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A model is developed to study the eddy current induced in a thin conducting but nonmagnetic plate of

finite size when exposed to a time varying magnetic field. The applied field may be uniform or vary in

space. This model can accurately estimate the eddy current contour in the plate and loss due to eddy

current. Power losses for plates of various dimensions and at different frequencies are calculated to

establish the accuracy of the model. We have also calculated the magnetic field generated by the induced

eddy current when the plate of finite size is placed between the two parallel poles of a dipole magnet made

of magnetic material of very high permeability. The force acting on the plate due to the interaction of the

induced eddy current and the applied external field is also calculated. The model can predict the time

variation of force and eddy current. The model may be applicable to understand the effect of eddy current

on the vacuum chamber of an accelerator. Various other applications, where this model is useful, are also

reported. The results are compared against the results obtained by a simulation using a finite element

based code. Here the rectangular plate is considered but the model can be applicable for other geometries

as well.
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I. INTRODUCTION

The understanding of the nature of the eddy current
induced in a metallic plate by the time dependent magnetic
field and its consequences play a significant role in a wide
range of technical and industrial applications. The eddy
current in vacuum chambers used in rapid cycling synchro-
trons, cores of fast cycling magnets, and accelerator cav-
ities causes adverse effects which are already reported
[1,2]. However, the heat generated by the eddy current is
utilized in various applications like induction furnace, heat
treating, melting, hardening, brazing, etc. [3–6]. The esti-
mation of the eddy current is also used for nondestructive
testing of conducting materials. A synchrotron accelerator
or beam transport line contains various types of magnets to
deflect and focus the beam, where the vacuum chambers
are placed between the magnet poles. The eddy currents
modify the B field, which is generated by the accelerator
magnets, for example dipoles and quadrupoles, so that the
beam inside the accelerator beam pipe sees a different B
field than expected. For the beam this means the optics (or
the lattice) of the accelerator is affected. In a next step, one
might calculate the effect of the modified optics on the
beam dynamics. To avoid the ill effect of eddy current in
some accelerators, ceramic chambers are also used but they
are difficult to make and it increases the cost of the ma-
chine. Prior knowledge of heat loss in the chambers may

help in taking the decision judiciously. Several efforts are
made to understand the field produced by the eddy current
for different shapes and geometries of the chambers [7–9].
Because of the complex nature of the problem, an analyti-
cal solution may not be easy. Often numerical methods are
adopted for solution of such problems [10,11]. There are
many limitations and inconveniences associated with nu-
merical methods. It takes a longer time and a considerable
amount of CPU resources. Results will depend on mesh
size and various other parameters, like material property,
boundary conditions, linear or quadratic elements, etc.
Even in the case of a small perturbation, the whole problem
has to be solved. Therefore, an analytical solution is very
important which helps in understanding the physical be-
havior of the electromagnetic field better. In spite of ex-
tensive studies of the eddy current in various areas
regardless of applications, some areas remain unexplored
[12–16], e.g., the eddy current and the force on a chamber
when exposed to a nonuniform time varying magnetic
field. Power loss predicted by earlier work was not very
accurate [3]. In some cases, it was assumed that the eddy
current varies linearly in space and the length of the
chamber was large [2]. These cases motivated us to do
the detailed calculation of the eddy current contour, power
loss, and the field produced by it on a finite size conducting
plate exposed to a uniform as well as a nonuniform time
varying magnetic field.
In this paper we have proposed a complete model to

understand the eddy current behavior on a rectangular plate
and the consequences of it. We describe the problem
mathematically by Maxwell’s equations and obtain a par-
tial differential equation. The problem is then converted to
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an inhomogeneous Helmholtz equation which has been
solved with proper boundary conditions. It is assumed
that the conducting plate is nonmagnetic and its thickness
is small compared to the skin depth of the material. This
means that we are concentrating on low frequency and thin
plates. Both of these approximations are valid for accel-
erator vacuum chambers. The vacuum chambers are placed
between magnet poles where the field is mostly perpen-
dicular. So, the eddy current induced by the normal com-
ponent of the applied magnetic field is considered here and
the tangential component is neglected. We have considered
two different cases: (i) case I—the plate is exposed to a
uniform time varying field; and (ii) case II—the field is
uniform on some portion of the plate but exponentially
reducing with distance to the edge of the plate. Case I is
applicable to chambers of any booster or rapid cycling
machine. Case II is applicable to the chambers of a storage
ring where electrons are injected at lower energy and then
ramped up to the nominal energy [17]. We have also
calculated the magnetic field generated by the induced
eddy current when a plate of finite size is placed between
the two parallel poles of a dipole magnet made of magnetic
material of very high permeability. The only assumption
that we have made is that the permeability is very high so
that the boundary condition for the field at the interface
between the air and the iron poles can easily be achieved by
using the image current method. The present model can
provide accurately the following parameters: (i) eddy cur-
rent contour in the plate; (ii) power loss due to the eddy
current in the plate; (iii) force acting on it; and (iv) mag-
netic field produced by the induced eddy current.

For quick verification of the analytical model, the results
are compared against those obtained by simulation using a
finite element (FEM) based code, like OPERA [10]. These
calculations will be useful in understanding the effect of
the eddy current in the vacuum chambers, used in particle
accelerators, subjected to a time varying field. The cham-
bers of a synchrotron radiation storage ring are exposed to
a nonuniform magnetic field. In that case the study of the
adverse effect of eddy current, which is not explored
before, is the main thrust of the present work.

II. THEORETICAL MODEL

Consider that a conducting nonmagnetic plate of width
a, length b, and depth d (d � a and b) is exposed to a time
varying magnetic field directed along the vertical (Z) di-
rection (see Fig. 1). The nature of the field variation is
assumed to be harmonic:

Bðx; y; tÞ ¼ B0ðx; yÞ cosð!tÞẑ: (1)

We consider the following spatial variations of B0ðx; yÞ:

case I: B0ðx;yÞ ¼B0 for 0� x� a;0� y� b

case II: B0ðx;yÞ ¼B0 for 0� x� c;0� y� b

¼B0e
�ðx�cÞ=� for c� x� a;0� y� b;

(2)

where c < a. Hereafter we will refer to these as case I and
case II, respectively. The Maxwell’s equations in the ab-
sence of the plate can be written as

~r� ~B ¼ �0"0
@ ~E

@t
~r� ~E ¼ � @ ~B

@t
; (3)

where ~E is the electric field, �0 is the permeability, and "0
is the dielectric constant of free space. The time varying
magnetic field will induce an eddy current in the conduct-

ing plate. The eddy current will produce induced field ~Hi

that will oppose the applied field. So, the Maxwell’s equa-
tions in the presence of the plate can be written as

~r� ð ~Bþ�0
~HiÞ ¼ �0

~J þ�0"0
@ ~E

@t

~r� ~E ¼ �@ð ~Bþ�0
~HiÞ

@t
;

(4)

where ~J is the current density in the plate. Using Eqs. (3)
and (4) we find

~r� ~Hi ¼ ~J: (5)

According to the Lenz law, the induced emf and hence the
eddy current will be of the form sinð!tÞ as the applied field
is of the form cosð!tÞ [Eq. (1)]. In the low frequency
regime, the induced field may be expressed as

~E ¼ ~E0 sinð!tÞ ~Hi ¼ ~H0 sinð!tÞ: (6)

Eddy current flows in a close loop, in other words,
~r � ~J ¼ 0. Therefore, ~J can be written as the curl of a
potential function uðx; yÞ:

~J ¼ 1

d
~r� fuðx; yÞẑg sinð!tÞ: (7)

Using Eqs. (5) and (7) we obtain

Bz z1BZ

X

Y

(0,0)

FIG. 1. Coordinate system, plate geometry, and the applied
field. For case I, the field Bz ¼ Bz1 is uniform throughout the
plate. For case II, Bz is uniform up to a distance, c (c < a) and
then exponentially decreasing with distance, Bz1 ¼ fðxÞ.
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~ri �
�
~Hi � uðx; yÞ

d
ẑ sinð!tÞ

�
¼ 0

so

�
~Hi � uðx; yÞ

d
ẑ sinð!tÞ

�
¼ ~rVðx; y; zÞ sinð!tÞ

~Hi ¼
�
uðx; yÞ

d
ẑþ ~rVðx; y; zÞ

�

� sinð!tÞ; (8)

where Vðx; y; zÞ is a scalar magnetic potential. In the
present model the eddy current is flowing on the surface
of the plate, i.e., jz ¼ 0. We are interested in finding the
eddy current distribution on the plate. The Z component of
the field will depend on @Vðx; y; zÞ=@z which should be a
function of x and y on the surface of the plate. Therefore,
we have presumed that @Vðx; y; zÞ=@z will be related to a
general function uðx; yÞ, already assumed. So, without loss
of generality, we assumed the induced field along the
Z direction to be

Hz
i ¼

�
uðx; yÞ

d
þ guðx; yÞ

�
sinð!tÞ; (9)

where g is constant and Hz
i is evaluated on the surface of

the metallic plate. Using Ohm’s law ~J ¼ � ~E, we find from
Eq. (4)

@Jy
@x

� @Jx
@y

¼ �fB0ðx; yÞ! sinð!tÞ ��0H0! cosð!tÞg:
(10)

Substituting expressions from Eqs. (7) and (9) to Eq. (10),
we obtain

�
@2

@x2
þ @2

@y2

�
uðx; yÞ sinð!tÞ � k2ð1þ gdÞ cosð!tÞuðx; yÞ

¼ � d

�0

k2B0ðx; yÞ sinð!tÞ; (11)

where k2 ¼ �0�! and � is the conductivity of the plate.
The above inhomogeneous Helmholtz equation can be
solved with certain boundary conditions to obtain uðx; yÞ
and hence the eddy current contour in the plate.

A. EDDY CURRENT

We now solve Eq. (11) in two specific cases as given in
Eq. (2). The relevant boundary condition is given by

uð0; yÞ ¼ uða; yÞ ¼ uðx; 0Þ ¼ uðx; bÞ ¼ 0: (12)

The eigenfunction unmðx; yÞ of the equation

�
@2

@x2
þ @2

@y2

�
unmðx; yÞ ¼ �nmunmðx; yÞ (13)

with the above boundary condition can then be written as

unmðx; yÞ ¼ Nnm sinð�nxÞ sinð�myÞ; (14)

where �n ¼ n�
a , �m ¼ m�

b (n, m are integers), and

Nnm ¼ 2ffiffiffiffi
ab

p .

The general solutions uIðx; yÞ and uIIðx; yÞ of Eq. (11) for
two cases as mentioned in Eq. (2) may then be expressed as

uIðx; yÞ ¼ X1
n;m¼1

AI
nmNnm sinð�nxÞ sinð�myÞ

uIIðx; yÞ ¼ X1
n;m¼1

AII
nmNnm sinð�nxÞ sinð�myÞ;

(15)

where

AI
nm¼2k2B0d

�0

ffiffiffiffiffiffi
ab

p K0
nmða;bÞsinð!tÞ

ð�2
nþ�2

mÞsinð!tÞþk2ð1þgdÞcosð!tÞ

and AII
nm¼2k2B0d

�0

ffiffiffiffiffiffi
ab

p Knmða;b;cÞsinð!tÞ
ð�2

nþ�2
mÞsinð!tÞþk2ð1þgdÞcosð!tÞ

(16)

with

K0
nmða; bÞ ¼ f1� cosð�naÞgf1� cosð�mbÞg

�n�m

Knmða; b; cÞ ¼
�
1� �2�2

n

1þ �2�2
n

�
K0

nmðc; bÞ

þ
�

�2�2
n

1þ �2�2
n

�
eðc�aÞ=�K0

nmða; bÞ

þ
�

�2�2
n

1þ �2�2
n

�
L0
nmðc; bÞ

�
�

�2�2
n

1þ �2�2
n

�
eðc�aÞ=�L0

nmða; bÞ and

L0
nmða; bÞ ¼ f1� cosð�naÞg

�n�m

�
1þ sinð�naÞ

��n

�

are obtained using the orthogonality conditionR
a
0 @x

R
b
0 @yunmðx; yÞun0m0 ðx; yÞ ¼ �nn0�mm0 . Therefore,

the eddy current density and the induced field due to the
eddy current on the surface of the plate can be expressed as
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jx ¼ 1

d

@uðx; yÞ
@y

sinð!tÞ ¼ X1
n;m¼1

�m

d
A�
nmNnm sinð�nxÞ cosð�myÞ sinð!tÞ

jy ¼ � 1

d

@uðx; yÞ
@x

sinð!tÞ ¼ � X1
n;m¼1

�n

d
A�
nmNnm cosð�nxÞ sinð�myÞ sinð!tÞ

Hz
i ¼

1

d
ð1þ gdÞuðx; yÞ sinð!tÞ ¼ X1

n;m¼1

1

d
ð1þ gdÞA�

nmNnm sinð�nxÞ sinð�myÞ sinð!tÞ;

(17)

where � represents I or II.
The value of the constant g needs to be determined self-

consistently. This has been performed as follows. Since the
eddy current is maximum at !t ¼ �

2 , we first evaluate jx
and jy using Eqs. (16) and (17). Note that at !t ¼ �

2 , the

coefficient Anm of Eq. (16) is independent of g because
ð1þ gdÞ cosð!tÞ is zero. Therefore, the exact values of jx
and jy are obtained even without knowing the value of g.

Then Hz
i is evaluated on the surface of the plate using

Eq. (17) and is proportional to (1þ gd). By knowing the
values of jx and jy, the B field on the surface of the plate

can also be evaluated using Biot-Savart’s law (see
Sec. II D). The value of (1þ gd) is obtained by comparing
the field values obtained using two different methods as
explained above. Finally, the value of g is obtained by
using the value of d which is the thickness of the plate.
The value of g depends on whether the plate is placed
between two parallel poles of a dipole magnet or the gap
between the poles, and the permeability of the material of
the magnet poles. While evaluating Eq. (17) we have
taken the value of m and n up to 300 because beyond
this limit the change in j is less than 0.001% (see Fig. 3).

B. POWER LOSS

The calculation of power loss plays a very significant
role in various applications. Therefore, the real test of the
present model depends on the accuracy of the loss predic-
tion. Power loss P can be expressed using the well-known
volume integral

P ¼ 1

�

Z
V
J2@V ¼ 1

�

Z
V
ðj2x þ j2yÞ@V: (18)

Substituting the expressions of jx and jy from Eq. (17) to

Eq. (18) and performing the integrals, we find the final
expression of the power loss as

P ¼ 1

�d

X1
n;m¼1

A�
nmA

�
nmð�2

n þ�2
mÞsin2ð!tÞ: (19)

The power loss for case I and case II can be obtained from
Eq. (19) by putting the values of the coefficient AI

nm or AII
nm

from Eq. (16). Note that A�
nm depends on !t. The average

power loss hPi is the average of P over a cycle.

C. MAGNETIC FORCE

If an eddy current flows through the conducting plate
then it will experience a force in the presence of the
magnetic field. The B field is uniform throughout the plate.
The amplitude of the eddy current increases symmetrically
as we move away from the center of the plate. But, the sign
of the eddy current jyðjxÞ is positive on the right (lower)

side of the plate and negative on the left (upper) side
(Figs. 4 and 5). So, the resulting force on one half of the
plate will be balanced by the other half and there will be no
resultant force acting on the plate (case I). However, this
balance will be disturbed when the plate is exposed to a
nonuniform field. It is very important for the stability of
any system to estimate the magnitude of the force. The
force can be expressed as

~F ¼
Z
V
ð ~J � ~BÞ@V: (20)

In case II, there will be a net force acting on the plate.

Substituting ~J from Eq. (17) to Eq. (20), the net force
acting along the x direction can be written as

~FX ¼ B0x̂ cosð!tÞ sinð!tÞ X1
n;m¼1

1

�m

AII
nmNnm

� ½1� cosð�mbÞ�
�
sinð�ncÞ þ

�
�2�2

n

1þ �2�2
n

�

�
�
eðc�aÞ=�

�
sinð�naÞ � 1

��n

cosð�naÞ
�

�
�
sinð�ncÞ � 1

��n

cosð�ncÞ
���

: (21)

Similarly, the force in the other direction can also be
calculated. As the force depends on the eddy current we
have taken the sum of m and n up to 300 only without
losing too much accuracy.

D. FIELD DUE TO EDDYCURRENT IN THE PLATE
IN THE PRESENCE OF MAGNETIC POLES

HAVING VERY HIGH PERMEABILITY

We have already calculated the eddy current distribution
in the conducting plate induced by time varying magnetic
field. We have assumed that the thickness of the plate is
uniform and quite small compared to the skin depth. This
assumption may be fine for the vacuum chambers used in
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accelerators which produce synchrotron radiation. The
source current density for which the induced field needs
to be calculated is lying on the x-y plane. The magnetic
field at a point Pðx; y; zÞ due to a source current at ðx0; y0; z0Þ
can be expressed using the Biot-Savart law:

Bðx; y; zÞ ¼ �0

4�

Z
V

j� ðr� r0Þ
ðr� r0Þ3 @x0@y0d

where r� r0 ¼ ðx� x0; y� y0; z� z0Þ:
(22)

By taking z0 ¼ 0 and taking the curl we get

B0ðx;y;zÞ

¼d�0

4�

Z a

0
@x0

Z b

0
@y0

jxðy�y0Þ�jyðx�x0Þ
fðx�x0Þ2þðy�y0Þ2þz2g3=2 ẑþ

ð�jxzÞ
fðx�x0Þ2þðy�y0Þ2þz2g3=2 ŷþ

jyz

fðx�x0Þ2þðy�y0Þ2þz2g3=2 x̂

2
666664

3
777775: (23)

The above expression is true in the absence of any
magnetic material. The eddy current is distributed in the
plate. We consider a small strip of the plate as a current
carrying conductor. Therefore, we will now calculate the
field when the current carrying conductors are located
between the two parallel iron poles with very high perme-
ability. Then the boundary condition for the field at the
interface between the air and the iron poles can easily be
achieved by using the image current method [2]. Because
of these two parallel poles, the image currents of the
source current density j at ðx0; y0; z0Þ will be located at z0 ¼
0; f; 2f; . . . , and so on. Here f is the distance between
these two iron poles. Equation (23) represents the field for
the z0 ¼ 0 condition. Therefore, the field in the z direction
in the presence of magnetic poles can be expressed by
adding terms arising from image currents to Eq. (23):

~Bðx;y;zÞ¼ X1
n¼�1

~Bnðx;y;zÞ where ~Bnðx;y;zÞ�d�0

4�

Z a

0
@x0

Z b

0
@y0

�
jxðy�y0Þ�jyðx�x0Þ

fðx�x0Þ2þðy�y0Þ2þðz�nfÞ2g3=2 ẑ
�
: (24)

Here, we have assumed the value of � very large but, in
practical cases, it will have finite values. Therefore, the
field calculated by using Eq. (24) may be marginally higher
than the actual field. Here the sum up to 10 is sufficient as
the change of the field value for n > 10 is less than 0.001%.

E. SIMULATION USING A FEM CODE

The OPERA-3D [10] analysis program ELEKTRA can be
used to compute time varying electromagnetic fields in
three dimensions including the effects of eddy currents.
The program incorporates state of the art algorithms for the
calculation of electromagnetic fields and advanced finite
element numerical analysis procedures. ELEKTRA/SS calcu-
lates steady-state ac currents (the time harmonic form)
where all fields and potentials are oscillating at the same
angular frequency !. So, AðtÞ ¼ Ace

i!t and UðtÞ ¼
Uce

i!t. Time varying magnetic (B) and electric (E) fields
can be expressed in terms of vector (A) and scalar (U)
potential as B ¼ r� A and E ¼ � @A

@t �rU. Using the

relations r�H ¼ j ¼ �E and r:j ¼ 0, we have

r� 1

�
r� A ¼ ��

@A

@t
� �rU

r � ð�rUÞ þ r �
�
�
@A

@t

�
¼ 0:

(25)

Using the time dependent part we get

r� 1

�
r� Ac þ i!�Ac þ �rUc ¼ 0

r � ð�rUcÞ þ i!�rAc ¼ 0:

(26)

OPERA-3D used the finite element method to obtain so-

lutions of the partial differential equations with proper
boundary conditions. From the solution, the values of A
and U can be obtained that will provide B, E, and j. Partial
differential and integral equations describe the spatial and
temporal variation of a field either directly in terms of the
field variable, for example the magnetic flux density B, or
more often using a potential function that is related to the
field by a gradient or a curl operation. The finite element
method is generally applicable to any problem with any
type of nonlinearity. The method is based on division of the
domain of the equation (volume of space in which the
equation is satisfied) into small volumes (the finite ele-
ments). Within each finite element a simple polynomial is
used to approximate the solution.
This software is installed in HP DL 380 G5 server

having xeon 3.73 GHz dual core with 8GB RAM and
Red Hat Enterprise Linux 4.0. To study case I, a dipole
magnet is modeled and a metallic plate is placed between
the poles. The dimensions of the plate are 0:1� 0:1 m2.
The pole width and length of the magnet are taken as
0:2� 0:2 m2 so that it generates a uniform field on the
plate. The mesh size of the plate is taken as 1� 1 mm2 in
the x-y plane and 0.5 mm along thickness (z) whereas the
mesh near the back leg of the magnet is 8� 8 mm2 in the
x-z plane. This model is solved with 1=4 symmetry and
the total nodes in the model are 2 098 791. The accuracy of
the field calculation is better than 0.1%. It takes typically
four hours to solve for one frequency. Time required will
be more for better accuracy. To study case II, the dimen-
sions of the plate are taken as 0:3� 0:1 m2 so that the field
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along the width varies with distance and the field along the
length remains constant as explained in Eq. (2).

III. RESULTS AND DISCUSSION

We will first study the symmetric case, i.e., case I.
Vacuum chambers are placed within the pole width of the
dipole magnets in the rapid cycling machines and boosters.
In these cases the chambers are exposed to the magnetic
field produced by the magnet which is uniform (neglecting
edge effect) and symmetric with respect to the center of the
chambers. These calculations will be useful in understand-
ing the eddy current behavior in such machines. To study
the effect analytically we have simplified this and so a
stainless steel (SS) plate is placed between two poles of a
dipole magnet which creates a uniform B field on the plate
in the vertical direction. The dimensions of the plate are
chosen in such a way as to avoid the edge effect in the case
of simulation. The width (a), length (b), and thickness (d)
of the plate are 0.1, 0.1, and 0.002 m, respectively. The
model used for simulation is shown in Fig. 2. The pole
width and the length of the magnet are 0.2 and 0.2 m,
respectively. The field uniformity in the plate is 0.08%. The
average peak field on the plate and the frequency of the
field are 0.923 21 T and 50 Hz, respectively, and the con-
ductivity of the plate is 1:33� 106 s=m.

The values of the current density can be obtained ana-
lytically by using Eq. (17). The value of (1þ gd) is 0.048
for the present geometry. However, Eq. (17) contains a sum
over an infinite series. The variation of the current density
with the indices of the sum, m and n, is plotted in Fig. 3.

The value of Jy is changing by 0.002% and 0.0006% if

the index of sum changes from 200 to 300 and 300 to 400,
respectively. Therefore, we have taken index of summ ¼ n
as 300 throughout the paper for calculation of the current
density.

The eddy current is symmetric about the midpoint of
the plate in the presence of a uniformly distributed time

FIG. 2. The 3D model used for simulation study is shown here.
Different colors represent the vertical component of the field
Bz (from �1:431 052 T to 1.761 941 T) in the magnet core and
the plate.

FIG. 3. Evaluation of the eddy current from analytical expres-
sions for different indices of the sum (m ¼ n) in Eq. (17). The
solid line is just a guide to the eye.

FIG. 4. Contour plot of Y component of the eddy current
density, jy in the SS plate of dimension ð0:1; 0:1; 0:002Þ m3 for

50 Hz frequency and 0.923 21 T peak field.

FIG. 5. Contour plot of X component of the eddy current
density, jx in the SS plate of dimension ð0:1; 0:1; 0:002Þ m3 for
50 Hz frequency and 0.923 21 T peak field.
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varying magnetic field. The Y component of the eddy
current jy in the plate is shown in Fig. 4. It is maximum

at the center of the right edge as expected and it passes
through zero at the line bisecting the plate along the width
and the minimum is at the center of the left edge. Because
of the square shape of the plate, the nature of the X
component of the eddy current jx will also be the same.
Figure 5 shows the variation of jx in the plate for 50 Hz
frequency.

The values of the current density, predicted by the
analytical model, are in good agreement with the simula-
tion values obtained using a 3D FEM code [10]. The values
of the eddy current density obtained from two different
methods are plotted in Fig. 6 for comparison. The agree-
ments are within 0.15%. This work may be extended for
rectangular vacuum chambers with some approximations.
A rectangular chamber is made of two such horizontal
plates connected by two thin (few mm width) vertical
plates at the end. Neglecting the contribution of the vertical

plates, the eddy current in the chamber will be the same as
that of two horizontal plates separated by a distance.
It is to be noted that the variation of the eddy current is

not linear along the width as considered in earlier studies
[2]. Their nature varies at different intermediate time in-
tervals of a cycle. This is one of the new findings of the
present work.
The power loss calculation, due to the flow of the eddy

current, is also very important for various technical and
engineering applications. The power loss predicted by the
analytical model can be evaluated by using Eq. (19). It
depends on the square of the eddy current. Here the sum
overm ¼ n is taken from 1 to 300. Losses are calculated at
various frequencies and for different dimensions of the
plates. The losses, averaged over a cycle, are given in
Table I. For a quick verification of our results we have
compared the power loss obtained from a 3D FEM code,
OPERA 12.0. The analytical results are in good agreement

with the results obtained from simulation. To compare our
results with the simulation results, we have taken the
average B field on the plate rather than the field at the
center of the plate.
The magnetic field produced by the eddy current is also

evaluated. The presence of the two parallel iron poles
enhanced the field value. We have estimated the field
utilizing the image current expressed in Eq. (24). The BZ

field generated due to the eddy current at t ¼ 5 ms is
plotted in Fig. 7 for 50 Hz frequency. In the central zone
it shows that the field varies with the square of the distance,
a typical sextupole like variation as expected. However, the
nature and content of the multipole depends on the distance
from the plate and the point of observation. The variations
of the vertical field component for different distances from
the surface of the plate are plotted in Fig. 8. The vertical
component of the field obtained from the simulation is also
plotted in the same graph for comparison. In our model we
have taken the permeability of the material of the magnet
poles to be very high but in the simulation some finite value
was taken (B-H curve for a standard silicon steel is used).
So, the estimated field value is slightly higher than the

FIG. 6. Variation of the eddy current density, jy in the SS plate
of dimension ð0:1; 0:1; 0:002Þ m3 for 50 Hz frequency and
0.923 21 T peak field at different times obtained from two
different methods.

TABLE I. Average power loss at different frequencies for stainless steel (SS) and aluminum
(Al) plates of conductivity 1:33� 106 and 16:95� 106 s=m, respectively.

SSð0:1; 0:1; 0:001Þ m3 P(W) @ 5 Hz P(W) @ 10 Hz P(W) @ 25 Hz P(W) @ 50 Hz

Our model 2.270 9.08 56.76 226.97

Simulation 2.266 9.06 56.62 226.60

SSð0:05; 0:1; 0:001Þ m3

Our model 0.47 1.88 11.78 47.14

Simulation 0.47 1.88 11.78 47.13

Alð0:1; 0:1; 0:002Þ m3

Our model 50.06 199.94 1249.6 4998.5

Simulation 49.99 199.83 � � � � � �
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expected one. However, the nature of the field variation is
very similar to the actual values.

We will now examine the validity of our model when the
plate is exposed to a space dependent time varying field,
i.e., case II. The vacuum chambers of a storage ring are
placed between the poles of a dipole magnet. A large
fraction of the total cross section of the vacuum chambers
lies outside the pole gap of the magnet to facilitate the
paths for synchrotron radiation. This exposes the chamber
to a nonuniform field. To study the effect analytically, we
have simplified this problem and expose a metallic plate to
a space dependent time varying magnetic field. A SS plate

of dimension ð0:3; 0:1; 0:002Þ m3 is placed in a field which
is uniform, B0, up to the width 0.14 m and then the field
decreases as B0 expf�ðx� 0:14Þ=0:045g, where B0 is
0.991 T. To generate such fields for simulation study, a
3D model is developed. The field variation in such a case
and the field profile of our model are shown in Fig. 9 and
the 3D model is shown in Fig. 10.
The value of the eddy current density in the plate varies

from �12:937 24 A=mm2 (blue color in the Fig. 10) to
3:225 508 A=mm2 (pink color). In the simulation we have
assumed the conductivity of the core material of the mag-
net is zero. Therefore, no eddy current will flow in the core.
The color of the magnet core in Fig. 10 represents the
material color only.
In some of the storage ring electrons are injected at

lower energy and then ramped up to the nominal energy.

FIG. 9. A SS plate of dimension ð0:3; 0:1; 0:002Þ m3 is exposed
to a space dependent time varying magnetic field. The eddy
current generated by such an asymmetric field will be evaluated.

FIG. 8. Vertical component of the magnetic field due to eddy
current flow in the SS plate at 50 Hz frequency and 1.2180 T
peak field for two distances z ¼ 5 and 10 mm from the plate,
respectively. Simulation results (dotted lines) are also plotted for
comparison.

FIG. 7. 2D plot of the vertical component of the field due to the
eddy current flow in the SS plate for 50 Hz frequency at a
distance z ¼ 10 mm from the plate.

FIG. 10. One half of the 3D model used for simulation study is
shown here. Different colors represent the eddy current
(A=mm2) in the plate for 50 Hz frequency. Note that there is
no eddy current in the magnet core.
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Like in Indus 2 at RRCAT, Indore, India, electrons are
injected at 0.550 GeV and then the energy is increased to
2.5 GeV [17]. This calculation will be useful to understand
the eddy current effect in such storage rings. In case of a
full energy injection ring there may be an occasional fail-
ure of power supply which is unavoidable in any practical
situation [18]. In that case the vacuum chamber will be
subjected to a huge force. Prior knowledge of the force
helps in proper design of vacuum chambers and its support
structure. So, the calculation of force is important here.

The nature of the eddy current and the field produced by
the eddy current, when the SS plate is exposed to a time
varying field, is calculated using Eq. (17) and plotted in
Fig. 11. Here, the eddy current is passing through zero at
0.096 m and is asymmetric with respect to the midpoint of
the uniform field spread, i.e., 0.07 m from the edge. The
magnitude of the eddy current density is more towards the
left compared to the right side of the plate. The value of jy
is negative for 68.5% of the plate volume and in the rest of
the plate jy is positive but the field is B0 up to 0.14 m and

then it reduces exponentially with the increase of width
(X). Therefore, the interaction of the eddy current with the
applied field generates an unbalanced force on the plate in
the negative X direction that has been experimentally
observed. The magnetic field produced by the eddy current
is also asymmetric. These results are new and have not
been reported earlier.

The force acting on the plate can be calculated using
Eq. (21). The time variation of the force and the current
density is plotted in Fig. 12. The amplitude of the force
varies with time. The eddy current increases with time
following a sine function whereas the applied field de-
creases with time following a cosine function. Therefore,
the interaction between these two quantities, which gives
rise to a force, will be maximum at some intermediate time.
This has been nicely depicted by the model as expected.

We have also studied the variation of the force on the
plate due to the eddy current when exposed to a nonuni-
form time varying magnetic field for various lengths of the
plate keeping its width constant. The frequency and
the peak field are taken as 50 Hz and 0.991 T, respectively.
The thickness and the width of the plate are 0.002 and
0.3 m, respectively. The length of the plate is varying from
0.1 to 1.0 m. Our calculation shows that the force on the
plate for lengths up to 0.4 m can be expressed as
F ¼ Aþ BX þ CX2, where A, B, and C are �24:32,
108.61, and 2600.57, respectively, whereas the force for
lengths from 0.4 to 1.0 m can be expressed as F ¼ Aþ
BX, where A and B are�401:28 and 2075.13, respectively.
We have plotted the force variation with length in Fig. 13
and the solid line in the plot represents the fitted data using
the above equations. The force calculation on the plate may

FIG. 12. The time variation of the force and the current density
in the SS plate when exposed to the time varying nonuniform
field of frequency 50 Hz.

FIG. 13. The variation of the force on the plate due to the eddy
current when exposed to a nonuniform time varying magnetic
field for various lengths of the plate keeping the width of the
plate constant.

FIG. 11. The Y component of the eddy current density, jy in
the SS plate and the field due to the eddy current at z ¼ 10 mm
are plotted for 50 Hz frequency when the plate is exposed to a
nonuniform time varying magnetic field.
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be extended for vacuum chambers of rectangular shape
which consists of two such horizontal plates connected by
two vertical plates at the end. If we neglect the contribu-
tions coming from the vertical plates, then the force will be
twice in the case of the chamber.

IV. CONCLUSIONS

The present model is capable of predicting accurately
the eddy current contour of a metallic plate of rectangular
shape. We have developed a code in Fortran to calculate
various parameters, like eddy current, power loss, field due
to eddy current, and force using this model. Our code can
provide all the required parameters quickly which helps in
understanding the physical behavior of electromagnetic
fields better. However, the drawback of the analytical
model is that it is difficult to solve if the shape of the plate
is complicated. The value of the eddy current predicted by
the model is within 0.15% of the simulation results. It is to
be noted that the variation of the eddy current is not linear
along the width. Its nature varies at different intermediate
time intervals of a cycle. This is one of the new findings of
the present work. This model predicts that the nature of the
eddy current will be different when the plate is exposed to a
uniform and a nonuniform time varying field, i.e., case I
and case II of our model. It also predicts the time variation
of the eddy current. Power loss predicted by this analytical
model for various shapes and frequencies is also in good
agreement with the simulation values. Our model predicts
the power loss within 0.2% while earlier analytical models
predicted with only a few % accuracy [3]. This model also
predicts that the magnetic field produced by the eddy
current will depend on the environment where the plate
is kept. The B field produced by it when placed inside the
pole gap is calculated. Predictions of our model are accu-
rate because the modification of the B field in the presence
of poles is also incorporated in the model. Our results in the
case of space varying time dependent field are very inter-
esting. The eddy current distribution in the plate is asym-
metric. Because of this nature, the interaction of it with the
applied field produces an unbalanced force on the plate.
The amplitude of the force varies with time. The eddy
current increases with time following a sine function
whereas the applied field decreases with time following a
cosine function. Therefore, the interaction between these
two quantities which gives rise to a force will be maximum
at some intermediate time. This has been nicely depicted
by the model as expected. The B field produced by the eddy
current is also asymmetric. It is expected from this result
that when the vacuum chambers, used in storage rings,
exposed to such an asymmetric time varying field will
produce a deformed B field compared to a symmetric field.
We also mentioned that there will be a net force acting on a
plate when it is exposed to a nonuniform time varying

magnetic field, whereas in the case of a uniform field
exposure the resultant force will be zero.
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