

The distribution function considered in Eq. (17) which
can be used as long as the beam emittance and energy
spread is negligible, illustrates the key properties of spin
precession in PBAs.
The calculation of the beam polarization requires

Cartesian coordinates because the cylindrical coordinate
system is attached to the trajectory of each beam electron.
Thus, in order to retrieve the beam polarization, ðsr; s�; szÞ
must be projected in the Cartesian coordinates basis,
according to:
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sx ¼ sr cosð�Þ � s�0 sinð�Þ
¼ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2z � s2�0

q
cosð�Þ � s�0 sinð�Þ (18)

sy ¼ s�0 cosð�Þ þ sr sinð�Þ
¼ s�0 cosð�Þ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2z � s2�0

q
sinð�Þ; (19)

being sz identical in both coordinate systems.
Analytical results for the beam polarization can be re-

trieved in the limit � � 1, combining Eqs. (9), (15), and
(17)–(19), yielding

P?
P0

¼ S0?
�
1��2�2

r

8
��4�4

r

96
þOð�5Þ

�
; (20)

Pz

P0
¼ S0z

�
1��2�2

r

4
þ�4�4

r

48
þOð�5Þ

�
; (21)

where P? ¼ ðPx; PyÞ is the polarization in each transverse

direction, Pz the polarization along the z direction, S0? ¼
P?ðt ¼ 0Þ, and S0z ¼ Pzðt ¼ 0Þ. Comparison between
Eqs. (20) and (21) reveals that j _P?j ’ ð1=2Þj _Pzj. This
indicates that the conditioning of transversely polarized
electron beams with zero emittance is more effective
than the polarization conditioning of longitudinally polar-
ized electron beams. The total polarization of the beam

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
? þ P2

z

q
is given by

P

P0

¼1��2
rð1þs2z0Þ�2

8
þ�4

rð4þ7s2z0�3s4z0Þ�4

384
þOð�5Þ;

(22)

and confirms the aforementioned conclusion that the
conditioning of transversely polarized zero-emittance elec-
tron beams is more effective since _P=P0 is minimum for
sz0¼0. Equation (20) also reveals that the direction of P?
is preserved during the propagation, since Px=Py ¼
sx0=sy0 remains constant. The polarization vector then

oscillates in the plane defined by s?0 and ez. Similarly to
the single electron spin precession dynamics, P never
completes a revolution in the ðP?; PzÞ plane, and, in fact,
the depolarization amplitude is lower than the spin pre-
cession amplitude, since j _Pj ’ _s2 � 1. This reveals that
the beam polarization can be maximized in the same
manner that the spin precession amplitudes are minimized
(cf. Sec. II).

Figure 3 illustrates the qualitative evolution of P,
showing that the polarization oscillates with twice the
betatron frequency between P0 and minimum values with
an amplitude given by

j�P?j
P0

¼ s?0�
2
rð��0�Þ1=2a2

8
; (23)

j�Pzj
P0

¼ sz0�
2
rð��0�Þ1=2a2

4
; (24)

j�Pj
P0

¼ ð1þ s2z0Þ�2
rð��0�Þ1=2a2
8

; (25)

where �P? ¼ ð�Px;�PyÞ is the depolarization amplitude

in the transverse directions, and �P is the total beam
depolarization amplitude. Equations (23)–(25) predict the
maximum depolarization for an accelerated electron beam
with a final energy E ¼ mec

2� at the end of the plasma
accelerator. It is important to note that Eqs. (23)–(25)
imply that PBAs can be designed to keep the beam polar-
ization exactly equal to the initial polarization because for
higher energy beams, with longer betatron wavelengths, it
is conceivable that the length of the plasma can be adjusted
to a multiple of half the betatron wavelength guaranteeing
that P ’ P0.

IV. SELF-GUIDED VS EXTERNALLY
GUIDED LWFAS

Two regimes for stable propagation have been proposed
in the blowout regime of LWFA, either using external
guiding structures (such as parabolic plasma channels),
or by adjusting the laser and plasma parameters to ensure
self-guiding [9]. It is straightforward to retrieve the total
depolarization associated with externally guided or self-
guided LWFAs of similar output energy according to the
scaling laws from Ref. [9]. It was assumed in this calcu-
lation that the physical dimensions of the beam are the

FIG. 3. Temporal evolution of the total polarization of a beam
which accelerates from 0.5 GeV (�0 ¼ 103) to 1 TeV (�0 ¼
2� 106), considering Pz0=P0 ¼ 0:9. The solid black lines are
the upper and lower envelopes �P=P0. The dashed lines repre-
sent the evolution of �P=P0.
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same for the externally guided or the self-guided scenarios,
while the rest of the parameters such as laser energy, and
plasma density, were chosen to ensure stable accelerating
structures. Denoting the total depolarization associated
with the self-guided propagation regime by �Psg=P0, and
the depolarization associated with the externally guided
propagation regime by �Peg=P0, Eq. (25) leads to

�Psg

P0

’1:17�10�4
ð1þs2z0Þ ffiffiffiffiffiffi

�0
p

�1=3

�
�̂r

10�m

�
2
�
1�m


̂0

�
2
; (26)

for the self-guided propagation regime, and as

�Peg

P0

’8:9�10�5
ð1þs2z0Þ ffiffiffiffiffiffiffiffiffi

��0
p

�1=2

�
�̂r

10�m

�
2
�
1�m


̂0

�
2
; (27)

for the externally guided propagation regime, where 
̂0 is
the laser central wavelength in �m, and �̂r is the electron
beam width measured in �m. Although the depolarization
increases during the acceleration, Eqs. (26) and (27) reveal
that higher energy matched propagation LWFAs lead to
lower depolarizations. This is because a higher energy
matched LWFA uses lower densities, lowering the normal-
ized �r (the beam dimensions in physical units are kept
constant), and thus �P=P0. The focusing force is also
lower for externally guided propagation regimes, which
further decreases the depolarization rates. This result thus
emphasizes an important advantage to accelerate highly
polarized electron beams to very high energies in PBA.

The results of Eqs. (26) and (27) can be illustrated by
considering typical electron beam parameters. At SLAC,
�̂r ¼ 10 �m, and �0 ¼ 6� 104. Thus, the maximum total
depolarization associated with a 0.5 TeV accelerator is
�Psg=P0 ¼ 0:16% and �Peg=P0 ¼ 0:025%, where we
used � ¼ 0:35, estimated from 3D PIC simulations [34].
We note that these results do not take into account the beam
depolarization due to the beam-beam interaction at the
interaction point. Nevertheless, it is instructive to compare
the typical depolarizations expected in PBAs with the
expected depolarization at the ILC, which is on the order
of �PILC ’ 0:1–0:2 [5] (we note that �PILC is mostly due
to the depolarization at the beam-beam collision point).
Although this work only takes into account the beam
depolarization during the acceleration, this comparison
thus reveals that plasma accelerators should also be
able to fulfill the depolarization requirements of HEP
experiments.

V. NUMERICAL SIMULATIONS

In order to investigate the acceleration of polarized
electron beams in realistic conditions, the T-BMT equa-
tions are further explored with a numerical spin-tracking
algorithm. The evolution of the polarization is first exam-
ined using prescribed fields and electron trajectories
(cf. Sec. II), where very fast parameter scans can be
performed even for >1TeV accelerators. Then, the results

from one-to-one 3D QUICKPIC [32] simulations are pre-
sented, providing strong evidence for PBAwith low depo-
larization, in agreement with the theoretical predictions.
The similarities between Eq. (2) and the magnetic field

component of the Lorentz force suggest that a nonrelativ-
istic Boris-pusher [35] can be used to solve the T-BMT
equations. The rotation of the spin is determined by �, in
the same way the rotation of the electron velocity is deter-
mined byB in the Lorentz force equation. For�t=
� � 1,

the spin rotates by an angle 	, given implicitly by
d ¼ � tanð	=2Þ ’ ��t=2. The rotation of s between
each time step is given by

s 0
i ¼ si þ si � d; (28)

and

s iþ1 ¼ si þ 2s0i � d

1þ jdj2 ; (29)

where i is the iteration number. Equations (28) and (29)
guarantee that jsij2 ¼ jsiþ1j2, providing an accurate nu-
merical resolution of the T-BMTequations, to second order
in �t.
In order to compare the analytical model with Eqs. (28)

and (29), we consider prescribed radial focusing forces,
F? ¼ �x?, and the electron trajectories described by
Eq. (6). It then follows that

�x¼�
�
aþ 1

�ðtÞ
�
ðEx�ByÞ¼��

�
aþ 1

�ðtÞ
�
xðtÞ; (30)

and

�y ¼
�
aþ 1

�ðtÞ
�
ðEy � BxÞ ¼ �

�
aþ 1

�ðtÞ
�
yðtÞ: (31)

Figure 4 shows a comparison between smin=max
z [see

Eq. (13)], �P=P0 [see Eq. (22)], and the numerical
resolution of the T-BMT equations [Eqs. (28) and (29)].
A zero-emittance electron beam was initialized with
�r ¼ 0:1c=!p and �0 ¼ 103, which accelerates with

Eaccel ¼ 0:6 during L ¼ 2:4� 104c=!p. The numerical

results are in excellent agreement with the analytical
predictions.
Using the spin-tracking numerical algorithm, the depo-

larization associated with realistic electron beams, with
finite emittance, can be investigated. Of particular relevance
is the assessment of the role of the beam emittance for
typical electron beams now available. Figure 5 shows the
evolution of the polarization of a SLAC-like electron beam,
initialized with �̂r ¼ 10 �m and �0 ¼ 6� 104. The beam
normalized emittance is �Nx ¼ 50 mmmrad and �Ny ¼
20 mmmrad in the x and y directions, reaching 0.5 TeV at
the end of the acceleration. The plasma parameters were
chosen to mimic LWFA stable propagation regimes: for
the self-guided case n0¼1:25�1016 cm�3, Eaccel¼1:65,
and � ¼ 0:5; for the externally guided scenario,
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n0 ¼ 2:4� 1015 cm�3, Eaccel ¼ 0:7, and � ¼ 0:35. The
longitudinal depolarization rates are only marginally in-
creased due to the nonzero emittance, which plays a stronger
role in the external-guiding scenario. However, the total
depolarization rates increase due to a drift of the transverse
spin component of single beam electrons, which leads to
stronger variations of P? [cf. Eq. (23)]. The numerical
results also show that the effects of the beam emittance on
the depolarization can be neglected for the early propaga-
tion. The expected total depolarization associated with the
ILC, including all the depolarization sources present at a

linear collider, is also shown in Fig. 5. The main depolariza-
tion source at the ILC comes from the beam-beam interac-
tion at the interaction point, which provides typical
depolarizations on the order of 0.1%–0.2%. Although this
work does not include the depolarization that occurs at the
collision of the two colliding beams, Fig. 5 suggests that
the main source of depolarization in a plasma based collider
may also come from the beam-beam interaction at the
interaction point provided that the beam emittance is suffi-
ciently low, so that the beam depolarization is kept below
0.1%–0.2% during the acceleration.

FIG. 5. Beam polarization evolution for a 0.5 TeV PBA. (a) Evolution of the longitudinal component of the polarization in a self-
guided regime. (b) Evolution of the total polarization in a self-guided propagation regime. (c) Evolution of the longitudinal component
of the polarization in an externally guided propagation regime. (d) Evolution of the total polarization in an externally guided
propagation regime. The gray (black) line corresponds to a SLAC-like beam with (without) emittance, and the black dashed line
corresponds to the typical depolarization that is expected for the ILC, which includes the depolarization of the beam at the interaction
point between the colliding beams.

FIG. 4. Comparison between the analytical model and the numerical resolution of the T-BMT equations using prescribed fields.
(a) Longitudinal component of the spin evolution for a beam with �r ¼ 0:1, which accelerates in a constant accelerating gradient
Eaccel ¼ 0:6, with � ¼ 0:35. (b) Evolution of the total depolarization of the beam. The solid line corresponds to the analytical result,
while the dashed line corresponds to the numerical solution.
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3D PIC simulations using the quasistatic PIC code
QUICKPIC [32] have been performed to examine in detail

the spin precession and polarization dynamics in LWFA
scenarios. To this purpose, a random sample of the exter-
nally injected electrons was tracked using a particle-
tracking algorithm [36], which stored the trajectories and
fields associated with the accelerated electron beam.

The simulations, which worked in the externally guided
propagation regime, used the matched parameters from
Refs. [9,10] for a 800 J laser pulse. The laser central
wavelength was 
0¼0:8�m, normalized peak vector po-
tential a0 ¼ ðeA0=mec

2Þ ¼ 2, spot size W0 ¼ 140 �m,
and duration �FWHM ¼ 311 fs. The transverse plasma pro-
file is given by nðrÞ¼n0½1þ�nðr=W0Þ2� for r<rc, fall-
ing linearly for r > rc, where n0 ¼ 1:15� 1016 cm�3,
�n ¼ 0:375, rc ¼ 560 �m, and rf ¼ 2380 �m. The

size of the simulation box is 2380 �m� 2380 �m�
450 �m, divided into 128� 128� 1024 cells, with four
particles per cell. The externally injected electron beam
was initialized at the back of the first plasma wave, in the
region of maximum accelerating fields, with zero-
emittance, and zero-energy spread. The beam charge was
q ¼ 80 pC, and �0 ¼ 103. The beam density is trans-
versely Gaussian with width�r ¼ 23 �m and length�z ¼
23 �m. In the simulations, 125 electrons were followed in
time, and the particle-tracked data was postprocessed ac-
cording to Eqs. (28) and (29), in order to retrieve the
evolution of the beam polarization.

Figure 6 shows a comparison between the simulation and
the analytical model. For the analytical model results,
Eaccel ¼ ffiffiffiffiffi

a0
p

=2 ’ 0:7 [9] was used, and the coefficient

� ¼ 0:35 was retrieved from the simulations (note that
even though in the simulation a parabolic plasma channel
is used, the focusing force is still linear in the region of the
beam). Excellent agreement is obtained for sz until 3 m of
propagation [Fig. 6(a)], when � ’ 5� 104 ( ’ 25 GeV).
Despite the not perfectly uniform acceleration along the
electron beam as the acceleration progresses (Eaccel drops),
very good agreement was also found for the evolution of the
polarization [Fig. 6(b)]. We note that the oscillation ampli-
tude of the polarization does not match the analytical model
because of the limited number of tracked particles in the 3D
simulations, which is limited by computational constraints.
However, the trend of the polarization is fully captured. For
propagation distances larger than 3 m, the model overesti-
mates the spin precession amplitude because of the reduc-
tion of the acceleration gradient (due to the laser pump
depletion and dephasing), and also because the focusing
force changes (� decreases during the simulation).
In order to identify the role of the beam emittance in

more realistic scenarios, QUICKPIC [32] simulations using
nonzero electron beam emittances were performed, using
�simN ¼ 62:5 mmmrad (typical SLAC beam emittance) and
keeping the rest of the laser, plasma, and beam parameters
unchanged. For these values, Eq. (7) yields �max

N ¼
167 mmmrad ’ 3�simN . Figure 7(a) shows the evolution of
sz for a given beam electron. The initial electron velocity
shifts the value of sz from the theoretical prediction be-
cause the amplitude of the electron oscillation changes due
to the initial electron velocity. The total beam polarization,
shown in Fig. 7(b), indicates that the depolarization rates
are slightly higher in comparison to those of Fig. 6(b).

FIG. 6. QUICKPIC simulation results for an externally guided LWFA, using a 800 J laser pulse to accelerate a zero-emittance electron
beam to 70 GeV. The predictions of the model are shown in black, and the results of the simulation shown in gray. Part (a) shows the
evolution of sz for a randomly chosen beam electron. Part (b) shows the evolution of the total polarization. The black curves are the
analytical results for the maximum and minimum values of �P=P0. Part (c) shows the evolution of the electron beam energy. Part (d)
shows the radial trajectory of the same electron of (a).
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VI. CONCLUSIONS

This paper describes the key features associated with the
acceleration of polarized electron beams in PBAs. It was
found that the spin precession dynamics in the PBA is
closely related to the betatron oscillations in the ion chan-
nel, and that for zero emittance beams, the polarization
vector oscillates in the plane defined by the propagation
direction and the initial polarization vector direction.
Therefore, if the beam is initially polarized in an optimal
direction for a certain HEP application, it remains in that
direction during the acceleration stage. Furthermore, higher
energy matched LWFAs lead to lower depolarizations.

Our model was validated by the numerical resolution of
the T-BMT equations, using prescribed electromagnetic
plasma wave fields and electron trajectories, and by using
the fields and electron trajectories retrieved from 3D PIC
simulations in QUICKPIC [32]. These results further
confirmed the potential of PBA to accelerate polarized
electron beams to high energies with final depolarizations
which can fulfill the requirements of high energy physics
experiments provided that low beam emittances are used.

The analytical work presented in this paper was
obtained in the limit of small emittances such that
�N½mm mrad� � �mrad

N ¼ 188
ffiffiffiffi
�

p ð�̂r=10 �mÞ2ðE0=

10 GeVÞ1=2ðn0=1016 cm�3Þ1=2. We note that the beam
luminosities are also larger in the conditions where
�N½mmmrad� � �mrad

N . Therefore our analytical model
describes the spin precession in PBAs in the conditions
that are directly relevant for HEP applications. Moreover,
numerical modeling showed that larger initial beam
emittances lead to larger depolarization rates, especially
in the transverse directions. 3D PIC simulations in
QUICKPIC also indicated that the depolarizing effects due

to the beam emittance are balanced by the decrease of the
accelerating gradients caused by the laser pump depletion.

In future works it could be important to further assess the
effects of the beam emittance, beam energy spread in
the beam depolarization, along with the depolarization

associated with the beam-beam interaction at the interac-
tion point in plasma based accelerator colliders.
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