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The harmonics field effect of a planar undulator on free-electron laser (FEL) harmonic generation has

been analyzed. For both the linear case and the nonlinear case, the harmonic fraction of the radiation can

be characterized by the coupling coefficients. The modification of the coupling coefficients is given when

the third harmonics magnetic field component exists, thus the enhancement of the harmonic radiation can

be predicted. The numerical results show that with the third harmonics magnetic field component that has

the opposite sign to the fundamental, the intensity of third-harmonic radiation can be increased distinctly

for both the small signal gain and the nonlinear harmonic generation. The increase is larger for the smaller

undulator deflecting parameter.
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I. INTRODUCTION

Using the higher harmonic is a way of free-electron laser
(FEL) developing towards the shorter wavelength ranges
[1–4]. For a planar undulator with an ideal sinusoidal
periodic magnetic field, the electrons also radiate at odd
harmonics on axis due to their nonuniform axial motion. In
actual planar undulators, the magnetic field is nonsinusoi-
dal and with harmonics field components, that has effects
on the harmonic radiation. Normally the harmonics fields
are very weak. For example, in the hybrid permanent
magnet undulator of the Shanghai deep ultraviolet free-
electron laser source [5], the third-harmonic field is less
than 1% of the fundamental field. For a standard Halbach-
type pure permanent magnet undulator, which has four
magnetic blocks per period, the third-harmonic field may
be even weaker. By increasing the harmonic field compo-
nent aptly, the harmonic radiation can be enhanced [6].
Therefore some methods for this purpose were proposed,
such as putting high permeability shims inside the undu-
lator [7], optimizing the magnetic blocks size in a perma-
nent magnet undulator [8]. Ratios of the third harmonics
magnetic field to the fundamental magnetic field approach-
ing 30% have been measured experimentally by Halbach
[9]. In this paper, we analyze the effect of undulator
harmonics field on FEL harmonic generation, the case of
third harmonics magnetic field is considered specially.

II. ANALYSIS

In a planar undulator with a sinusoidal periodic
magnetic field, the electrons oscillate at odd harmonics

frequency in the transverse direction, thus leading to the
odd harmonics radiations in the forward direction [10]. For
a FEL utilizing such an undulator, the nth harmonic optical
field equation and the phase equation in one-dimensional
mode are [11]
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J is integer order Bessel function. From Eqs. (1) and (2) the
small signal gain of the nth harmonic optical field in the
low gain FEL is given by
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where � is the Pierce parameter, x ¼ n’0
0L, and L ¼ N�u

is the length of undulator. In high gain FEL the harmonic
is generated nonlinearly. The evolution of the nth
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harmonic optical field in the exponential gain region and its
saturation power can be given as [11]
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where Pe is the power of the electron beam; P1 and P1s are
the fundamental power and its saturation power, respec-
tively; Pef is the effective start-up short noise power, equal

to the fraction of the spontaneous undulator radiation in
one power gain length. Thus, the harmonic generation is
characterized by the coupling coefficients for both the
linear case and the nonlinear case. The coupling coeffi-
cients (and consequently the harmonic generation) in-
crease with undulator deflection parameter but the
increase becomes very slow after au > 2. One can expect
an enhancement of the harmonics radiation by adding a
harmonic field to the fundamental sinusoidal undulator
field.

In actual planar undulators, the magnetic field is non-
sinusoidal; when expanded in Fourier series, the field in-
cludes odd spatial harmonics due to the symmetry of the
magnetic structure. Therefore the magnetic fields and
corresponding dimensionless vector potential can be ex-
pressed by
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X
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where m is for all or part odd numbers depending on the
magnetic structure; Bum and aum are the rms value of mth
harmonics magnetic fields and corresponding dimension-
less vector potential, respectively. Generally, all harmonics
components are much smaller than the fundamental com-
ponent:
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The longitudinal motion of the electron is
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For the case that all magnetic harmonic components are
much smaller than the fundamental, all the �m; �ml� terms
that do not contain the fundamental are much smaller than
1 and can be neglected. Then Eq. (8) becomes
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Including the harmonic magnetic fields [Eq. (6)] and with
the optical field
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X
n

asn sin½nðksz�!stÞ þ�sn�; (14)

the phase equation [Eq. (2)] now is
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Substituting Eq. (13) to it, we get
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In obtaining Eq. (17) the condition ks � ku is used.
Similarly, when the magnetic harmonic field existed, the

nth harmonic optical field equation becomes

d
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~asn ’ reneau1�sn

�
fnhe�in�i: (18)

Comparing Eqs. (16) and (18) with Eqs. (1) and (2), it can
be seen that when the magnetic harmonic fields are in-
cluded the coupling coefficient is modified as

½J; J�n ! fn:

In the exponential of the modified coupling coefficient
[Eq. (17)], many terms are small and oscillate fast; an
average over the undulator period will eliminate these
small contribution terms.

Among all the harmonics, the third harmonic is the most
important one. In the following, we consider the case that
only the third-harmonic field exists, and all other harmon-
ics are neglected. Then Eq. (13) can be written as
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Then the modified coupling coefficient [Eq. (17)] is
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Here n ¼ 1; 3. After an average over the undulator period,
the dominant product terms in the sum of Eq. (21) are those
with h1 þ 2h2 ¼ �ðn� lÞ=2:
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For small arguments, only Bessel functions of zero order
will contribute. Because �2 � �1 < 1=2, the above equa-
tion can be further simplified by taking h2 ¼ 0. Then, at
last, we give the modified coupling coefficient as

f1 ¼ J0ð�2Þ
�
½J0ð�1Þ � J1ð�1Þ� þ au3

au1
½J2ð�1Þ þ J1ð�1Þ�

	

(23)
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þ au3
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½J0ð3�1Þ � J3ð3�1Þ�
	
: (24)

According to the above formulas, the modified harmonic
coupling coefficients as a function of undulator parameter
are numerically calculated for different harmonic magnetic
field fraction. The results reveal that the harmonic coupling
coefficients and, consequently, the harmonic emission are
enhanced when Bu3 has an opposite sign to Bu1, and are
suppressed when the magnetic fields have the same sign
(Fig. 1). The results also show that the fundamental cou-
pling coefficient has been less affected by harmonic
magnetic field (Fig. 2).
For both the small signal gain and the nonlinear har-

monic generation in high gain, the harmonic FEL radiation
is proportional to the square of the coupling coefficient
[Eqs. (4)–(6)]. Therefore comparing with the case without
the harmonic magnetic field present, the enhancement of
the 3rd harmonic radiation can be given as
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FIG. 1. Modified third-harmonic coupling coefficient due to
the harmonic magnetic field.
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�
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2
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The dependence of the third-harmonic radiation on the
ratio of Bu3 to Bu1 is shown in Fig. 3. The enhancement
of the third-harmonic radiation is shown in Fig. 4. While in
the calculation of Eq. (25), the arguments of the coupling
coefficients and of the modified coupling coefficients are
taken with a little difference to keep the same resonant
wavelengths, it is au in the former, and au1 in the latter:

a2u ¼ a2u1

�
1þ

�
au3
au1

�
2
�
: (26)

We can see that the harmonics radiation enhancement
increases with the magnetic field ratio of the harmonics to
the fundamental, and for a given harmonic magnetic field
fraction, the enhancement is larger when the magnetic field
is weaker. With the third harmonics magnetic field 30% of
the fundamental, this field ratio translates into a vector

potential ratio of 10%, the intensity increase of the third-
harmonic radiation is about 40%, and becomes larger
when the undulator deflecting parameter is small; for ex-
ample, it is doubled for undulator deflecting parameter

Kð¼ ffiffiffi
2

p
auÞ ¼ 0:9. For 75% enhancement of the third-

harmonic power, the corresponding third-harmonic cou-
pling coefficient is increased one-third, which agrees with
the result of Ref. [6].
Replacing the coupling coefficients with the modified

ones, Eqs. (1) and (2) were numerically solved. The pa-
rameters we used were based on that of the Hefei soft x-ray
FEL proposal [12]. The electron beam parameters were
energy of 800 MeV, initial energy spread of 0.01%, emit-
tance of 2.1 nm-rad, and current of 600 A. The undulator
parameter K is 1.2 with the period of 2.5 cm. Figure 5
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FIG. 3. The effect of B3 on FEL harmonic generation.
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FIG. 4. The enhancement of the FEL harmonic radiation
with B3.
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FIG. 5. The nonlinear harmonic generation in SASE FEL with
(solid line) and without (dashed line) third harmonics magnetic
field. The third harmonics magnetic field 30% of the fundamen-
tal and with an opposite phase to the fundamental is considered.
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FIG. 2. Modified fundamental coupling coefficient due to the
harmonic magnetic field.
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shows the effect of the third-harmonic magnetic field on
evolution of the fundamental and the third-harmonic radi-
ations. The case of the third-harmonic magnetic field being
30% of the fundamental is considered. It can be seen that
comparing with the case without third-harmonic magnetic
field present, the third-harmonic radiation was increased
distinctly. The enhancement of the third harmonic radia-
tion agrees well with our previous analytic analysis in the
low gain region, is large than the analytic analysis in the
exponential gain region, and waves around the analytic
value in the saturation region (Fig. 6). Similar results can
be obtained with other sets of parameters. The analytic
results were given by Eq. (25), in the small signal region it
is derived from Eq. (4), a strict formula; in the saturation
region it is derived from Eq. (6), an approximate formula;
in the exponential gain region it is derived from Eq. (5) but
neglected that the gain length Lg also were changed with

the coupling coefficient.

III. SUMMARY

In summary, we have analyzed the effects of the undu-
lator harmonics field on the coupling coefficients and FEL
harmonic generation. For the case where the third-
harmonic field is present, analytical expressions of the
modified coupling coefficients are given; they can be easily
calculated to predict the effects of the undulator harmonics

field on both the small signal gain in low gain FEL and the
nonlinear harmonic generation in high gain FEL. The
numerical results demonstrate that the third-harmonic
emission can be distinctly enhanced by the undulator
third-harmonic field that has an opposite sign to the fun-
damental, while the fundamental emission has been less
affected. With a third-harmonic field 30% of the funda-
mental field, the third-harmonic emission can be enhanced
about 40%, and even be doubled for the smaller value of
the undulator deflecting parameter.
In addition, since the spontaneous radiation, i.e., the

undulator radiation in synchrotron radiation light source,
also relates to the coupling coefficients, therefore the simi-
lar analysis may be adopted and will be helpful for using
the harmonic magnetic fields to enhance or suppress the
harmonic undulator radiation.
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