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Shot noise can affect the performance of free-electron lasers (FELs) by driving instabilities

(e.g., the microbunching instability) or by competing with seeded density modulations. Recent papers

have proposed suppressing shot noise to enhance FEL performance. In this paper we use a one-

dimensional (1D) model to calculate the noise amplification from an energy modulation (e.g., electron

interactions from space charge or undulator radiation) followed by a dispersive section. We show that, for

a broad class of interactions, selecting the correct dispersive strength suppresses shot noise across a wide

range of frequencies. The final noise level depends on the beam’s energy spread and the properties

of the interaction potential. We confirm and illustrate our analytical results with 1D simulations.
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I. INTRODUCTION

In a bunch of random (uncorrelated) electrons, the
longitudinal density contains white noise fluctuations,
commonly called shot noise. While shot noise drives
self-amplified spontaneous emission (SASE) free-electron
lasers (FELs), the same density fluctuations may adversely
affect FEL operation. For example, the microbunching
instability, thought to originate from shot noise, can inca-
pacitate diagnostics and degrade FEL performance [1–7].
Shot noise also competes with external modulations in the
operation of seeded FELs [8,9]. Recent papers have pro-
posed schemes to decrease the noise level below that of
shot noise to aid the FEL process or for other applications
[10–12]. In this paper we use the approach of [13] to study
the evolution of noise as the beam travels through a system
with interactions between the electrons as well as disper-
sive regions. To simplify the analysis, we consider a
one-dimensional (1D) model system of a generic self-
interaction h, which changes the particle energies,
followed by a dispersive region R56, which converts the
change in energy to change in position (Fig. 1). We show
that, for a broad class of interactions, it is possible to
suppress density fluctuations below the shot noise level,
and we provide 1D simulations to confirm the result.
Future theoretical and numerical work will extend these
results to 3D models, and explore the feasibility of
demonstrating shot noise suppression experimentally.

II. ANALYTICAL MODEL

A. Noise factor

To characterize the level of noise at a wave vector k, we
define the noise factor

Fðk; sÞ � 1

N

X
j;l

eik½zjðsÞ�zlðsÞ�; (1)

where zjðsÞ is the longitudinal bunch coordinate of particle
j at position s in the accelerator, and N is the number of
particles in the beam. We note that the noise factor can
equivalently be defined by Fðk; sÞ � Njbðk; sÞj2, with the
bunching factor bðk; sÞ � P

j exp½ikzjðsÞ�=N.

The noise factor Fðk; sÞ is a measure of the correlations
between particle coordinates at wave vector k. If the par-
ticle positions are uncorrelated, we find the expectation
value of shot noise, hFðk; sÞi ¼ 1. On the other hand, if the
positions are strongly correlated at wave vector k, we find
hFðk; sÞi � N, with N � 1 generally; such correlated (or
‘‘bunched’’) beams are found at the output of an FEL, and
as the result of the microbunching instability [6,7]. We may
also consider the case of an anticorrelated (or ‘‘quiet’’)
beam, with hFðk; sÞi< 1, below the shot noise level. In this

FIG. 1. Schematic of our model system. Starting with an initial
electron distribution function f0ðz; �Þ, the interaction and
dispersive regions produce a final distribution function
ffðẑ; �̂Þ. The dispersion may be positive or negative.
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paper, we investigate the possibility of producing quiet
beams.

Though the noise factor is defined as a function of
accelerator position s, we are particularly interested in the
noise level at the output of our system, Fðk; sfÞ. Starting
from an initial distribution function at s0, we would like to
determine the resulting final noise level at sf.

To facilitate an analytical solution, we will study the
simplified system of Fig. 1. We assume the particle
distribution is a function of position in the bunch, zðsÞ,
and relative, normalized energy, �ðsÞ � ½EðsÞ � E0�=E0,
with average beam energy E0. Though both z and � are
functions of s, we are primarily interested in the initial and
final coordinates, so for brevity we define z; � �
zðs0Þ; �ðs0Þ, ẑ; �̂ � zðsfÞ; �ðsfÞ, and FðkÞ � Fðk; sfÞ. We

can then describe the system as follows. We start with a
simple N-particle initial distribution of particles,
f0ðz1; . . . ; zN; �1; . . . ; �NÞ. After an interaction period,
the energies are modified, giving distribution faðz1; . . . ; zN;
�̂1; . . . ; �̂NÞ. A dispersive region (assumed to have zero
interaction), then changes the longitudinal positions,
giving final distribution ffðẑ1; . . . ; ẑN; �̂1; . . . ; �̂NÞ.

B. Expectation value of noise factor

To calculate the expectation value, we break hFðkÞi into
incoherent (j ¼ l) and coherent (j � l) portions. First, we
treat the incoherent portion. With j ¼ l, the phases cancel
and we find N terms, all equal to 1, giving

hFðkÞiSN ¼ 1; (2)

which is simply the noise level due to shot noise.
Next, we calculate the coherent portion. To find the

expectation value at the final accelerator position, we
integrate FðkÞ over the final particle distributions,
ffðẑ1; . . . ; ẑN; �̂1; . . . ; �̂NÞ. In general, ff may be a com-

plicated function of all 2N variables. However, if we
assume the electrons are initially uncorrelated, then we
can write the initial distribution function as

f0ðz1; . . . ; zN; �1; . . . ; �NÞ ¼
YN
i

fð1Þðzi; �iÞ; (3)

with the single particle distribution functions for a beam
with Gaussian energy spread of �� and uniform longitu-

dinal density of length L given by

fð1Þðz; �Þ ¼
(
e
��2=2�2�ffiffiffiffiffi
2�

p
��L

for � L=2< z < L=2

0 elsewhere:
(4)

We then express the final coordinates in terms of the initial
coordinates (ẑ; �̂ ! z; �), and integrate over the product of

N simple initial distributions, fð1Þ.
In the interaction region, we assume the bunch is

longitudinally frozen (z; � ! z; �̂), and likewise in the
dispersive region we assume there is zero interaction
(z; �̂ ! ẑ; �̂). To further simplify the calculation, we
ignore any transverse effects. (The validity of the 1D
approximation will depend on the interaction of interest.)
Our resulting map from initial to final coordinates
then is

�j! �̂j¼�jþ
XN
i¼1

hðzj;ziÞ zj! ẑj¼ zjþR56�̂j; (5)

with dispersive strength R56, and hðzj; ziÞ the change in

energy of particle j due to the interaction with particle i.
We can now write the coherent portion of FðkÞ in terms of
the initial coordinates, and integrate over each single

particle distribution, fi � fð1Þðzi; �iÞ, to find the expecta-
tion value,

hFðkÞiC�N
Z L=2

�L=2
dz1d�1 ���

Z L=2

�L=2
dzNd�Nf1 ���

�fNe
ikfz1�z2þR56ð�1��2ÞþR56½

P
N
i
hðz1;ziÞ�

P
N
m
hðz2;zmÞ�g;

(6)

where we have assumed the N2 � N � N2 � 1 coherent
terms of the sum in Eq. (1) are identical, and we have
chosen j ¼ 1, l ¼ 2 without loss of generality.
Our approach (following [13]) will be to explicitly sepa-

rate the z1; z2 terms. We assume the interaction depends
only on the distance between the particles, hðz1; z2Þ ¼
hðz1 � z2Þ, so we change variables, z1; z2; zl; zm !
�; Z; �l; �m with � � z1 � z2, Z � ðz1 þ z2Þ=2, and �l;m �
zl;m � z2. Finally, we assume that the interaction is nonzero

only within a characteristic distance Lh, which is much
shorter than the bunch length L. We can then integrate over
Z and �1 . . .�N to find

hFðkÞiC ¼ n0e
�k2R2

56
�2
�

Z 1

�1
d�

�
1

LN�2

Z
d�3 � � �

Z
d�Ne

ikf�þR56½hð�Þ�hð��Þ�þR56

P
N
i¼3

½hð��iþ�Þ�hð��iÞ�g
�
; (7)

where we have defined the 1D particle density n0 � N=L and we have used Lh 	 L to both ignore edge effects and set the
� integral limits to infinity. First, we note that the N � 2 integrals over �i are separable and identical. Second, we assume
kR56h 	 1 so we can linearize the exponentials, yielding

hFðkÞiC � n0e
�k2R2

56
�2
�

Z 1

�1
d�eik� ½1þ �1ð�Þ�

�
1þ 1

N
�2ð�Þ

�
N�2

; (8)

with definitions
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�1ð�Þ � ikR56½hð�Þ � hð��Þ� þ � � �
�2ð�Þ � n0

Z 1

�1
d�

�
ikR56½hð��þ �Þ � hð��Þ�

� k2R2
56

2
½hð��þ �Þ � hð��Þ�2 þ � � �

�
; (9)

where we have expanded �1 and �2 in powers of the small
parameter kR56h. For �1, the term linear in kR56h is non-
zero, so we drop all higher order terms. However, from our
assumption of a long bunch, the linear order terms in �2

cancel after the integration, so we must also keep the
quadratic term for �2. Combining the two square terms,R
d�hð��Þ2 ¼ R

d�hð��þ �Þ2, we find

�1ð�Þ� ikR56½hð�Þ�hð��Þ�
�2ð�Þ�n0k

2R2
56

Z 1

�1
d�½hð��þ�Þhð��Þ�hð��Þ2�: (10)

We may be tempted to drop �2, because it is second order
in kR56h. However, �2 is also raised to the power of N, and
with N � 1 generally, �2 may even be the dominant term
(as for the microbunching instability, see e.g. [6,7]). In this
paper, we keep both terms, and will see that noise suppres-
sion occurs when �1 and �2 are comparable.

C. Analytical expression: Weak interaction

If we consider a weak interaction under the stronger
assumption �2 	 1, we can solve for the noise level
analytically. Adding in the shot noise term again and
expanding Eq. (8), we find

hFðkÞi � 1þ n0e
�k2R2

56
�2
�

�Z 1

�1
d�eik� ½�1ð�Þ þ �2ð�Þ�

þ 2��ðkÞ
�
: (11)

We are interested in k � 0, and so will drop the � function.
(The � function arises from our assumption of L ! 1. For
finite L, we will have a term that is nonzero for k < 1=L,
but even so our focus is on much shorter wavelengths.)

We can now identify the three regimes for hFðkÞi. For
zero interaction, we are left with only the leading shot
noise term hFðkÞi ¼ 1, which is simply the white noise of
an uncorrelated bunch. The �2 contribution is positive
definite, so for �2 � �1, we find a correlated beam with
hFðkÞi> 1. Finally, for �1 � �2, the term linear in R56

cannot be neglected. If R56 is chosen so that �1 < 0, it is
possible to create an anticorrelated beam, with the noise
factor suppressed below the shot noise level hFðkÞi< 1. In
this paper we consider the third regime.

Identifying the � integral as a Fourier transform (FT), we
rewrite the noise factor as

hFðkÞi � 1þ in0kR56½~hðkÞ � ~hð�kÞ�e�k2R2
56
�2
�

þ n20k
2R2

56FT

�Z 1

�1
d�½hð��Þhð��þ �Þ

� hð��Þ2�
�
e�k2R2

56
�2
� ; (12)

where ~hðkÞ denotes FTfhð�Þg. We drop the second term in
the remaining integral because it has no � dependence, and
so its Fourier transform is nonzero only for wavelengths
longer than the bunch (k < 1=L). The first term is the
autocorrelation of hð�Þ, which has Fourier transform

j~hðkÞj2, yielding
hFðkÞi � 1� 2n0kR56Im½~hðkÞ�e�k2R2

56
�2
�

þ n20k
2R2

56j~hðkÞj2e�k2R2
56
�2
� : (13)

If the energy spread is small (�� ! 0), and the interaction

has purely imaginary Fourier transform ~hðkÞ, we can write
the noise factor as a perfect square

hFðkÞi � ð1��Þ2 with � � n0kR56 Im½~hðkÞ�: (14)

We suppress the noise factor below the shot noise level
when the suppression parameter is in the range 0<�< 2
and the noise disappears completely for � ¼ 1. (We note
that partial noise suppression is possible even if the inter-
action contains a real component.) We are particularly
interested in interactions that can be approximated as
step functions near � ¼ 0: hð�Þ ! AHð�Þ þ const, with
Heaviside function H, and interaction strength A. For

such interactions, we find ~hðkÞ / 1=k for high frequencies,
so that � is independent of k. We are then able to simulta-
neously suppress bunching at a wide range of frequencies.
We can draw a broad lesson from Eq. (13); a quiet beam

is attainable from any interaction with primarily imaginary
Fourier transform, e.g., from step-function interactions (for
k � 0). We will treat the special cases of space charge and
undulator interactions later, but here emphasize that any
interaction with imaginary Fourier transform will suffice.
For example, the wake from a linac with periodic structures
also satisfies these conditions [14]. We have assumed neg-
ligible energy spread here; see Appendix C for a discussion
of the effect of energy spread on noise suppression.
For a physical interpretation of the requirement for

imaginary Fourier transform, we consider a test particle in
front of localized density spike of width 1=k. If hð�Þ> 0 for
� > 0, the test particle will receive positive energy change.
A positive dispersive region then causes the test particle to
move forward and away from the dense region. Likewise, a
test particle at the back of a dense region (� < 0) loses

energy relative to the front particle for ~hðkÞ imaginary, and
moves backward and away in a positive dispersive region.
The end result is a reduction in the density spike and thus a
reduction in the noise. If hð�Þ< 0 for � > 0, as is the case
for an undulator, we have the identical argument, but
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require negative dispersion. The process is illustrated in
Fig. 2.

D. Numerical approximation: Strong interaction

For stronger interactions, we may not be able to approxi-
mate �2 	 1. If it is not possible to evaluate Eq. (8) analyti-
cally for an arbitrary h, we can carry out the integrals
numerically. Using the less stringent approximation
�2 	 N (satisfied even for simulation parameters with rela-
tively small N), we take ð1þ �2=NÞN � expð�2Þ to obtain

hFðkÞi¼1þn0e
�k2R2

56
�2
�

Z 1

�1
d�eik�e�2ð�Þ½1þ�1ð�Þ�: (15)

For physical interactions, �1 ! 0 as � ! 1, so the second

term, e�2ð�Þ�1ð�Þ, converges and can be integrated numeri-
cally. We cannot directly integrate the first term exp½�2ð�Þ�,
because the h2ð��Þ in Eq. (10) has no � dependence; in the

limit � ! 1, we find �2ð�Þ ! ��2 � 0, and the integral
diverges. However, the divergence occurs only for k ¼ 0;

otherwise, ��2 exp½ik�� integrates to zero [which is why we
dropped the h2ð��Þ term from Eq. (12)]. Following the
same reasoning here, with

�� 2 ¼ �n0k
2R2

56

Z 1

�1
d�hð��Þ2; (16)

we explicitly remove the constant term exp½ ��2� to find

hFðkÞi ¼ 1þ n0e
�k2R2

56
�2
�

Z 1

�1
d�½ðe�2ð�Þ � e

��2Þ cosðk�Þ
þ ie�2ð�Þ�1ð�Þ sinðk�Þ�; (17)

where we have used Eq. (10) to see that �1ð�Þ and �2ð�Þ are,
respectively, odd and even functions of � . We can then
integrate Eq. (17) numerically.

III. SPACE CHARGE CASE

A. Space charge interaction

So far we have not specified the interaction term, con-
straining only that the energy change h is a function of � ,
the distance between the particles. We now consider the
Coulomb interaction between two particles. We assume the
interaction occurs over a distance La in the accelerator,
during which the particles are frozen longitudinally. We
consider a 1D system, treating the particles as uniform,
rigid sheets of charge with radius a, valid in the limit a �
�=k [15]. To calculate the relative change in energy due to
the longitudinal E field (Ez), we integrate over the sheets of
source and test particles,

hscð�Þ¼ sgnð�Þ
�mec

2

q2La

4��0S
2

Z a

0

Z a

0

Z 2�

0

Z 2�

0

� r1dr1r2dr2d	1d	2ð��Þ
½ð��Þ2þr21þr22�2r1r2 cosð	1�	2Þ�3=2

; (18)

with average particle energy �mc2, electron charge e, area
of sheet S ¼ �a2, and

sgn ð�Þ �
8<
:
1 � > 0
0 � ¼ 0
�1 � < 0:

(19)

One of the 	 integrals trivially gives a factor of 2�, and the
remaining integrals can be solved numerically to produce
the interaction hscð�Þ shown in Fig. 3. We note that the
interaction will go to zero for � � a=�, as required in
our derivation of Eq. (7). In the limit of infinite sheets
(a ! 1), the Ez field is simply

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Distance between sheets ( γζ/ )

h sc
(ζ

) 
at

 te
st

 s
he

et
 (

ar
b.

 u
ni

ts
)

Average hsc(ζ)

hsc(ζ) at r=0

hsc(ζ) at r=a/2

a

FIG. 3. Space charge from a source sheet produces a change in
energy (hsc) in a test sheet located at a distance � . We calculate
the energy modulation to the test sheet by averaging over the
entire sheet (solid blue curve). Though Ez (and thus hsc) is not
constant everywhere in the test sheet, we note that there is
relatively little variation near the center of the sheet, as can be
seen from hsc evaluated at radius r ¼ 0 (dashed green line) and
r ¼ a=2 (dotted red line).

FIG. 2. Schematic of an interaction near a density spike (solid
green line). At left, for the space charge case, particles in the
front half of the spike gain energy, while particles in the back
half lose energy, and in positive dispersion, the density spike
shrinks (dotted green line). We have a similar result for an
interaction due to undulator radiation (right). At high frequency
(spike much shorter than undulator resonant wavelength), all
particles lose energy, but following a dispersive region with
negative R56 we still find a reduction in the density spike (dotted
green line).
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jEzj ¼ e

2S�0
; (20)

so that the interaction causes an energy change per charge
e, of

hscð�Þ ¼ e2La

2�0S�mec
2
sgnð�Þ ¼ 2�reLa

S�
sgnð�Þ; (21)

with classical electron radius re � e2=4��0mec
2.

B. Space charge Fourier transform

In the simplified case of infinite sheets, the step function

at � ¼ 0 dominates ~hðkÞ, and we find a purely imaginary
Fourier transform,

~hðkÞ ¼ iAsc

k
; (22)

with definition

Asc � 4�reLa

S�
: (23)

Following Eq. (14), we then define the suppression
parameter for space charge, �sc � n0R56Asc, and we
expect broadband suppression for �sc ¼ 1.

In the finite sheet model, when � � a=� the interaction
falls off as 1=�2. The cutoff for hð�Þ as � ! 1 determines
the noise suppression at low frequencies; the approxima-

tion of ~hðkÞ / 1=k breaks and we expect suppression to be
frequency dependent for small k. Averaging the energy
modulation across the disk gives (see e.g. [16,17]1)

~hðkÞ ¼ iAsc

k
½1� 2I1ðkÞK1ðkÞ�; (24)

with modified Bessel functions I1ðxÞ, K1ðxÞ. As k ! 1, we

find ~hðkÞ ! iAsc=k, reproducing the result for the infinite

sheet [Eq. (22)]. However, as k ! 0, we find ~hðkÞ ! 0, and
we expect weaker noise suppression.

C. Space charge simulation

To check our analytical result, we simulate the interac-
tion between particles in a 1D code. We load N particles
randomly within a bunch length L, with initial energy
spread ��. A particle at location z0 interacts with all

particles within the range z0 � Lh < z < z0 þ Lh, and we
choose the interaction distance Lh so that L � Lh � a=�.
To avoid edge effects from a finite bunch, we enforce
periodic boundary conditions on the interaction.
Following the interaction, the longitudinal positions shift
according to ẑ ¼ zþ R56�̂, where the relative energy �̂ is
solely determined by the interactions of the first stage. We
can then calculate the noise factor (or equivalently the fast-
Fourier transform) of the resulting distribution, though

even by eye it is apparent we have suppressed high
frequency noise (Fig. 4). In the limit of a cold beam, the
1D space charge interaction results in regularly spaced
particles, each separated by the local inverse density
1=n0 (Fig. 5).
We check the analytical solution [Eqs. (13) and (24)]

against the simulations in Fig. 6. For all space charge
simulations, units of length are normalized to the sheet
radius a, and for now we assume zero initial energy spread
�� ¼ 0.

D. Validity of 1D model

Throughout the paper we use a 1D model of sheet
particles (sheets distributed with random longitudinal
positions), so we would like to check that the resulting
interaction, Eq. (24), is a reasonable approximation of a 3D
distribution of particles. We may look to Ref. [15], which
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FIG. 4. On the left we show a histogram of particle density for
particles loaded with random longitudinal positions. At right,
following the interaction and dispersive regions, we find a
reduction in noise in the equivalent histogram. (The example
has n0a ¼ 5� 102, � ¼ 1.)

0 0.02 0.04 0.06 0.08 0.1

Longitudinal Position (γz/a ,γz/a)

Shot Noise (uncorrelated)

Quiet Beam (n
0
a=5x102,Y=1)

^

FIG. 5. Longitudinal distribution of particles in simulation
before (�) and after (
) the noise suppression process. For
�� 	 1=R56n0 and a 1D beam, it is possible to show that the

initially uncorrelated distribution gives way to a regularly spaced
beam with interparticle spacing 1=n0 (see Appendix B). The
regular structure amplifies bunching at very high frequencies
k ¼ 2�n0 and its harmonics, while suppressing FðkÞ at frequen-
cies below 2�n0.

1In Eq. (2) of Ref. [17], the Bessel function should beK1, notK0.
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studies the difference between 1D and 3D models of
longitudinal space charge in the high frequency limit.
Though the 1D and 3D distributions of longitudinal fields
diverge at high frequency [see Eqs. (9),11–13 from
Ref. [15] ], we find that when averaged transversely, the
two models give approximately equal results.

The assumption of rigid 1D sheets may also overesti-
mate the noise suppression. Past work on noise suppression
resulting from plasma oscillations has found that 3D mod-
els lead to weaker noise suppression [10,11]. In our 1D
model we assume a rigid sheet of charge that moves
uniformly due to the average longitudinal field, whereas
in reality each particle moves independently. To check the
validity of our 1D model, we have written a 3D version of
the space charge simulation. We confirm the existence of
noise suppression for � ¼ 1, but with somewhat weaker
level of suppression. The 3D theory and simulations will be
published elsewhere.

IV. UNDULATOR RADIATION CASE

A. Undulator radiation interaction

As a second example, we consider the case of a beam
traveling through an undulator. In the 1D limit, we can write
down a simple, closed form solution for the interaction due
to a helical undulator [18], providing a convenient system
for studying noise suppression. For this reason, we neglect
the space charge component in the following analysis,
though we will see that in the absence of an amplifier [12]
the space charge effect is generally dominant. We then find
the undulator interaction (seeAppendixA 1 for a derivation)

huð�Þ ¼
(
�Au

�
1� �

Nu
0

�
cosk0� 0< � < Nu
0

0 otherwise
(25)

with definition

Au � 2�
e2K2Nu


2
u

S�3mec
2
0

¼ 4�
reLu

S�

K2

1þ K2
; (26)

undulator strength parameter K, length Lu, period 
u, and
resonant wavelength 
0. This 1D expression is valid in the
limit

a � �

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p ; (27)

with a the transverse beam size [see Eq. (A20)].

B. Undulator Fourier transform

From Eq. (13), noise suppression originates from the
imaginary component of the Fourier transform. For the
undulator case,

~h uðkÞ �
Z 1

�1
d�eik�huð�Þ

¼ �AuNu
0

Z 1

0
d ��ð1� ��Þ cos� ��eim� �� ; (28)

with definitions �� � �=Nu
0, � � 2�Nu, and m � k=k0.
Integrating gives

~h uðkÞ ¼ �iAuNu
0

�
m

ðm2 � 1Þ�

� i
ð1þm2Þð1� eim�Þ

ðm2 � 1Þ2�2

�
; (29)

with Nu assumed to be an integer. At high frequencies
(m � 1), we neglect the second term, and find a purely
imaginary FT:

~h uðkÞ � �i
Au

k
: (30)

As in the space charge case, we use Eq. (14) to define the

suppression parameter �u ¼ �Aun0R56. In general, ~huðkÞ
is not purely imaginary, as stipulated in Eq. (13). However,
at high frequencies, the undulator interaction looks like a
step function [with the purely imaginary Fourier transform
in Eq. (30)], and the physical picture in Fig. 2 applies here
as well. Again, �u has no k dependence, so we expect
broadband suppression.
At low frequencies, the approximation in Eq. (30) fails

and the Fourier transform will be complex. If we take the
limit of m ! 1, then from Eq. (29) we find

~h uðk ¼ k0Þ ¼ �AuNu
0

�
1

4
þ i

4�

�
; (31)

which is approximately real. We then find hFðkÞi � 1þ
j~huðk0Þj2 and consequently expect bunching to increase at

low frequencies. Note that j~huðk0Þj ¼ ðNu�=2Þ�u, so for
Nu � 1, we can expect an enhancement of �N2

u�
2=4 at

the fundamental when � ¼ 1.
It is interesting to note that at high frequencies, the

undulator interaction is strictly weaker than space charge
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FIG. 6. A comparison of simulation and analytical results
shows noise suppression as a function of frequency. With
� � 1 at high frequency, we find strong suppression. At low
frequencies (k & 2�=a), we no longer have ~huðkÞ / 1=k, so
suppression is weaker for the given parameters.
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[Eq. (26) vs Eq. (23)]. Because the interactions have
opposite sign, the undulator would only act to dampen
the noise suppression from space charge.

C. Undulator simulation

To check our analytical result, we again run the simula-
tion code but with the undulator interaction [Eq. (25)]
instead of space charge. We load N particles randomly
within a length L � Nu
0, and for the undulator case a
particle at location z0 interacts with all particles within the
range z0 � Nu
0 < z < z0.

The simulations confirm both the analytical solution
[Eq. (13), valid for �2 	 1] and the numerical integral
[Eq. (17)]. In all undulator simulations, we normalize units
of length to the resonant wavelength 
0, and we assume
zero initial energy spread �� ¼ 0. (In Appendix C, we

consider the effects of initial energy spread and energy
modulation to the beam.)

D. Undulator numerical integration

While we already know the noise factor in the weak-
interaction limit from Eq. (14), we would like to calculate
�2 explicitly to evaluate the numerical integral. For� � 1,
we find the weak interaction limit is equivalent to n0 �
k2Lu. While the weak approximation is valid for many
realistic examples, to facilitate simulations we use low
particle numbers, where the approximation fails. For that
reason, we use the numerical integration, Eq. (17), to check
our simulations without the assumption of weak interaction.

Plugging the undulator interaction into Eq. (10) yields
(see Appendix A 2)

�ðuÞ
2 ð ��Þ ¼ k2R2

56

L
A2
uNu
0

�
1

6
þ 1

4�2
þ 1

12�3
f�ð1� ��Þ

� ½�2ð ��2 þ �� � 2Þ � 3� cosð� ��Þ
þ 3½�2ð1� ��Þ � 1� sinð� ��Þg

�
: (32)

Plugging into Eq. (16) gives constant term for the undu-
lator interaction

�� ðuÞ
2 ¼ n0�k0ðmR56AuÞ2

N

�
1

6
þ 1

4�2

�
; (33)

and then from Eq. (17) we find

hFðkÞi ¼ 1þ 2n0�e
�k2R2

56
�2
�

�
AumR56

Z 1

0
d ��e�N�ðuÞ

2 ð1� ��Þ

� cosð� ��Þ sinðm� ��Þ þ 1

k0

Z 1

0
d ��ðe�N�ðuÞ

2

� e�N ��ðuÞ
2 Þ cosðm� ��Þ

�
; (34)

which can be integrated directly. Simulations for the case
of Nu ¼ 1 show good agreement with both the analytical
result, Eqs. (13) and (29), and the numerical integration of
Eq. (34), though as expected the analytical result fails for
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FIG. 8. A close-up of Fig. 7 shows agreement with the ana-
lytical expression starts to fail for m * 2, but the numerical
integral matches well everywhere.
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FIG. 7. A comparison of simulation, analytical result and
numerical integral shows noise suppression at high frequency
for � ¼ 1. At low frequencies (m� 1), we find ~huðkÞ is ap-
proximately real [Eq. (31)], and bunching increases to FðkÞ �
1� 2n0k0R56 Im½~huðk0Þ� þ ðn0kR56Þ2j~huðk0Þj2 � 3.
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n0 � k2Lu (Figs. 7 and 8). For a case with a longer undu-
lator (Nu ¼ 10), the numerical integration is essential for
comparison with simulations (Fig. 9). Simulations confirm
the noise factor’s quadratic dependence on � [Eq. (14)]
when in the weak interaction limit (Fig. 10). At this point
we can also explicitly confirm the result from Sec. II C by

plugging ~hðkÞ and �ðuÞ
2 ð ��Þ back into Eqs. (8) and (10) (see

Appendix A 2).

V. EXAMPLE PARAMETERS

Though the focus of this paper is strictly theoretical, we
calculate the interaction strength for SLAC’s Next Linear
Collider Test Facility to illustrate the scale of parameters
involved. For the case of space charge over a length of
La � 10 m with beam cross section S� 10�6 m2 and

energy �� 100 MeV, we find Asc � 4�reLa

S� � 2� 10�9.

A beam of 20 A (n0 ¼ 4� 1011 m�1) then needs R56 �
2 mm to produce� ¼ 1. We note that we are within the 1D
limit even for optical wavelengths (k0�=� * 25).

For the undulator radiation to dominate over the space
charge interaction, we may use an amplifier, as proposed
by Litvinenko [12]. The increase in the interaction strength
also has the benefit of decreasing the required dispersion
R56, allowing for larger energy spreads and higher fre-
quency suppression. However, the larger modulation may
increase the beam energy spread (see Appendix C).

VI. CONCLUSION

We present a longitudinal 1D model of shot noise sup-
pression for a simplified system of an interaction region
followed by a dispersive region. In the limit of small
energy spread (jkR56��j 	 1), interactions with primarily

imaginary Fourier transforms can suppress the noise factor
below the shot noise level. We work out the specific cases
of undulator and space charge interactions, and confirm
both results with a 1D simulation. We note that a wide

range of imaginary impedances (e.g., linac wakefields)
may also reduce shot noise. In the 1D limit with small
energy spread, the suppression process may amplify
bunching at very high frequencies near the interparticle
spacing 1=n0.
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APPENDIX A: DERIVATIONS FOR
NOISE SUPPRESSION FOR THE
UNDULATOR INTERACTION

1. Helical undulator interaction in the 1D limit

In this Appendix we will derive Eq. (25) for the inter-
action of two slices of a bunch separated by distance �
during passage through a helical undulator and obtain an
applicability condition for our 1D approximation. For now,
we only consider the transverse field E?; the contribution
from the longitudinal space charge field Ez is given in

Sec. III, with � replaced by �z ¼ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2=2

p
due to

the presence of the undulator [19].
Our derivation is based on the paraxial approximation

for the field of a relativistic particle from Ref. [20]. The
Fourier component (indicated by hat) of the field of a point
charge q (which we call a source charge) at a point with
coordinates x, y, z is given by the following formula [see
Eq. (28) in [20] ]:

~̂E?ðx;y;z;!Þ¼ i!q

c3

Z 1

�1
dz0

z�z0
Hðz�z0Þei�½ ~v?ðz0Þþ ~aðz0Þ�;

(A1)

where

�¼!

�
sðz0Þ
v

�z0

c
þ z

c

�
þ !

2cðz�z0Þf½x�x0ðz0Þ�2

þ½y�y0ðz0Þ�2g; (A2)

and H is the step function. In these equations ~v?ðzÞ is the
transverse component of the particle’s velocity as a func-
tion of coordinate z, x0ðzÞ and y0ðzÞ define the particle
trajectory, sðzÞ is the length of the trajectory as a function
of z, and v is the absolute value of particle velocity that is
assumed constant. The vector ~aðz0Þ is

~aðz0Þ ¼ �c
x� x0ðz0Þ
z� z0

~x� c
y� y0ðz0Þ
z� z0

~y; (A3)

with ~x and ~y the unit vectors in corresponding directions.
The step function under the integral [Eq. (A1)] is missing
in Eq. (28) of [20]—a mistake that was corrected by the
authors in a later publication [19].
Let us consider a helical undulator of length Lu. Inside

the undulator, 0< z < Lu, the transverse velocity of the
particle and its orbit are
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FIG. 10. Simulations show the noise factor for both Nu ¼ 1
and Nu ¼ 10 as a function of �. When the approximation
k2Nu
0=n0 � 1 is valid, the noise scales as ð1��Þ2. We
have chosen m so that ~huðkÞ is approximately imaginary.
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~v?ðzÞ¼cK

�
ð ~xsinkuzþ ~ycoskuzÞ; x0ðzÞ¼� K

�ku
coskuz;

y0ðzÞ¼ K

�ku
sinkuz; (A4)

whereK is the undulator parameter, � is the Lorentz factor,
and ku ¼ 2�=
u with 
u the undulator period. Note that
since the transverse velocity of the source charge is zero
outside of the undulator, the integration over z0 in Eq. (A1)
is actually limited to the interval 0< z0 < Lu.

Let us now consider a test particle of charge e traveling
in front of the source particle on a parallel trajectory shifted
in the transverse direction by vector X ~xþ Y ~y in such a way
that it passes through each point z earlier than the source
particle by time T > 0. The current density associated with
the test particle is

~jðx; y; z; tÞ ¼ e

vz

~vðzÞ�½x� x0ðzÞ � X��½y� y0ðzÞ � Y�

� �

�
sðzÞ
v

� t� T

�
: (A5)

We can calculate the energy change U of the test particle
due to the interaction with the source one as the product
~E � ~j integrated over the space and time

U¼
Z 1

�1
dt
Z 1

�1
dx

Z 1

�1
dy

Z Lu

0
dz ~E?ðx;y;z;tÞ � ~jðx;y;z;tÞ;

(A6)

where we limited integration over z from 0 to Lu taking

into account that ~E � ~j ¼ 0 outside of the undulator, where
the transverse component of the test particle velocity is
equal to zero. Substituting Eq. (A5) into Eq. (A6) and

expressing the field ~E?ðx; y; z; tÞ through its Fourier trans-

form ~E?ðx; y; z; tÞ ¼ ð2�Þ�1
R
d!ei!t ~̂E?ðx; y; z; !Þ using

Eq. (A1), one finds

U¼e
Z Lu

0

~E?
�
x0ðzÞþX;y0ðzÞþY;z;

sðzÞ
v

�T

�
� ~v?ðzÞ dz

vzðzÞ
¼ e

2�c

Z 1

�1
d!

Z Lu

0
ei!½T�sðzÞ=v� ~̂E?½x0ðzÞþX;y0ðzÞ

þY;z;!� � ~v?ðzÞdz

¼ ieq

2�c4

Z 1

�1
!d!

Z Lu

0

dzdz0

z�z0
Hðz�z0Þ

�½ ~v?ðz0Þþ ~aðz0Þ� � ~v?ðzÞei�1 ; (A7)

with

�1¼!

�
sðz0Þ
v

�z0

c
�sðzÞ

v
þ z

c
þT

�
þ !

2cðz�z0Þf½Xþx0ðzÞ
�x0ðz0Þ�2þ½Yþy0ðzÞ�y0ðz0Þ�2g; (A8)

where we approximated vz � c.
Let us now assume that instead of a source point charge

q we are dealing with a thin uniformly charged disk of

radius a moving in the undulator according to Eq. (A4).
This disk represents a thin slice of an electron bunch. We
assume that the radius a is much larger than the orbit
deviations from the straight line, a � jx0ðzÞj, jy0ðzÞj. To
calculate the energy change U of the test charge due to the
interaction with the source disk q, we need to average
Eq. (A7) over the disk surface, that is to calculate

�U ¼ 1

S

Z
S
UdXdY; (A9)

where S is the cross section area of the disk and the subscript
S at the integral sign indicates integration of the surface of
the disk. Note that this integration cancels the term involving
~aðz0Þ in Eq. (A7), because it is an antisymmetric function of
X and Y [in the limit X � jx0ðzÞj and Y � jy0ðzÞj].
Calculation of �U involves the following integral:

I ¼
Z
S
dXdY exp

�
!

2cðz� z0Þ f½Xþ x0ðzÞ � x0ðz0Þ�2

þ ½Y þ y0ðzÞ � y0ðz0Þ�2g
�
: (A10)

If the factor!=2cðz� z0Þ can be considered as large, that is
�������� !a2

2cðz� z0Þ
��������� 1; (A11)

integration over X and Y can be extended from �1 to 1
with the result

I ¼ 2i�cðz� z0Þ
!

: (A12)

We assume that this is the case, and postpone discussion of
the condition Eq. (A11) toward the end of this section. We
then have

�U¼� eq

Sc3

Z 1

�1
d!

Z Lu

0
dzdz0Hðz�z0Þ ~v?ðz0Þ � ~v?ðzÞ

�exp

�
i!

�
sðz0Þ
v

�z0

c
�sðzÞ

v
þ z

c
þT

��
: (A13)

Using � � 1, it is easy to find that in the helical undulator

1

v
sðzÞ � z

c
þ z

2c�2
ð1þ K2Þ; (A14)

and

~v?ðz0Þ � ~v?ðzÞ ¼ c2K2

�2
coskuðz� z0Þ; (A15)

which gives
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�U ¼ � eqK2

Sc�2

Z 1

�1
d!

Z Lu

0
dzdz0Hðz� z0Þ coskuðz� z0Þ

� exp

�
�i!

�
z� z0

2c�2
ð1þ K2Þ � T

��

¼ � 2�eqK2

Sc�2

Z Lu

0
dz

Z z

0
dz0 coskuðz� z0Þ

� �

�
z� z0

2c�2
ð1þ K2Þ � T

�
: (A16)

Noting that the integral over the � function can bewritten in
terms of step functions,

Z z

0
dz0�

�
z� z0

2c�2
ð1þ K2Þ � T

�

¼ 2c�2

1þ K2
HðTÞH

�
z

2c�2
ð1þ K2Þ � T

�
; (A17)

we calculate the last integral in Eq. (A16) as

�U¼�4�eqLu

S

K2

1þK2

�
1� 2c�2T

Luð1þK2Þ
�
cos

2c�2kuT

1þK2
:

(A18)

Observing that � ¼ cT, 
0 ¼ 
uð1þ K2Þ=2c�2, and
h ¼ �U=�mc2, it is easy to see that Eq. (A18) coincides
with Eqs. (25) and (26).

Let us now discuss the applicability condition Eq. (A11).
The frequency! in this inequality we can estimate as T�1,
and characteristic value of z� z0 is 2c�2T=ð1þ K2Þ,
which gives�������� !a2

2cðz� z0Þ
���������a2ð1þ K2Þ

c2�2T2
¼ a2ð1þ K2Þ

�2�2
� 1: (A19)

Equivalently, since we use the Fourier transformation of
the function h [see Eq. (28)], with k ¼ !=c, we can write
the applicability condition as

k2a2ð1þ K2Þ
�2

� 1: (A20)

2. Quadratic term (�2) for helical undulator

We calculate �2 explicitly for use in the numerical
integral [Eq. (34)]. Plugging Eq. (25) into Eq. (10) gives

�2ð�Þ ¼ n0k
2R2

56

�Z 0

�Nu
0

d�huð��Þ2

�
Z 0

�Nu
0þ�
d�huð��þ �Þhuð��Þ

�
; (A21)

where we have used huðxÞ ¼ 0 outside of the range
0< x< Nu
0 to choose the integration limits. Plugging
in for hu, defining normalized variables �� � �=Nu
0,
�� � �=Nu
0, and � � 2�Nu, we have

�2ð ��Þ ¼ n0k
2R2

56A
2
uNu
0

�Z 0

�1
d ��ð1þ ��Þ2 cosð� ��Þ2

�
Z 0

���1
d ��ð1þ ��� ��Þð1þ ��Þ

� cos½�ð ��� ��Þ� cosð� ��Þ
�
: (A22)

We can then integrate to find

�2ð ��Þ ¼ n0k
2R2

56A
2
uNu
0

�
1

6
þ 1

4�2

þ 1

12�3
f�ð1� ��Þ½�2ð ��2 þ �� � 2Þ � 3� cosð� ��Þ

þ 3½�2ð1� ��Þ � 1� sinð� ��Þg
�
; (A23)

where we have assumed an integer number of undulator
periods Nu to simplify the trigonometric functions. Note
that this expression is valid only for 0< �� < 1; while
Eq. (A23) does not look symmetric about � ¼ 0, from
Eq. (10) we know that �2 is an even function of �� .
In the main text, we use �2 to evaluate Eq. (17). We can

also use �2 to explicitly confirm the result from Sec. II C
for the high frequency undulator case by plugging
Eq. (A23) into Eq. (11). With �2 an even function, we
can write the third (quadratic) term from Eq. (11) as

hF2ðkÞi � 2n0e
�k2R2

56
�2
�N2

u

2
0

Z L

0
d �� cosðm� ��ÞN�2ð ��Þ:

(A24)

We are interested in k � 0, so as in Eq. (17), we subtract
off the two constant terms. By definition, the product of
interactions must disappear for �� > 1 (when at least one of
z1 and z2 cannot interact with the test charge), so we set the
upper limit to 1 and integrate to find

hF2ðkÞi¼�2n20k
2R2

56A
2
uNu
0e

�k2R2
56
�2
�

1

4�4ðm2�1Þ4
�f2m2�2ðm2�1Þ2þ4ðm2þ1Þ2½cosðm�Þ�1�
þ4m�ðm4�1Þsinðm�Þg: (A25)

In the limit m � 1 the result simplifies to

hF2ðkÞi ¼ n20k
2R2

56A
2
uN

2
u


2
0e

�k2R2
56
�2
�

1

m2�2
¼ �2

ue
�k2R2

56
�2
� :

(A26)

Adding in the first two terms of Eq. (13) and taking the limit
of m � 1 and �� ¼ 0, we confirm hFðkÞi ¼ ð1��uÞ2.

APPENDIX B: BUNCHING AT THE AVERAGE
INTERPARTICLE SPACING

In the cold, sheet-beam limit (treating each particle as a
sheet), we show that an interaction hð�Þ results in nearly
full bunching factor at the intersheet spacing if there is a
step function at � ¼ 0 (Fig. 5). To facilitate the calculation,
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we number our particles (sheets) such that zi < zk
if i < k. The energy change for particles k and kþ 1 is
given by

�Ek¼
XN
i¼1

hðzk�ziÞ; �Ekþ1¼
XN
i¼1

hðzkþ1�ziÞ: (B1)

To find the difference in energymodulations,�Ekþ1��Ek,
we rewrite �Ekþ1 in terms of �Ek,

�Ekþ1¼hðzkþ1�zkÞþ
XN
i�k

hðzkþ1�zkþzk�ziÞ

�hð�zkÞþ
XN
i�k

hðzk�ziÞþ�zk
XN
i�k

h0ðzk�ziÞ

¼�Ekþ½hð�zkÞ�hð��zkÞ�þ�zk
XN
i�k

h0ðzk�ziÞ;

(B2)

where we have defined the initial distance between
particles, �zk ¼ zkþ1 � zk, and assumed that the average
spacing h�zi is small to make the Taylor expansion
in the second step. {Specifically, we assume ½hð�þ�Þ�
hð�Þ�=hð�Þ	1, everywhere except at the step function.}
Hence, the energy difference between the two neighboring
particles is

�Ekþ1��Ek¼½hð�zkÞ�hð��zkÞ�þ�zk
XN
i�k

h0ðzk�ziÞ:

(B3)

To compute the last sum, we replace the summation by an
integration (assuming, as before, a uniform longitudinal
distribution of particles in the beam). Skipping over the
region where we have explicitly assumed there are no
particles, for a longitudinally uniform beam we find

XN
i¼1

h0ðzk�ziÞ�n0

�Z z�
k

�1
dzh0ðzk�zÞþ

Z 1

zþ
kþ1

dzh0ðzk�zÞ
�

¼n0

�Z 0þ

1
ð�d�Þh0ð�Þþ

Z �1

��zþ
k

ð�d�Þh0ð�Þ
�

��n0½hð0þÞ�hð0�Þ�; (B4)

where we have approximated hð�z�k Þ � hð0�Þ. For an in-

teraction with a step function at � ¼ 0 of amplitude A ¼
½hð0þÞ � hð0�Þ�, we can rewrite

�Ekþ1 ��Ek ¼ Að1� n0�zkÞ: (B5)

The energy difference �Ekþ1 � �Ek depends linearly on
the initial distance between the particles (Fig. 11).

Following the dispersive section of strength R56, the new
distance between particles k and kþ 1 is

�znewk ¼ �zk þ R56ð�Ekþ1 � �EkÞ
¼ R56Aþ ð1� R56n0AÞ�zk: (B6)

At full suppression � ¼ R56n0A ¼ 1, we obtain

�znewk ¼ 1

n0
; (B7)

giving a uniform structure with interparticle spacing of
1=n0, as in a quasicrystalline beam [21].
The increase in noise at low frequencies [Eq. (31)] leads

to variation in local density, and thus variation in particle
spacing. From simulations we confirm �znewk ¼ 1= �n0,
where �n0 is the local density over a region of length Ln

with 1=n0 	 Ln 	 
0=Nu. In reality, the beam is not
transversely uniform as assumed in the 1D sheet model,
so we do not expect a rigid quasicrystalline structure.
However, we still expect to find an amplification of the
bunching factor at the inverse of the interparticle spacing.
Though the uniform beam is an intriguing theoretical
result, due to the requirement of cold beam (�� 	
1=n0R56) and a true step-function interaction, practical
applications may prove elusive.

APPENDIX C: EFFECTS OF ENERGY SPREAD
AND MODULATION

In the main text we have treated only the case of vanish-
ing energy spread,�� ! 0. When kR56�� * 1, the energy

spread factor exp½�k2R2
56�

2
�� washes out noise suppres-

sion; at high enough frequencies, noise suppression fails.
To suppress noise for larger k we must decrease the dis-
persive strength R56. However, from � � R56n0A ¼ 1,
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FIG. 11. The relative modulation between neighboring parti-
cles, Ekþ1 � Ek, is proportional to the initial distance between
the particles (sheets), �z. Simulation is for the undulator inter-
action, with � ¼ 1, n0
0 ¼ 103. Particles that are closer (far-
ther) than the interparticle spacing, �z < 1=n0, lose (gain)
energy relative to the previous particle, and move away (closer)
in negative dispersion.
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weak dispersion implies a strong interaction A, which in
turn heats the beam. To determine an upper limit on the
interaction strength, we consider how the energy modula-
tion in the suppression process affects the energy spread of
the beam.

1. Energy modulation from noise suppression

The noise suppression process (interaction and disper-
sive regions) changes the particle energies, � ! �̂
(Fig. 12). For the undulator case, the expected amplitude
of the resulting energy modulation for a single particle is

hh2uð�Þi ¼
Z Nu
0

0

d�

Nu
0

h2uð�Þ ¼ A2
u

Z 1

0
d ��ð1� ��Þ2cos2� ��

¼ A2
u

24

�
4þ 6

�2
� 2 sin2�

�3

�
: (C1)

With � � 2�Nu � 2�, we drop the final two terms. We
can then guess that if a particle interacts with on average

�N ¼ n0Nu
0 particles, the expected energy spread will be
approximately

h��i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Nhh2uð�Þi

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0Nu
0

6

s
Au: (C2)

Combined with the suppression condition � ¼
�n0R56Au � 1, we have

h��i � �
ffiffiffiffiffiffiffiffiffiffiffi
Nu
0

6n0

s
1

R56

; (C3)

for the case of maximum suppression (Fig. 13).

2. Suppression wavelength limit

The energy spread washes out noise suppression for
wavelengths below 
min � 2���R56. Expressing 
min in

terms of the energy modulation, we find


min ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffi
Nu
0

6n0

s
��

h��i : (C4)

From Eq. (C4), we note that suppression is possible even
when the modulation amplitude is small compared to the
beam’s natural energy spread, h��i 	 �� (Fig. 14).

Decreasing R56 extends suppression to shorter wave-
lengths, but heats the beam. If we require that the interac-
tion has a negligible effect on the energy spread, then we
find a lower limit on 
min when h��i � ��.

3. Energy spread for FEL

Our goal is to create a quiet beam, so we would like to
consider the extent to which reducing shot noise will
amplify energy noise. For example, FELs require energy
spreads smaller than the Pierce parameter �, giving
h��i & 10�3 for current x-ray FEL designs [22].
Quiet beams may be useful for controlling FEL start-up,

which is driven by noise,FðkÞ, for SASE FELs, and from an
external radiation field for seeded FELs. However, there is
also a contribution to the FEL start-up from the energy noise
[23],
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F�ðkÞ ¼ 1

N

X
j;l

�̂j�̂l

�2
eik½ẑj�ẑl�: (C5)

We note that F�ðkÞ scales as �̂2, which is always

small. However, if �̂jðzÞ is longitudinally periodic (as can

be seen in Fig. 12 for k ¼ k0), F�ðkÞ will also scale as the

number of particles N, which is generally very large. To
claim a quiet start-up for an FEL, we must ensure that
F�ðkÞ & FðkÞ.
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