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Multiturn (or turn-by-turn) data acquisition has proven to be a new source of direct measurements for

Twiss parameters in storage rings. On the other hand, closed-orbit measurements are a long-known tool

for analyzing closed-orbit perturbations with conventional beam position monitor (BPM) systems and are

necessarily available at every storage ring. This paper aims at combining the advantages of multiturn

measurements and closed-orbit data. We show that only two multiturn BPMs and four correctors in one

localized drift space in the storage ring (diagnostic drift) are sufficient for model-independent and absolute

measuring of � and ’ functions at all BPMs, including the conventional ones, instead of requiring all

BPMs being equipped with multiturn electronics.
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I. INTRODUCTION

Measuring optical functions in the storage rings is an
essential part of beam diagnostics (see Ref. [1] for a recent
review). However, measurements of the � function have to
cope with several kinds of intricacies. Among them are, for
instance, the long duration of measurements with disrup-
tive influence on the beam (e.g. if the � function is mea-
sured via alteration of quadrupole strengths, see Ref. [2]),
dependency on the quality of the lattice model of the
storage ring, and high financial effort if many multiturn
beam position monitors (BPMs) are used.

In this article, a cost-effective, model-independent, fast,
and nondisruptive method for determining the � function
absolutely at all BPMs along the ring is presented. It em-
ploys a combination of only two multiturn-capable BPMs
and two (only horizontal motion) respectively four (full
transverse motion) correctors for small closed-orbit pertur-
bations. In this paper, a proof of principle of this newmethod
is given via measuring the horizontal � and ’ function.

This paper is organized as follows. In Sec. II, the theo-
retical basis of the used method is presented, in Sec. III the
experiments are described and discussed. Finally, in
Sec. IV a conclusion and outlook is given. In addition, an
appendix with the generalization of the presented method
to full transverse motion and betatron coupling is provided.

II. THEORY

For uncoupled betatron oscillations, there are two inde-
pendent trajectories possible in each plane. Because of

elementary relations between betatron oscillation and
closed-orbit perturbation, there are also two equivalent
closed-orbit trajectories (see Ref. [3]), corresponding to
dipole perturbations at two arbitrary positions in the ring.
These perturbed closed-orbit trajectories can be directly

linked to the betatron oscillations if the optical functions at
the two dipole corrector positions are known. If the cor-
rectors are inside a drift space with multiturn BPMs at its
ends, this information can be obtained experimentally.
Hence, the method proposed here consists of three con-
secutive steps: (1) determination of the optical functions
within a drift space via multiturn BPMs (see Sec. II A);
(2) application of small closed-orbit perturbations using
two correctors inside the drift space; and (3) obtaining the
response to this closed-orbit perturbations and determining
the � function and phase with it (see Sec. II B).

A. Deriving the optical functions of a drift space
with multiturn BPMs

If there is just a drift space between two multiturn BPM
positions (or anything else with a known transfer matrix—a
drift space is the most simple case), it is possible to
determine the absolute � function at all multiturn BPM
positions in the ring because one Poincaré section in the
transverse phase space becomes measurable (a similar
argument is also used in Ref. [4]).
A short review of the technique described in Ref. [5] for

the transverse phase space, including linear betatron cou-
pling, is given. For simplicity, this technique is demonstrated
in the x-s or ring plane with uncoupled betatron motion.
However, it is straightforward to include vertical motion y
and betatron coupling in this approach (see the Appendix).
The transverse position xnj of the undamped beam cen-

troid at the longitudinal position of the BPM j after a short
transverse kick and n turns around the ring can be written
(see Ref. [6]) as
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xnj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�x�j

q
cos½’j þ�xn�; (1a)

x0nj ¼ �
ffiffiffiffiffiffi
�x

�j

s
½�j cosð’j þ�xnÞ þ sinð’j þ�xnÞ� (1b)

with the horizontal Courant-Snyder invariant�x, the Twiss
parameters �j, �j, the betatron phase ’j, and the horizon-

tal betatron phase advance per turn �x ¼ 2�Qx. Since
these real sequences x, x0 have a sinusoidal form, each
sequence can be described using only one phasor or com-
plex Fourier component via

Xj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�x�j

q
ei’j ; (2a)

X0
j ¼ �

ffiffiffiffiffiffi
�x

�j

s
½�j � i�ei’j : (2b)

Phasors can in principle be calculated by using discrete
Fourier transform on a sequence and dividing the compo-
nent corresponding to �x by the sequences length. Since a
measurable sequence always has a finite length, the occur-
ring leakage effect must be taken into account which is
done at the end of this section.

In a drift space of length l with BPMs j ¼ 1; 2 at its
ends, there is an elementary relation between the phase
space variables, i.e.,

x0n1 ¼ x0n2 ¼
xn2 � xn1

l
(3)

which is also applicable to their phasors. Thus, one can
determine X0

1=2 from experimental data in a drift space.

Consider the complex numbers X1 and X0
1 as vectors ~X1

and ~X0
1 in the complex plane and A as the area spanned up

by them (see Fig. 1). It is crucial for understanding the
special role of drift spaces in this approach to recognize
that A equals the Courant-Snyder invariant (see also
Ref. [5]), i.e.,

A ¼ j ~X1 � ~X0
1j ¼ ImðX�

1 � X0
1Þ ¼

1

l
j ~X1 � ð ~X2 � ~X1Þj

¼ 1

l
ImðX�

1 � X2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�x�1

p ffiffiffiffiffiffi
�x

�1

s
¼ �x: (4)

Hence, the Courant-Snyder invariant A can be deter-
mined using Eq. (4) with multiturn data. This enables the
absolute determination of the horizontal � function at all
multiturn BPMs j via Eqs. (2). The � function has a
parabolic form inside the drift space, and the optical pa-
rameter �1 ¼ � 1

2�
0
1 is also determined for the drift space

case via

~X1 � ~X0
1¼ReðX�

1 �X0
1Þ¼� ffiffiffiffiffiffiffiffiffiffiffiffi

�x�1

p ffiffiffiffiffiffi
�x

�1

s
Reð�1� iÞ¼��x�1:

(5)

Thus, the � and ’ functions can be determined continu-
ously inside the whole drift space using the �1=2, �1 values

of the BPM positions at its ends.
One merit of analyzing multiturn data and determining

the Courant-Snyder invariant � (this applies to both �x

and �y) in the frequency domain is the insensitivity of this

method against decoherence damping phenomena of the
beam centroid motion. This requires that the value of� can
still be approximated as constant within one turn n.

Although the oscillation envelope
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðnÞ�j

q
is time depen-

dent in this case [see Eq. (1)], the dependence of xnj on

�ðnÞ is the same for any given turn n at all BPM positions
sj in the ring (a similar argument is also used in Ref. [7]).

According to the convolution theorem, the betatron lines in
the different BPM spectra j are then convolved and thus

broadened with the same Fourier spectrum of
ffiffiffiffiffiffiffiffiffiffiffi
�ðnÞp

, and
the maximum values of all lines are reduced (and rotated)
by the same complex factor.
Thus, if the Fourier components with maximal amplitude

are taken as phasors for the described calculations, the
damping only affects the measured A, but not the measured
local �j, ’j values. The same argumentation holds for

the leakage effect, since its definition is based on convolu-
tion of an infinite sequence with a window function. In
addition, one can use ordinary Fourier components of the
Fast Fourier Transform algorithm as phasors, since their
global scaling (e.g. division by sequences length) also only
affects A.

B. Closed-orbit perturbation with known values
for two correctors

The well-known description of the linear orbit response
in one plane reads (see, e.g., in Ref. [8])

~x ¼ R ~� (6)

with

Rjk ¼ CQ

ffiffiffiffiffiffiffiffiffiffiffi
�jbk

q
cosð’j � ~c kÞ; (7)

FIG. 1. Sketch of geometrical relations between phasors. A can
be determined using elementary calculations.
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where ~� is a vector which contains all applied dipole kick
angles, ~x contains the deviation at all BPMs j from the
ideal orbit, and R is called orbit response matrix (ORM).
C�1
Q ¼ 2 sinð�x=2Þ is assumed as a ring-global nonzero

factor. To avoid index confusion, the beta and phase values
at the corrector with index k are denoted with bk; c k while
the corresponding functions at the BPM with index j are
denoted with �j, ’j as usual. In addition,

~c k :¼
�
c k þ�x=2 for ’j > c k;
c k ��x=2 for ’j < c k

(8)

is defined for simplicity.
By inspection of Eqs. (7) and (1a), one sees that the

expression for the transverse trajectory of a closed orbit
under the influence of a small dipole perturbation is similar
to that of a betatron oscillation (see also Ref. [2]). One
difference is a phase discontinuity �x at the position of the
dipole [see Eq. (8)] which makes the oscillation periodic in
the accelerator path length. In addition, CQ incorporates

the sensitivity of the orbit on perturbations and is related to
tune resonances.

For a closed-orbit-only determination of the lattice pa-
rameters, the values of b, c at the corrector positions are
only known approximately by a model lattice, and thus one
will try to match the model R matrices to the measured R
matrices which is usually done by orbit response matrix
analysis and algorithms like LOCO [9].

If the optical functions bk, c k at the position of two
dipole correctors are known, the optical functions at all
BPM positions can be directly determined by using only
the two columns of the response matrix given by Rj1 and

Rj2. This is indeed the case if the correctors are placed in a

drift space with multiturn BPMs at its edges (see Sec. II A).
Their Twiss parameters can be used in a straightforward
manner to calculate the optical functions in the drift space
and thus also at the corrector positions.

Hence, a system of two equations (7) with k ¼ 1; 2 is
obtained with two unknowns for each BPM j. This system
is solvable with practically avoidable exceptions that are
addressed below. By using the relation

ffiffiffiffiffi
b2
b1

s
Rj1

Rj2

¼ cosð’j � ~c 1Þ
cosð’j � ~c 2Þ

¼ cosðuj þ �c Þ
cosuj

(9)

with the unknown phase uj :¼ ’j � ~c 2 and the phase

difference �c :¼ ~c 2 � ~c 1 ¼ c 2 � c 1 of the two cor-
rectors, one gets

tanuj ¼ 1

tan�c
� 1

sin�c

ffiffiffiffiffi
b2
b1

s
Rj1

Rj2

: (10)

Since the tangent function is not bijective over 2�, there
is an ambiguity relating to the sign of the R components if
Eq. (10) is solved for uj. In order to restore the uniqueness

of the solution, the sign of Rj2 / cosuj has to be included,

and the expression for uj reads

uj¼ arctan

�
1

tan�c
� 1

sin�c

ffiffiffiffiffi
b2
b1

s
Rj1

Rj2

�
þ
�
� forRj2<0
0 forRj2>0:

(11)

Furthermore, one gets

�j ¼
R2
j2

b2C
2
Q

ð1þ tan2ujÞ (12)

for the � value at BPM j. In addition, it follows

’j ¼ uj þ ~c 2 ¼
� uj þ c 2 þ�x=2 for ’j > c 2;

uj þ c 2 ��x=2 for ’j < c 2:
(13)

Equations (11)–(13) are sufficient to determine the respec-
tive optical functions at the positions of all BPMs.
From Eqs. (11) and (12), one can directly identify the

main source of errors of the presented method, i.e., the
response matrix elements Rj1, Rj2 have to be obtained

accurately. This is hampered by any imperfection of de-
termining the beam position (e.g. unaccounted pincushion
distortion, pickup misalignment). Another source of errors
is timing errors of the multiturn BPMs at the edges of the
drift space (described in the measurement results) and the
amount of data from the betatron oscillation retrievable by
them (by influencing signal-to-noise ratio of the multiturn
measurement).
Equation (11) takes a simpler form if �c ¼ �=2þ n�

with n 2 Z is fulfilled. In this special case, the closed-orbit
distortions are orthogonal which is the optimal case for the
corrector positions.
A restriction is posed on the presented approach for

�c ¼ n�. In this case, the method will not work, since
the produced orbit perturbations are linearly dependent and
no additional information can be retrieved using the second
corrector. However, in most practical cases this can be
circumvented by placing the dipole correctors in proper
positions.
If a direct comparison with simulated multiturn data is

desired, the data points corresponding to this measurement
may be created by using Eq. (1a). It is also possible to
construct these data points with less intermediate steps by
calculating them using a tracked Fj matrix (see the

Appendix).
It should be noted that, if there is no single drift space

available where the two (respectively four) correctors can
be placed, one can use up to two (respectively four) drift
spaces (with multiturn BPMs at their edges) in which the
correctors can be placed in arbitrary distribution.
The necessary condition for the presented method is that
the optical parameters bk, c k at the positions of two
horizontal (and, for full transverse motion, two vertical)
dipole correctors can be determined with multiturn BPM
data. Obviously, this increases the number of multiturn
BPMs needed and, hence, also the monetary effort.
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C. Normalizing the perturbation results using the
multiturn drift measurement

Up to this point, it was assumed that the dipole kick
angle �k and therefore the kick-to-current ratio Ck :¼
�k=Ik of the used corrector electromagnets is known. If
this is not the case, Eq. (6) can be modified to

xj ¼
X
k

RjkCkIk ¼
X
k

CQCk

ffiffiffiffiffiffiffiffiffiffiffi
�jbk

q
cosð’j � ~c kÞIk: (14)

The values of �j, ’j are known for the two BPMs at the

ends of one drift space by the multiturn measurement.
Thus, one can determine the calibration factor CQCk

ffiffiffiffiffi
bk

p
by comparison of closed-orbit and multiturn measurement
at the drift BPM positions. The absolute �j values can then

be determined for all other BPMs using Eq. (12), even if
the corrector kick-to-current ratios Ck are not known be-
forehand. Via this method it is also possible to determine
the value Ck of the corrector magnet. In addition, also the
two columns of R that correspond to the drift space cor-
rectors can be derived without knowing this scaling factor.

III. MEASUREMENTS IN THE DELTA
STORAGE RING

A. Experimental setup

The synchrotron radiation facility DELTA (see Fig. 2),
operated by the Center for Synchrotron Radiation, located
at TU Dortmund University, consists of a linac, a full-
energy synchrotron, and a 1.5 GeV electron storage ring
with a circumference of 115.2 m. The storage ring exhibits
three insertion devices, i.e., the electromagnetic undulator
U250, the permanent magnet undulator U55, and the super-
conducting asymmetric wiggler (SAW). There are 54

double-view BPMs installed in this ring, 44 work with
analog conventional BPM electronics with a sampling
rate of 10 Hz (black arrows in Fig. 2, [10]), while the
remaining 10 BPMs are equipped with muliturn-capable
readout electronics, using a sampling rate of 2.6 MHz (red
arrows in Fig. 2, [11]). Note that up to now, the multiturn
capability of BPM 39–41 is not yet set up.
For the measurements presented here, the drift space

with a length of 5.137 m between BPM 14 and BPM 15 is
used. The electromagnetic undulator between these BPMs
consists of 38 dipole coils, has a length of 4.875 m, and was
turned off during the measurements. Apart from the main
coils of the undulator, there are also 38 smaller coils for
beam correction purposes in horizontal direction.
However, those correction coils remained unused until
now, so they could be used for creating the necessary
closed-orbit perturbations. This setup comprises a flexible
length of the corrector distance so that a phase shift �c ¼
n� could be avoided. Via a MATLAB [12] script and an
EPICS-based control system [13], a sinusoidal current with
a frequency of approximately 0.1 Hz was applied subse-
quently on the first and the last correction coil of the
undulator. For the multiturn measurements, a diagonal
‘‘slotted-pipe’’-type kicker in the vicinity of BPM 3 was
used [8]. The multiturn-capable BPMs were triggered upon
kicker activation and recorded the transverse beam position
for the next 2048 turns of the excited beam.

B. Results of the measurements

Together with the time for acquiring the turn-by-turn
data, the whole measurement of the horizontal � function
takes approximately 40 seconds. With the method de-
scribed above, the horizontal � function and the phase
values for several beam currents Ibeam (5–90 mA) are
calculated and several strengths of the closed-orbit pertur-
bation for each beam current are used. The strength of the
perturbation is controlled via the amplitude of the sinusoi-
dal current Icorr applied to the corrector coils which is set to
0.5 A, 1 A, 2 A, and 3 A. One is free to choose’ ¼ 0 at one
arbitrary position in the ring. The phase ’ for all results
presented here is gauged such that ’ ¼ 0 is fulfilled at the
beginning of the drift section.
An overview of the results for several beam currents

with the storage rings standard lattice configuration is
gained via Figs. 3 and 4. There, �x and ’x from the
presented combined method (circles) in comparison with
the given standard lattice model (continuous lines) and
with the other multiturn BPMs (black crosses) are shown
for Icorr ¼ 3 A (Fig. 3) and Icorr ¼ 0:5 A (Fig. 4), respec-
tively. The presented combined method seems to work for
the presented range of beam and corrector coil currents.
Measurement errors at high beam currents Ibeam >

100 mA are caused by signal overdrive of the BPM elec-
tronics (not shown). At DELTA, the amplification factors
for the BPM pickup signals cannot be varied using the
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FIG. 2. Map of the DELTA synchrotron radiation facility,
consisting of a linac, a full-energy synchrotron, and a storage
ring with 54 BPMs installed (black and red arrows). Ten of them
(red arrows) are capable of taking multiturn data at a sampling
rate equal to the revolution frequency. For the measurements
presented here, the U250 (drift) section between BPM 14 and
BPM 15 is used.
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control system and are thus constant during operation.
This leads to systematic measurement errors at high
beam currents. At low beam currents Ibeam � 5 mA, the
low signal-to-noise ratio may hamper the measurement of
oscillation amplitudes and phases. This may also be the
case for small oscillation amplitudes resulting from low �
functions at some BPMs.
For a detailed analysis, the case with Ibeam ¼ 78:8 mA

beam current and 2 A current at the corrector coils shown
in Fig. 5 is considered. Comparing those results with the
results of the multiturn BPMs, one obtains deviations of at
most 20% in �x. The phase measurements fit the model
better than the � measurements. Comparing the presented
combined method results with the lattice model curves, one
obtains less relative deviation of at most 15%.
The measured phase difference of the BPMs in the vi-

cinity of s � 95 m does not coincidewith the lattice model.
This phase difference is most likely caused by a timing
(trigger) error which means that the position sequences of
both BPMs are shifted about one turn against each other. At
the horizontal fractional betatron tuneQx ¼ 0:16, this leads
to a phase measurement error of �’ � 1 rad which fits to
the observed deviation of the model curve (green) and
multiturn result around this position.
Since these timing errors do not occur at a drift section

BPM used for the combinedmethod in this case, they do not
modify the combined method results. This shows that only
the two drift section BPMs have to be synchronized for
correct combined method results, while an equivalent mea-
surement using only multiturn data would show additional
errors. Synchronization of many multiturn BPMs to the
arrival of a particle bunch ensemble along a large path of
a storage ring is a nontrivial task, while it is manageable to
synchronize two BPMs to each other which are in vicinity.
The largest deviation occurs at s ¼ 58 m where the

beam is injected from the synchrotron. At DELTA, the

FIG. 3. Measurements of the horizontal � function and phase
for standard lattice configuration, Icorr ¼ 3 A current at the
corrector coils and several beam currents Ibeam (see legend).
Shown are the theoretical� function (red) and phase (green) taken
from the given lattice model, the corresponding values from the
seven multiturn BPMs (black crosses) and the results from
the combined method (blue circles). In the drift space (around
s ¼ 30 m), �x and ’x can be obtained continuously (indigo line).

FIG. 4. Same measurement as in Fig. 3 with Icorr ¼ 0:5 A.
FIG. 5. Same measurement as in Figs. 3 and 4 for Ibeam ¼
78:8 mA and Icorr ¼ 2 A.
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strength of the installed kicker devices is not sufficient for
injection, so an additional dc injection bump has to be
created. Because of the large orbit deviation (� 10 mm)
at the injection point from the middle of the beam chamber
and due to the large pincushion distortion caused by this
deviation, the closed-orbit perturbation is not measurable
by the BPM at s ¼ 58 m. If the dc injection bump is
removed, the measured value coincides with the theoretical
curve (not shown). For the phase, one sees that the pre-
sented combined method does not have the problem of
occurring phase jumps unless there is a timing difference
between both drift section BPMs.

All mentioned errors in the presented results can be
traced back to the general source of errors of the presented
method (see Sec. II B), i.e., timing errors of the multiturn
BPMs and an imperfect determination of the beam position
at all BPMs.

C. Comparison to quasistatic and
multiturn-based methods

The measurement approach presented in this paper is a
combination of closed-orbit and multiturn-based tech-
niques. Because of this combination, the following combi-
nation of advantages and disadvantages from both fields is
achieved. The presented combined method provides a
fast—but slower than pure multiturn measurements—
determination of the � function and phase advances.
Since only two multiturn BPMs are used, only those two
have to be synchronized by one trigger. This is obviously
more stable than synchronizing all 54 BPMs in the whole
ring—a source of instability which can be seen in the
measurements of the phase advances by the multiturn
BPMs as phase jumps (see around s ¼ 90 m in Figs. 3
and 5). Those phase jumps are absent for the combined
method introduced here, unless the two used multiturn drift
BPMs are not properly synchronized to each other. In
addition, the combined method provides an absolute deter-
mination of � and ’. Since a drift space with known
transfer matrix is used to measure ring-global invariants,
the combined method is model independent. Furthermore,
the needed closed-orbit perturbation has only negligible
effects on the beam. This has to be compared to the (partly)
disruptive influence on the beam if � and ’ is measured by
quadrupole variation or determined via ORM analysis [9]
(note that for an ORM analysis at DELTA more than 50
orbit perturbations are necessary). In addition, at the
DELTA facility methods such as LOCO cannot be used
reliably since the combined-function correctors at the
quadrupoles produce undesired higher-order multipole
fields, so that the given standard lattice model becomes
underdetermined. The problem of undesired higher-order
multipole fields is also present in many other facilities.

The resolution of the combined method is slightly lower
than pure multiturn measurements but better than in the
mentioned quasistatic methods. In addition, the resolution

of the combined method does not depend on the quality of
the given lattice model. However, the combined method
may be used to improve a given lattice model. Recently,
Huang et al. [4] introduced a method which improves a
lattice model with multiturn data through a fitting proce-
dure. The combined method introduced here also provides
the needed data at all conventional BPMs as if they were
multiturn BPMs, so that an improvement of a given lattice
model is also possible with the combined method.

IV. CONCLUSION AND OUTLOOK

In this work, a proof-of-principle experiment has been
described and implemented which shows that model-
independent and fast measurements of linear beam Twiss
parameters are possible with much less hardware effort
than usually needed for retrieving this information. This
was achieved by a combination of analog and multiturn
BPMs. The optical functions along the whole ring can then
be retrieved using quasistationary closed-orbit perturbation
with correctors inside the drift space. This approach is
demonstrated in the horizontal oscillation plane but its
principles can be extended to the full transverse plane
including linear betatron coupling without restrictions
(see the Appendix). Although the presented method is
model independent, it can be combined with approaches
to improve a given lattice model with multiturn data like
the approach introduced recently by Huang et al. [4].
In the near future, a fast-orbit feedback system for the

DELTA storage ring will be installed (see Ref. [14]) which
also includes vertical dipole correctors. Together with the
drift space between BPM 39 and BPM 40 (see Fig. 2), it
will then be possible to also measure the vertical � and ’
functions at all BPM positions. The correctors and BPMs
of this fast-orbit feedback system also enable a very fast
application of the closed-orbit perturbation with a kHz-
range sampling rate so that the measuring time (here below
1 min) may be reduced by two or 3 orders of magnitude.
This fast measurement of the lattice is desirable if, for
instance, the lattice parameters are tuned for new purposes
like seeded FEL (see Ref. [15]). Furthermore, a bunch-
by-bunch feedback system will be installed at DELTA
which will raise the amount of multiturn data. This will
significantly increase the resolution of the method pre-
sented here.
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APPENDIX: GENERALIZATION TOTRANSVERSE
MOTION AND BETATRON COUPLING

For a description of betatron coupling, see also Ref. [16]
(for further reading see Ref. [17]).

BERNARD RIEMANN, PATRICK GRETE, AND THOMAS WEIS Phys. Rev. ST Accel. Beams 14, 062802 (2011)

062802-6



1. Deriving the optical functions of a drift space
with multiturn BPMs

If one considers the four-dimensional transverse phase
space, the generalized form of the expected multiturn data
for x and y reads

xnj ¼ ReðXje
i�1n þ Aje

i�2nÞ; (A1a)

ynj ¼ ReðBje
i�1n þ Yje

i�2nÞ; (A1b)

where the four phasors X, Y, A, B 2 C fully describe the
measurable transverse parameters at one BPM j, and
�1;2 ¼ 2�Q1;2 are the measurable betatron phase advances

per turn. If a drift space between two BPMs j ¼ 1; 2 is
considered, the phasors X0, Y0, A0, B0 can also be deter-
mined from multiturn data by using Eq. (3).

The same definition for F is used as in Ref. [5], leaving
out the local BPM index j for convenience, i.e.,

xn
x0n
yn
y0n

0
BBB@

1
CCCA ¼ F

cosn�1

sinn�1

cosn�2

sinn�2

0
BBB@

1
CCCA; (A2)

F ¼
ReX �ImX ReA �ImA
ReX0 �ImX0 ReA0 �ImA0
ReB �ImB ReY �ImY
ReB0 �ImB0 ReY0 �ImY0

0
BBB@

1
CCCA¼ X A

B Y

� �
: (A3)

The four real 2� 2 block matrices X, Y, A, B are also
defined. In the uncoupled case, A and B are zero matrices
and the determinants of X and Y equal the Courant-Snyder
invariants �x and �y, respectively.

In the coupled case, there are still two Courant-Snyder
invariants �1, �2 of motion which ratio equals
f ¼ j detðXÞj=j detðYÞj. Using this, one can construct
a 4� 4 matrix (see Ref. [5])

P ¼
�

f

j detðFÞj
�
1=4

F

f�1=2 0 0 0
0 f�1=2 0 0
0 0 1 0
0 0 0 1

0
BBB@

1
CCCA (A4)

in which F is normalized in such a way that P does not
depend on the invariants but only on the local optical
parameters, i.e. j detðPÞj ¼ 1. Unlike in Ref. [5], P is not
rotated, so P12, P34 not necessarily equal zero and the
betatron phase information is included. This does not
change the other properties of P that are used in the
calculations. Thus, all linear transverse optical parameters,
including betatron coupling and phases, are expressed in P
in a form similar to action-angle parametrization, e.g., in
the uncoupled case�x¼P2

11þP2
12,�y ¼ P2

33 þ P2
34 holds.

One can also determine P inside the whole drift in front
of BPM j ¼ 1.F transforms through the ring and along the
longitudinal position s just like a phase space vector
ðx; x0; y; y0ÞT , because the Fourier transformation used to

construct F from multiturn data is a linear transformation,
i.e.,

F ðsÞ ¼ Tðs1 ! sÞFðs1Þ (A5)

with the 4� 4 section transfer matrix T. Since F is known
anywhere in the drift section due to its simple transfer
matrix, P can be calculated anywhere inside the drift
(with the same f), and thus the local optical parameters
at the four corrector positions inside the drift are
obtainable.

2. Closed-orbit perturbation with known values
for four correctors

The 4� 4 one-turn transfer matrix T� can be derived
from P via (see Ref. [5])

T�¼P

cos�1 sin�1 0 0

�sin�1 cos�1 0 0

0 0 cos�2 sin�2

0 0 �sin�2 cos�2

0
BBBBB@

1
CCCCCAP

�1: (A6)

For a closed-orbit perturbation by a horizontal corrector
kick �, T� must fulfill (see also Ref. [6] for the two-
dimensional case)

T� ~hcorr X ¼ ~hcorr X � �

0

1

0

0

0
BBBBB@

1
CCCCCA; (A7)

where ~hcorr X is referring to the four-dimensional phase
space vector at the immediate vicinity after the location
of the corrector, so that a shift in x0 direction occurs at the

corrector position. Equation (A7) can be solved for ~hcorr X
by solving the linear system of equations

ðT� � 1Þ ~hcorr X ¼ ��

0
1
0
0

0
BBB@

1
CCCA (A8)

with the 4� 4 identity matrix 1. Note that different dipole

kicks � only scale the resulting vector ~hcorr X but do not
change its direction in phase space.

The resulting perturbation vector ~h at any position in the
ring can then be expressed as

~hðsÞ ¼
x
x0
y
y0

0
BBB@

1
CCCA ¼ Tðscorr X ! sÞ ~hcorr X (A9)

for s > scorr X. An analogous calculation can be used for a

vertical perturbation ~hcorr Y.
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To simplify the following calculations, the orbit pertur-
bations of each of the four correctors are tracked to one
reference position sref inside the drift using the derived
expressions for closed-orbit perturbation. With the four

tracked phase space vectors ~hTr 1–4, each belonging to
one corrector, a 4� 4 matrix

Hcorr :¼ ~hTr 1 ~hTr 2 ~hTr 3 ~hTr 4

� �
(A10)

can be constructed. This notation is also used for the
measurable orbit perturbations Hj at BPM j. Although it

is obvious that only the first and third row of Hj can be

measured, i.e.

Hj ¼

xcorr X1 xcorr X2 xcorr Y1 xcorr Y2

H21 H22 H23 H24

ycorr X1 ycorr X2 ycorr Y1 ycorr Y2

H41 H42 H43 H44

0
BBBBB@

1
CCCCCA

j

: (A11)

Equation (A9) can then be used to find the relations

Hj ¼ Tðsref ! sjÞHcorr (A12)

Fj ¼ Tðsref ! sjÞFref ¼ HjH
�1
corrFref : (A13)

The matrix Hcorr is only invertible if all of its four
column vectors (correctors) are linear independent; this
corresponds to the necessary condition of �c � n� in
the uncoupled case [see Eq. (A11)]. If one chooses sref ¼
scorr X1, one reduces the computational effort.

AlthoughHj cannot be measured completely at BPM j,

one can calculate the first and third row of Fj. Since the

invariant fraction f and the four-dimensional invariant
j detðFÞj are ring-global parameters and can be normalized
by using the multiturn BPMs at the ends of the drift space,
also the first and third rows of Pj at all BPM positions j can

be calculated.
This is the same information one would obtain

for coupled linear betatron motion if all BPMs j were

multiturn capable. Thus, the calculated Fj matrices can

also be used to obtain multiturn information at all BPMs j
by using Eq. (A2) as if all BPMs were multiturn BPMs.
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