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We present and discuss the properties of the coherent electromagnetic fields of a very short,

ultrarelativistic bunch in a rectangular vacuum chamber inside a bending magnet. The analysis is based

on the results of a direct numerical solution of Maxwell’s equations together with Newton’s equations. We

use a new dispersion-free time-domain algorithm which employs a more efficient use of finite element

mesh techniques and, hence, produces self-consistent and stable solutions for very short bunches. We

investigate the fine structure of the coherent synchrotron radiation fields. We also discuss coherent edge

radiation. We present a clear picture of the field using the electric field lines constructed from the

numerical solutions. This method should be useful in the study of existing and future concepts of particle

accelerators and ultrafast coherent light sources, where high peak currents and very short bunches are

envisioned.
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I. INTRODUCTION

The coherent synchrotron radiation (CSR) fields have a
strong action on the beam dynamics of very short bunches,
which are moving in the bends of all kinds of magnetic
elements. They are responsible for additional energy loss
and energy spread; microbunching and beam emittance
growth. These fields may bound the efficiency of damping
rings, electron-positron colliders, and ultrafast coherent
light sources, where high peak currents and very short
bunches are envisioned. This is relevant to most high-
brightness beam applications. On the other hand, these
fields together with transition radiation fields can be used
for beam diagnostics or even as a powerful resource of THz
radiation.

A history of the study of CSR and a good collection of
references can be found in [1] and also in the well-known
papers [2–4]. The physics of the coherent fields of a bunch
rotating in a circle is very well understood. Steady state
analytic solutions, which have been found, describe the
essential properties of the CSR fields. However, a steady
state approach along with other assumptions restrict these
formulas for practical applications. By other assumptions,
we mean that a beam is considered to be rigid, radiation
occurs either in free space or between parallel plates, and
there are no transient effects or coherent edge radiation. So
for practical applications one has to rely on numerical
solutions. Electromagnetic theory suggests several meth-

ods on how to calculate CSR fields. The most popular
method is to use Lienard-Wiechert potentials. Another
approach is to solve numerically the approximate
equations, which are a Schrodinger-type equation. These
numerical methods are very well described in [5–8].
However, these methods still have several assumptions
and do not give a full description of the CSR fields. We
suggest that a direct solution of Maxwell’s equations to-
gether with Newton’s equations can describe the detailed
structure of the CSR fields.
There are a lot of finite-difference schemes, which nu-

merically solve Maxwell’s equations since the first one was
published in 1966 [9]. Most of them are so-called
‘‘explicit’’ schemes, which means that the value of the field
at the new time step is calculated only by the field values
from the previous time step. Stability conditions for these
schemes do not allow a time step to be greater than or equal
to a space (mesh) step. This limitation brings an additional
troublesome effect for wavelengths that are compared to a
mesh step. We state that this effect works like a frequency
dispersion media, which is ‘‘hidden’’ in the finite-
difference equation.
We propose to use an implicit method, which is free of

dispersion in the longitudinal direction. The method has
been used to solve the wake potential problem of the very
short bunches [10]. A further development of this method-
ology is to increase its capability for modeling coherent
radiation.

II. METHOD

The main strategy of the method is to use an implicit
scheme for the field calculation; Fourier expansion in the
vertical direction, a traveling mesh, and an ensemble of
particles for a bunch dynamics calculation.
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A. Equations

We will solve numerically Maxwell’s and Newton’s
equations for an ultrarelativistic bunch of charged particles
moving in a rectangular vacuum chamber inside a bending

magnet. Electromagnetic components ~E, ~Bmust satisfy the
equations
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continuity equation
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A Newton force ~F includes electromagnetic components

and a bending magnetic field ~Bbend:
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B. Implicit scheme and wakefield calculations

Modeling ultrafast phenomena requires a special algo-
rithm for solving the electromagnetic equations. This al-
gorithm must be free of frequency dispersion which means
that all propagating waves must have their natural phase
velocity, completely independent of the simulation pa-
rameters like a mesh size or a time step. We suggest an
implicit algorithm which does not have stability issues and
employs a more efficient use of finite element mesh tech-
niques. This method can produce self-consistent stable
solutions for very short bunches. The scheme could have
dispersion in the transverse direction. However, electro-
magnetic fields, which interact with a beam, propagate in
the vacuum chamber at small angles, so the effect of
dispersion in the transverse direction is less important
than dispersion in the longitudinal direction.

We have already used this same approach for wakefield
calculations. An implicit, dispersion-free time-domain al-
gorithm has been used in the computer code designed in
1976 for wakefield dynamics studies at the Novosibirsk
Electron-Positron Linear Collider VLEPP [11]. At that
time we managed to calculate wakefields of a 1.8 mm
bunch. Later this algorithm has been used to solve the
wake potential problem of much shorter bunches and has
proved to be quite powerful in describing the wakefields at
the TESLA Liner Collider (� ¼ 0:7 mm) [12] and TESLA

Test Facility FEL (� ¼ 25�) [13]. Recently, we got an
opportunity to make a comparison with wakefield mea-
surements at Linac Coherent Light Source (LCLS) for a
transport line [linac to undulator (LTU)] and undulator
vacuum chamber. Results of a computation of the wake-
field loss factor of a several micron long bunch (� ¼ 4�)
showed very good agreement with the measurement results
[14]. Here we present this comparison in Fig. 1, which
includes results of several measurements. The continuous
dark yellow line shows the numerical result. The implicit
method has been also very efficiently used in the numerical
solution of the Vlasov and the Fokker-Plank equation for
the longitudinal beam dynamics in a damping ring [15,16].
To employ the implicit scheme, we transform Eqs. (1) to

the second order equations:
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Formulas for the numerical approximation of an equation
of second order are given in [17]. In this publication we
also present an analysis and comparison of the explicit and
implicit schemes with application to CSR field calcula-
tions. Additional details can be found in [18].

C. Traveling mesh and bunch particles

To decrease the amount of needed memory we use a
traveling mesh. This is very important for bunch compres-
sor simulations at higher beam energies where the bunch
length is a micron but the distance between bends is tens of
meters. The mesh moves with the speed of light and we can
definitely assume that the electromagnetic field in front of
the bunch is zero. Because the time delay due to the
bending magnet in the chicane is very small, we do not
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FIG. 1. Measured and simulated loss factor of the transport
line (LTU) and undulator vacuum chamber of LCLS. Symbols
correspond to the results of different measurements. The con-
tinuous dark yellow line shows the numerical result.
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need more space for the bunch. A traveling mesh does not
change the accuracy of the scheme or any conditions of
stability.

To simulate the real shape of a nonmonochromatic
bunch moving, for example, in a bending magnet, we
will use an ensemble of particles. We will track each
particle and average the current (particle velocities) over
the mesh. The charge density distribution will be integrated
using the continuity equation for charge and current. This
will help to smooth out errors of particle transitions from
one cell to another. The real reason for the better accuracy
is that the time step multiplied by the speed of light is equal
to the mesh step in the longitudinal direction.

To check this method, we made a comparison with
results of the one-dimensional analytical approach and
we found good agreement in some simple cases.
However, we have found a much more interesting detailed
structure of the CSR fields, which has not been described
by any previous study. Wewill present a clear picture of the
field in the form of electric force lines and verify the
method from a physical point of view.

III. CSR FIELD DYNAMICS

A. Radiation in a bend

Initially we will try to understand how a bunch field
remakes itself when a bunch is rotated in a magnetic field.
We have calculated the electromagnetic field of a three-
dimensional Gaussian bunch initially moves along the
vacuum chamber very close to the speed of light. At
some point the bunch enters a vertical magnetic field of a
bend. In these simulations we use relative units. The
ratio of the bunch length to a bending radius is �=� ¼
3� 10�3, the horizontal size is half the bunch length
�x=� ¼ 0:5. We did not find any strong dependence on
vertical size as long as it is smaller than the bunch length.
The horizontal vacuum chamber size is a ¼ 0:5� and
vertical chamber size is h ¼ 0:1�. The number of
Fourier modes is mainly determined by the longitudinal
bunch size and the chamber height. In our examples it is
around 10. There are no singularities in our simulations. A
bunch has a finite size in all three dimensions. We consider
only an ultrarelativistic case, when the transverse force of
the electric field of the bunch is almost compensated by the
transverse force of the bunch magnetic field, so a particle
vertical velocity is negligible in comparison with the hori-
zontal and longitudinal velocities. In order to show the field
line distribution, we increase the vertical vacuum chamber
size and the vertical bunch size to make field planar, i.e., to
make two-dimensional field line plots.

Figure 2 shows snapshots of the electric field lines at
different time moments. The white boxes show bunch
contours. Red arrows show the direction of a bunch veloc-
ity. Before entering a bend the bunch has only a transverse
field, which can be seen as a set of vertical lines. A new
field that is generated in a bend is a set of ovals, which

increase in size with a time. We can outline two time
periods of the field formation. The first is when a bunch
is moving inside the region of its initial transverse field.
The first two plots in Fig. 2 are related to this first period.
The second period starts when the bunch is delayed so
much that it is out of the region of the initial transverse
field. The last plot in Fig. 2 shows this situation. The
transverse field continues to move straight with the speed
of light, so we may consider it to be the field of the edge
radiation in a bend.
A more detailed picture of the field lines is shown in

Fig. 3, where green arrows show the directions of the
electric field.
One can see that the upper field lines take the position of

the lower lines and a part of the lower field lines take the
position of the upper lines. However, at the far ends the
transverse field lines continue traveling in the same initial
direction. It is easy to explain such behavior if we present
this field as a sum of two fields:

~E ¼ ~Edp þ ~Ein
~B ¼ ~Bdp þ ~Bin: (5)

The first field ~Edp, ~Bdp is the field of a dipole, which

consists of two oppositely charged bunches. One bunch

T=400 T=700 T=1000

FIG. 2. Snapshots of electric field lines of a bunch, which is
moving in a magnetic field. White boxes show the bunch con-
tour. Red arrows show the directions of the bunch velocity.

FIG. 3. Detailed structure of the field pattern. The red arrow
shows the direction of the bunch velocity. Green arrows show the
field line direction. Upper field lines take the position of the
lower lines and a part of the lower field lines take the position of
the upper lines.
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is the ‘‘real’’ one with a positive charge. This bunch is
rotated in the magnetic field while the other bunch is a
‘‘virtual’’ one, which has an opposite charge and travels

straight in the initial direction. The second field ~Ein, ~Bin is
the field of another virtual, but positively charged bunch,
which travels straight along the initial direction. Naturally
the virtual bunches together sum to zero. This decomposi-
tion is shown in Fig. 4.

There could be a close analogy between the field decom-
position and the Feynman diagram shown in Fig. 5. A real
electron produces a virtual photon, which decays into an
electron-positron pair, corresponding to a dipole. The posi-
tron can annihilate with the ongoing scattered electron to
emit a photon. This photon corresponds to synchrotron
radiation.

We note that this decomposition can also help to im-
prove the accuracy of the numerical calculation of the force
acting on the bunch particles because we remove the strong
initial bunch field. We decompose the fields just for the
purpose of showing the structure of the CSR field. This
model is good for a straight beam pipe until a bunch meets
the chamber wall.

A dense set of field lines in Fig. 3 also reveals a fine
structure of the field in front of a bunch. This �-type region
is common in a classical synchrotron radiation. There are
several publications on the electric field patterns of the
synchrotron radiation [19–21]. We chose Ref. [20], as it
supplies a picture of the field lines of a particle with a
relativistic factor � ¼ 6. The characteristic wavelength of

the synchrotron radiation or an equivalent value of the
bunch length for this relativistic factor is� ¼ R=�3, which
is very close to our bunch length. Figure 6 shows this finite
structure together with a plot from Ref. [20]. The plots are
rotated in order to have the velocities in the same direction
for a better comparison. Plots are also scaled in order to
have approximately the same bending radius. We can state
that the � region before a bunch is very close for both
cases. As was mentioned above, we can distinguish two
stages of the field formation. Now we can separate

the interaction with the field ~Ein, ~Bin and the field ~Edp,
~Bdp. The interaction with the field ~Ein, ~Bin continues only

for the time when a bunch is inside the region of this
transverse field. We can estimate the distance Dþ (or
equivalent time) when a bunch leaves this region. This
means that the bunch delay �must be more than the bunch
length 2�:

� ¼ �’� � sin’ � �
’3

3
� 2�: (6)

From this relation we have

Dþ ¼ �’ � ð6�2�Þ1=3: (7)

The distance Dþ is 37% less than a characteristic over-

taking length L0 ¼ 2ð3��2Þ1=3 according to [3]. The trans-
verse field is located only near the bunch, in the region,
which can be approximated by the bunch size �x or �y or

the bunch length �. A bunch leaves the transverse field
much earlier when his transverse displacement �x exceeds
the field region,

�x ¼ 1
2�’

2 � �; (8)

so the distance Dþ is

Dþ ¼ �’ � ffiffiffiffiffiffiffiffiffiffi
2��

p
: (9)

The distribution of the electric field ~Ein on the horizontal
plane in the vertical center of the vacuum chamber and the

= +
+Q

-Q +Q

FIG. 4. Decomposition of the field of a bunch moving in a
magnetic field (left plot) into two fields: a field of a dipole
(middle plot) and a field of a bunch moving straight in the initial
direction (right plot). Red arrows show directions of a bunch
velocity.

FIG. 5. Decomposition as an analog of the Feynman diagram.

FIG. 6. Fine structure of the field pattern in front of a bunch.
The left plot shows field lines near a bunch. The right plot
presents a picture from Ref. [20] for � ¼ 6. The plots are rotated
and scaled in order to have the same direction for the velocities
and approximately the same bending radius.
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bunch contour at different time steps are shown in Fig. 7.
The red color corresponds to a high positive value of the
field and the blue color corresponds to a low negative value
of the field. The white oval shows the real bunch contour.
The oval covers approximately 90% of the bunch. The plot
also shows the coherent power loss P (gain in our case),
which was calculated using the formula

P ¼
Z
ð ~Jb � ~EÞdxdydz (10)

and the energy loss W (gain), which is just a time integral
of the power loss

W ¼
Z

Pdt: (11)

The power and energy gain of a bunch in the field ~Ein was
calculated for a bunch length of 0.6 mm. The maximum
power is achieved at the time when the bunch is in the red
region of the field. The interaction of the bunch with the

field ~Edp continues for a much longer time. Figure 8 shows

the absolute value of the electric field on the horizontal
plane in the vertical center of the vacuum chamber in
consecutive time steps. The white oval shows the real
bunch contour. When a dipole is created, an electric field
appears between a real bunch and a virtual bunch. This
field increases in value and reaches a maximum value when
the bunches are completely separated and then it goes
down as bunches move apart leaving fields only around
the bunches. The bunch acquires an energy loss while

interacting with the field ~Edp. To study the fields

acting on the particles inside the bunch, we calculated

the distribution of a collinear force Fk and a transverse

force F?:

Fk ¼ ~Jb � ~E F? ¼ ð ~Jb � ~EÞx: (12)

Now we include both fields ~Ein and ~Edp in the electric field
~E. We have found some very exciting fine structure of the
force acting on the particle in the bunch. Figure 9 show a
distribution of forces on the horizontal plane in the vertical
center of the vacuum chamber at three time moments. The
left three vertical plots in Fig. 9 show a bunch charge
distribution. The starting plots are at the bottom at the
time when a bunch just enters the magnetic field. Red
arrows show the direction of the bunch velocity. The
middle three vertical plots show a transverse force.
Again, the red arrows show the direction of the force.
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FIG. 7. The electric field distribution on the horizontal plane in
the vertical center of the vacuum chamber and a bunch position
at different times. The red color corresponds to a high positive
value of the field and the blue color corresponds to a low
negative value of the field. The white oval shows the real bunch
contour. Coherent power and energy gain are shown by a blue
and a red curve.

FIG. 8. Absolute value of the electric field ~Edp on the horizon-
tal plane in the vertical center of the vacuum chamber in
consecutive time steps. The red color corresponds to maximum
value. The blue color corresponds to the minimum value of the
field. The white oval shows the real bunch contour.

FIG. 9. Bunch charge distribution, transverse forces, and col-
linear forces on the horizontal plane in the vertical center of the
vacuum chamber at three time moments. The starting plots are at
the bottom at the time when a bunch just enters the magnetic
field. The left three vertical plots show a bunch charge distribu-
tion. The red arrows show the direction of the bunch velocity.
The middle three vertical plots show a transverse force. Again,
the red arrows show the direction of the force. The right three
vertical plots show the collinear force, which is responsible for
an energy gain or energy loss.
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The transverse force is the well-known space-charge force,
which probably is compensated by a magnetic force in the
ultrarelativistic case. The right three vertical plots show the
collinear force, which is responsible for an energy gain or
an energy loss. The red color corresponds to acceleration
and energy gain and the blue color corresponds to decel-
eration and energy loss. The red arrows are collinear or
anticollinear with a bunch velocity. We did not include
these forces in the beam dynamics simulation in order to
make the physical picture clear.

We see here that the forces on the bunch are very
complicated. The particles, which are in the center of the
bunch, in front of the bunch and at the end are accelerating,

whereas the particles at the boundaries are decelerating.
This means that a bunch gets an additional energy spread in
the transverse direction. The total effect is deceleration and
the bunch loses energy. The asymmetry of the longitudinal
fields can also be seen in Fig. 2, which shows the electric
field line distributions. The bunch shape deformation due
to the difference in the angular velocity along the radial
position is usually small and can be seen only after some
time; however, the ultrasmall beam emittance can be
changed.
The integrated energy loss along the transverse direction

as a function of the longitudinal coordinate is shown in
Fig. 10 together with a bunch longitudinal distribution.
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FIG. 10. Integrated energy loss along the transverse direction as a function of the longitudinal coordinate for two values of bending
radius. The left plot corresponds to the upper plot at the right in Fig. 8. The right plot shows the result for a bending radius 40 times
larger and a bunch length that is 2 times smaller. The green dashed line is from the analytical 1D model.

FIG. 11. Coherent edge radiation. Distribution of the magnetic field on the horizontal plane in the vertical middle of the vacuum
chamber. The large peak corresponds to the bunch field. The right picture is a magnified image of the left picture. Note the scales in the
X and Z directions are different. A red arrow shows the initial bunch X position and the direction of the bunch velocity. A blue arrow
shows the direction of the bunch velocity at this time.
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One can see that the head of a bunch and tail are accel-
erated, when the rest of the bunch is decelerated. The shape
of the energy loss distribution is compared with the ana-
lytical 1D model [3] including shielding (green dashed
line). We obtain a better agreement with the shape of the
energy loss distribution for a larger bending radius and
smaller bunch length. This comparison is shown at the
right plot of Fig. 10. The transverse energy spread is
smaller for a larger bending radius. This complicated
structure of the collinear field is very important. A bunch
will get an additional transverse energy spread, which
cannot be compensated. This energy spread in the mag-
netic field immediately generates emittance growth. This
effect can limit the efficiency of the magnetic bunch com-
pressors and as a result the efficiency of FELs.

B. Coherent edge radiation

As we mention above, an ultrarelativistic bunch and
CSR fields are moving together and interact for a long
time. However one can see a field, which propagates
straight ahead from the initial beam X position. This field
can be seen very well when the bunch gets a large hori-
zontal displacement. Figure 11 shows the distribution of
the magnetic field on the horizontal plane in the vertical
middle of the vacuum chamber. The large peak corre-
sponds to the bunch field. The right picture is a magnified
image of the left picture. Note the scales in the X and Z
directions are different. A red arrow shows the initial bunch
X position and the direction of the bunch velocity. A blue
arrow shows the direction of the bunch velocity at this
time.

Figure 12 shows images of the coherent radiation in
the form of transverse magnetic field distributions on the
vertical planes of the vacuum chamber. The left and the
right sets of vertical plots correspond to different longitu-
dinal positions. Each plot in a set shows a distribution at a

different time. At first we see an image of edge radiation,
then the image of synchrotron radiation, and finally a
bunch field image.
The calculated images of the coherent edge radiation

look very similar to the images, which we have seen on the
YAG screen after the dump magnets, which bend down the
beam at LCLS.

IV. CONCLUSIONS

We have developed a new method for the numerical
solution of Maxwell’s equations. We can analyze the fine
structure of the coherent synchrotron fields, excited by a
short bunch in a bending magnet. We present a clear
picture of the field in the form of electric force lines. We
found good agreement with an analytical one-dimensional
model in simple cases. However, we have found much
more interesting and detailed structure of the CSR fields,
which have not been described by any previous study. A
very important result is discovering the structure of the
complicated collinear force. A bunch will get an additional
energy spread in the transverse direction from the collinear
force. This immediately leads to an emittance growth and
decoherence that could limit FEL lasing for very short
bunches. This effect needs more study.
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