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A one-dimensional Vlasov-Poisson model for sheet beams is reviewed and extended to provide a simple

framework for analysis of space-charge effects. Centroid and rms envelope equations including image-

charge effects are derived and reasonable parameter equivalences with commonly employed 2D transverse

models of unbunched beams are established. This sheet-beam model is then applied to analyze several

problems of fundamental interest. A sheet-beam thermal equilibrium distribution in a continuous focusing

channel is constructed and shown to have analogous properties to two- and three-dimensional thermal

equilibrium models in terms of the equilibrium structure and Debye screening properties. The simpler

formulation for sheet beams is exploited to explicitly calculate the distribution of particle oscillation

frequencies within a thermal equilibrium beam. It is shown that as space-charge intensity increases, the

frequency distribution becomes broad, suggesting that beams with strong space-charge can have improved

stability relative to beams with weak space-charge.
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I. INTRODUCTION

Analysis of self-consistent space-charge effects in
beams is notoriously difficult due to the nonlinear structure
of the Vlasov-Poisson models for realistic, smooth distri-
bution functions. Even the equilibrium structure is gener-
ally highly nonlinear which complicates the analysis of the
stability and evolution of collective wave perturbations
evolving on the equilibrium. Because of this situation,
large-scale numerical simulations play a central role in
the analysis of charged particle beams. Nevertheless,
even when only tractable in idealized limits, problems
amenable to analytic analysis increase our understanding
of equilibrium and stability properties which in turn helps
in interpreting and guiding experiments and/or numerical
simulations of more realistic system models.

One-dimensional (1D) sheet-beam models have
been applied in the analysis of microwave devices and
free-electron lasers [1–5]. 1D sheet-beam models have
also been exploited as a simplified framework to gain
insight into higher-dimensional models of beams in
particle accelerators—particularly on difficult space-
charge effects. Sacherer applied a self-consistent, 1D

Kapchinskij-Vladimirskij (KV) model for a uniform den-
sity beam to analyze equilibrium and stability properties
and applied his results to model space-charge induced
effects on resonances in rings [6]. Various studies have
applied and extended Sacherer’s pioneering work in inter-
preting space-charge resonance effects in rings [7–9].
Anderson showed that in a cold, laminar beam limit all
initial density perturbations on a uniform density sheet
beam are transferred to velocity space in a quarter plasma
oscillation period [10]; he also estimated emittance growth
rates due to centroid displacements using a sheet-beam
model [11]. Analytic descriptions of collective modes in
sheet beams have been derived for a continuously focused
waterbag (i.e., uniform phase-space) distribution by
Startsev and Davidson [12] and by Okamoto and Yokoya
for approximate waterbag distributions in both continuous
and periodic focusing [8,13]. Davidson et al. also analyzed
a waterbag distribution in periodic focusing channels in
terms of the evolution of the phase-space boundary [14].
In spite of this success in sheet-beam modeling, an issue

of concern stems from the Coulomb force being radically
different in physical 3D (inverse distance squared), 2D
transverse cylindrical (inverse radial distance), and 1D
slab (constant; long range) geometries suggesting the pos-
sibility of nonphysical collective interactions in the lower-
dimensional models. However, it is well known that in 2D
beam and plasma systems Debye screening leads to closely
similar characteristic transverse collective effects relative
to 3D models in spite of the very different Coulomb
interaction in 2D and 3D. Here, we first analyze a thermal
equilibrium distribution for a continuously focused sheet
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beam and show that it has surprisingly similar features to
higher-dimensional thermal equilibrium models. Then the
sheet-beam thermal equilibrium is applied to show that the
same characteristic Debye screening is produced in the 1D
model as in 3D, thereby supporting the viability of the 1D
model because equivalent Debye screening in 1D should
lead to similar collective interactions to those in the physi-
cal 3D model. The simplicity of the sheet-beam thermal
equilibrium model is also exploited to explicitly calculate
the distribution of particle oscillation frequencies within
the equilibrium beam. The influence of space-charge in
broadening of the frequency distribution is parametrically
quantified. These large frequency spreads help explain the
surprising degree of stability observed in the transport of
high intensity beams in both laboratory experiments and
simulations.

The organization of this paper is the following. In Sec. II
we review and extend a 1D sheet-beam model which can
be exploited to more simply analyze a wide variety of beam
transport problems with intense space-charge. A Vlasov
model and both equilibrium and concavity-based distribu-
tion stability in continuous focusing are briefly reviewed
(Sec. II A), centroid and envelope equations are derived
and rms equivalency is discussed (Sec. II B), and simple
parametric equivalences to higher-dimensional beam mod-
els are established (Sec. II C). The sheet-beam model is
then applied to analyze a thermal equilibrium beam in a
continuous focusing channel in Sec. III. The equilibrium
density/potential and distribution structure are parametri-
cally illustrated as space-charge intensity is varied
(Sec. III A). Debye screening of a test charge inserted in
the equilibrium beam is studied (Sec. III B). The simple
structure of the equilibrium is exploited to explicitly cal-
culate the distribution of particle oscillation frequencies
within the sheet beam including linear applied focusing
and nonlinear defocusing space-charge forces (Sec. III C).
Concluding discussions in Sec. IV frame the context and
usefulness of results analyzed.

II. SHEET-BEAM MODEL

We employ a sheet-beam model in a rectangular x, y, z
coordinate system to represent an axially thin, transverse
slice of an unbunched (@=@z ¼ 0) charged particle
beam composed of a single species of particles
of charge q and rest mass m. The slice propagates
with velocity �bc ¼ const and relativistic gamma factor

�b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

b

q
¼ const along the axial (z) direction. Here,

c is the speed of light in vacuo. The independent timelike
coordinate is s, which represents the axial coordinate of a
reference particle of the beam along the design orbit in the
machine. The beam is modeled by a superposition of
charge sheets which are distributed in x and uniform in y
and z. The beam phase space is described by spatial
coordinate x and the angle x0 that the sheet particles

make relative to the longitudinal axis of the machine.
Primes denote derivatives with respect to s, and in the para-
xial approximation x0 ’ vx=ð�bcÞ, wherevx is the xvelocity
of the sheet. Any y0 dependence is dynamically irrelevant
and is suppressed for notational clarity. The sheet particles
evolve according to the single-particle Hamiltonian

H ¼ 1

2
x02 þ 1

2
�x2 þ q�

m�3
b�

2
bc

2
; (1)

with equations of motion

d

ds
x ¼ @H

@x0
¼ x0;

d

ds
x0 ¼ �@H

@x
¼ ��x� q

m�3
b�

2
bc

2

@�

@x
:

(2)

Here, �ðsÞ is the focusing function of the lattice, which is
taken to be a prescribed function of s, and � is the electro-
static potential given by the transverse 1D Poisson
equation

@2

@x2
� ¼ � q

�0
n; (3)

where nðx; sÞ is the number density of beam particles. The
Poisson equation is solved subject to appropriate boundary
conditions. SI units are employed and �0 is the permittivity
of free space.
In contrast to higher-dimensional cases, the 1D Poisson

equation (3) for a sheet beam can be fully solved
analytically. The one-dimensional beam density n can be
thought of as a superposition of sheet charges. Taking in
free space, qn ¼ �s�ðx� xsÞ where �s ¼ const is a sur-
face charge density, x ¼ xs is the x coordinate of
the sheet charge, and �ðxÞ a Dirac-delta function, yields
�@�=@x ¼ sgnðx� xsÞ�s=ð2�0Þ, where sgnðxÞ ¼ �1
denotes the sign of x. Note that in contrast to the field
produced by point charges in 2D and 3D systems, the 1D
field is long range and does not fall off with distance from
the charge source. Using this point source result, the direct
field in free space is obtained by linear superposition of
sheet charges to the left and right of x giving

�@�

@x
¼ q

2�0

�Z x

�1
d~xnð~xÞ�

Z 1

x
d~xnð~xÞ

�
¼qNx

�0
�qN

2�0
: (4)

Here,

Nx �
Z x

�1
d~xnð~xÞ (5)

is the density integrated to the left of x (s dependence of n
is suppressed for notational simplicity). We denote the
integrated density (number of particles per unit surface
area of the beam) by

N � lim
x!1Nx ¼ const; (6)
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which is constant since particles are neither created or
destroyed. For future applications note that

n ¼ @Nx

@x
: (7)

Without loss of generality, a potential reference
of �ðx ¼ 0Þ ¼ 0 can be taken while integrating Eq. (4)
with respect to x to express the direct field potential in free
space as

� ¼ � q

�0

Z x

0
d~xNxð~xÞ þ qN

2�0
x: (8)

For the special case of a sheet beam with a symmetric
density profile about x ¼ 0 satisfying nðxÞ ¼ nð�xÞ, Nx ¼
N=2þ R

x
0 d~xnð~xÞ and the free-space field and potential

solutions in Eqs. (4) and (8) reduce to

�@�

@x
¼ q

�0

Z x

0
d~xnð~xÞ; �¼ q

�0

Z x

0
d~x
Z ~x

0
d~~xnð~~xÞ: (9)

For the case of a sheet beam focused between conduct-
ing aperture plates (see Fig. 1) at x ¼ xpl and x ¼ xpr
which are held at potentials � ¼ �l and � ¼ �r, respec-
tively, the Poisson equation (3) can be integrated from the

left boundary at x ¼ xpl with
@�
@x jx¼xpl undetermined and

�ðx ¼ xplÞ ¼ �l. Then
@�
@x jx¼xpl can be calculated by re-

quiring �ðx ¼ xprÞ ¼ �r which gives

�@�

@x
¼� �r��l

xpr�xpl
� q

�0ðxpr�xplÞ
Z xpr

xpl

dxNx�qNx

�0
;

�¼�lþ
�
�r��lþ q

�0

Z xpr

xpl

dxNx

�
x�xpl
xpr�xpl

� q

�0

Z x

xpl

d~xNxð~xÞ:

(10)

In the finite geometry solution above, the free-space forms
of Nx and N defined in Eqs. (5) and (6) are replaced

by Nx ¼
R
x
xpl

d~xnð~xÞ and N ¼ Nx¼xpr ¼
Rxpr
xpl d~xnð~xÞ.

Provided that no particles are lost to the plates during the
beam evolution, N ¼ const. Comparing the free-space
solution (4) and the finite geometry solution (10) for
�@�=@x, we can resolve the field of the finite geometry
system as

� @�

@x
¼ � @�

@x

��������d
�@�

@x

��������a
� @�

@x

��������i
; (11)

where

� @�

@x

��������d
� qNx

�0
� qN

2�0
;

�@�

@x

��������a
� � �r ��l

xpl � xpr
¼ const;

�@�

@x

��������i
� � q

�0ðxpr � xplÞ
Z xpr

xpl

dxNx þ qN

2�0
;

(12)

are identified as the (d) direct or free space, (a) applied, and
(i) induced image-charge contributions to the solution. The

applied field � @�
@x ja is spatially uniform in x and can be

interpreted for �l � �r (i.e., when nonzero) as a disper-
sionless bending or deflection field. The net image field

� @�
@x ji is spatially uniform and can be shown to be zero

when the density profile of the beam is symmetric about
the geometric center of the aperture. In spite of the long-
range 1D field structure, the image field becomes weak
when the statistical center of the beam remains near (in a
fractional sense) to the geometric center between the plates
at x ¼ ðxpl þ xprÞ=2. These points are illustrated clearly in
the centroid equation of motion derived for a uniform
density beam in Sec. II B.
For future applications, employing Eq. (2) and the field

resolution in Eq. (11), the equation of motion of a general
particle can be expressed as

x00 þ�x¼� q

m�3
b�

2
bc

2

�
@�

@x

��������d
þ@�

@x

��������a
þ@�

@x

��������i

�
; (13)

with the direct, applied, and image field components speci-
fied in Eq. (12). For the case of a sheet beam in free space,
the applied and image components are set to zero.

FIG. 1. Schematic of 1D sheet beam (a) geometry with biased
conducting plates and (b) density projection and fields.
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A. Vlasov-Poisson system and
continuous focusing equilibria

In the continuum approximation, particle collisions are
neglected and the beam evolution is modeled by a single-
particle distribution function fðx; x0; sÞ which evolves
according to the Vlasov equation:�

@

@s
þ @H

@x0
@

@x
� @H

@x

@

@x0

�
fðx; x0; sÞ ¼ 0: (14)

Within the context of the Vlasov model, the number
density n in Poisson’s equation (3) is smooth and with
normalization choices taken is related to f by

n ¼
Z 1

�1
dx0f: (15)

The Vlasov equation (14) with the Hamiltonian in Eq. (1)
and electric field solution �@�=@x (including self-direct
and image terms as well as possibly an applied bending
term when �l � �r) specified by Eqs. (10) and (15)
determine the evolution of the distribution fðx; x0; sÞ in s
from a non-negative initial function specified at the initial
coordinate s ¼ si [i.e. fðx; x0; s ¼ siÞ � 0]. The simplicity
of this 1D Vlasov model together with the fully analytic
field solution not only enables considerable progress in
analytical analysis of beam physics problems, but it can
also be exploited as a simple test bed to develop numerical
simulation methods—particularly for direct Vlasov simu-
lations [15].

The focusing function �ðsÞ can be related to applied
linear electric or magnetic focusing field components using
standard formulas from higher-dimensional models (see
Refs. [16–19] and the parametric equivalence discussion
in Sec. II C). Electric (including continuous focusing) op-
tics cannot be fully consistent with the 1D model geometry
assumed and vacuum transport. Nevertheless, they can be
applied as additional, idealized imposed forces with con-
sistent coupling strength from the higher-dimensional
models. For the special case of a periodic lattice, the
function �ðsÞ is periodic with lattice period Lp,

i.e., �ðsþ LpÞ ¼ �ðsÞ. In this case, it is convenient to

measure the strength of � with the single-particle phase
advance per lattice period �0, which can be calculated
as [20]

cos�0 ¼ 1
2 TrMðsi þ LpjsiÞ: (16)

Here,

MðsjsiÞ ¼
CðsjsiÞ SðsjsiÞ
C0ðsjsiÞ S0ðsjsiÞ

 !
(17)

denotes the 2� 2 transfer matrix from axial coordinate si
to s, TrM denotes the trace of M, and the CðsijsÞ and
SðsijsÞ are cosine-like and sine-like principal orbit func-
tions satisfying

F00ðsjsiÞ þ �ðsÞFðsjsiÞ ¼ 0; (18)

withF representingC orS and the equation is solved subject
to the initial conditions CðsijsiÞ ¼ 1, C0ðsijsiÞ ¼ 0,
and SðsijsiÞ ¼ 0, S0ðsijsiÞ ¼ 1. For periodic lattices, the
focusing function � is generally chosen sufficiently weak
with ð1=2ÞjTrMðzi þ LpjziÞj � 1 for the single-particle

orbits to be stable.
Analogously to higher-dimensional cases [16,18,19,21],

the continuous focusing model with

� ¼ k2�0 ¼ const (19)

is an idealization which can be applied to further simplify
the sheet-beam model. In this case the particle phase
advance �0 and lattice period Lp are arbitrary and all

particle orbits moving in the presence of the applied focus-
ing field are stable.
Any positive-definite distribution function fðfCigÞ

formed from a set of constants of the motion fCig of the
single-particle equations of motion (13) produces a valid
‘‘equilibrium’’ solution to the Vlasov equation. Self-
consistency requires that fðfCigÞ generates the electric field
�@�=@x required for validity of the fCig. Generally, this is
a highly nontrivial constraint. However, for continuous
focusing with �l ¼ �r (i.e., no bending), any choice of
function fðHÞ with fðHÞ � 0 generates a stationary
(@=@s ¼ 0) equilibrium beam because H is a single-
particle constant of the motion in this situation.
Global conservation constraints of the 1D Vlasov-

Poisson system can be applied as in higher-dimensional
models to bound perturbations [22–25]. For systems where
particles are not lost, the generalized entropy constraint
associated with the Vlasov equation,

UG ¼
Z xpr

xpl

dx
Z 1

�1
dx0GðfÞ ¼ const; (20)

applies for any choice of differentiable function GðfÞ
satisfying Gðf ! 0Þ ¼ 0 provided that fðx0 ! �1Þ ¼ 0
and fðx ¼ xpl; xprÞ ¼ 0. A special case of Eq. (20) with

GðfÞ ¼ qf is charge conservation, i.e., qN ¼
q
Rxpr
xpl dx

R1
�1 dx0f ¼ const. For the special case of con-

tinuous focusing with � ¼ k2�0 ¼ const and �l and �r

constants (i.e., a continuous bend), the sum of the kinetic,
applied potential, and electric field energies are constant,
which can be expressed as

UE ¼
Z xpr

xpl

dx
Z 1

�1
dx0

�
1

2
x02 þ 1

2
k2�0x

2

�
f

þ �0
2m�3

b�
2
bc

2

Z xpr

xpl

dx

��������@�@x
��������2þ �0

m�2
b�

2
bc

2

�
�
�r

@�

@x

��������x¼xpr

��l

@�

@x

��������x¼xpl

�
¼ const:

(21)

This result is derived in Appendix Awhere it is also shown
that the last term on the left-hand side is associated with
energy provided by an external source used to hold the
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plates at x ¼ xpl; xpr at potentials � ¼ �l;�r. Also in

Appendix A, the expected result is shown that if �l ¼ �r

(possibly varying in s), then Eq. (21) applies without the
external source term. Paralleling methods developed for 2D
and 3D beams in Refs. [22,24], Eqs. (20) and (21) can be
applied to continuously focused sheet-beam equilibria
without bending (�l ¼ �r) to bound perturbations and
show that any equilibrium distribution fðHÞ that is a mono-
tonic decreasing function of H [i.e., dfðHÞ=dH � 0] is
stable to both small and large amplitude perturbations.
For infinite systems (free space), the 1D field-energy term
/ R1

�1 dxj@�=@xj in Eq. (21) diverges. However, analo-
gously to the case in 2D, this divergence can be regularized
(i.e., an appropriate infinite constant subtracted) to allow
bounding of perturbations to show that sheet-beam equilib-
ria in free space with dfðHÞ=dH � 0 are stable.

For future use, we denote distribution averages in the
Vlasov theory by

h� � �i ¼ 1

N

Z xpr

xpl

dx
Z 1

�1
dx0 � � � f: (22)

Averages of a quantity gðx; sÞ which is independent of x0
can be calculated using n ¼ @Nx=@x [Eq. (7)] to obtain

hgi ¼ 1

N

Z xpr

xpl

dxg
@Nx

@x
: (23)

For some particular choices of g, partial integration can be
exploited to further simplify Eq. (23).

B. Centroid and envelope equations
and the rms-equivalent beam

For present purposes we make no assumptions on
the structure of the sheet-beam distribution f and define
phase-space coordinates with respect to the center of mass
(centroid) hxi by

~x � x� hxi; ~x0 � x0 � hx0i: (24)

To derive an equation of motion for the sheet-beam
centroid

X � hxi; (25)

the particle equation of motion (13) is averaged to obtain

X00 þ�X¼� q

m�3
b�

2
bc

2

�
@�

@x

��������a
þ@�

@x

��������i

�

¼� q

m�3
b�

2
bc

2

�
�r��l

xpl�xpr
þ q

�0ðxpl�xprÞ
�
Z xpr

xpl

dxNx�qN

2�0

�
:

(26)

There is no direct (free-space) field contribution in Eq. (26).

This follows because h@�@x jdi ¼ � q
�0
hNxi þ q

2�0
N ¼ 0 for

any density profile n since hNxi ¼ 1
N

Rxpr
xpl dxNx

@Nx

@x ¼ N
2

provided particles are not lost from the system. The applied

and image terms are independent of x and x0 giving

h@�@x jai ¼ @�
@x ja and h@�@x jii ¼ @�

@x ji. Note that the applied field
term effectively acts as an ideal x-plane bending force on
the centroid trajectory.
Regardless of the actual distribution of beam space-

charge, we define a statistical measure of the half-width
of the beam in x about the centroid x ¼ X as

xb ¼
ffiffiffiffiffiffiffiffiffiffiffi
3h~x2i

q
: (27)

This definition is consistent with a uniform density beam
with sharp edges about the centroid at x ¼ X � xb. The

factor of
ffiffiffi
3

p
in Eq. (27) is a consequence of the 1D

geometry and contrasts the familiar factor of 2 in the usual
2D statistical envelope edge definitions [16,18,19,21]. To
derive an equation of motion for this ‘‘edge’’ measure of
the beam half-width, we first derive an equation of motion
for the transformed particle coordinate ~x by subtracting
Eq. (26) from Eq. (13) and applying ~x ¼ x� X to show
that

~x 00 þ �~x ¼ q2

�0m�3
b�

2
bc

2

�
Nx � 1

2
N

�
: (28)

Only the direct (free-space) field is present in this trans-
formed equation of motion because both the applied and
image field terms subtract. Differentiating Eq. (27) twice
with respect to s and applying the equation of motion (28)
leads to the rms envelope equation:

x00bþ�xb�P
3½Rxpr

xpl dxðNx

N Þ�
Rxpr
xpl dxðNx

N Þ2�
xb

�"2

x3b
¼0: (29)

Here,

P � q2N

2�0m�3
b�

2
bc

2
¼ const (30)

is the sheet-beam perveance and

" � 3½h~x2ih~x02i � h~x~x0i2�1=2 (31)

is the rms-edge emittance of the sheet beam. For the 1D
sheet beam the perveance P has dimensions 1=length,
which contrasts to the typically defined dimensionless
perveance of a 2D unbunched beam [16,18,19,21].
Additionally, the rms-edge emittance " is connected

to the rms emittance "x;rms � ½h~x2ih~x02i � h~x~x0i2�1=2 as

" ¼ 3"x;rms with a factor of 3 rather than 4 as in the 2D

case due to the structure of the 1D phase space.
Contrasting the equations of motion (26) and (29) for the

centroid X and envelope xb, the fact that the applied field

� @�
@x ja enters only the centroid equation is not surprising

since any nonzero applied field acts as an ideal (bending)
dipole term. The lack of image contribution in the envelope
equation results from the independent of x structure of the
induced fields in the 1D geometry. The image term in the

centroid equation [� @�
@x ji] will generally evolve in s with
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the form of the density profile n produced by the sheet-
beam distribution f. Similarly, in the envelope equation,
both the defocusing self-field perveance term (/ P) and the
emittance " will generally evolve in s. Thus, the centroid
and envelope equations can only be integrated under addi-
tional assumptions or analysis to quantify generally non-
constant terms in the equations.

For the special case of a sheet beam with uniform
density between sharp edges at x ¼ X � xb, we have

nðxÞ ¼
Z 1

�1
dx0f ¼

8>>><
>>>:
0; X þ xb < x < xpr;

n̂; X � xb < x < X þ xb;

0; xpl < x < X � xb;

(32)

with n̂ constant in x but possibly varying in s. Consistent
with charge conservation,

n̂ ¼ N

2xb
(33)

with N ¼ const. Using this density profile the centroid
equation (26) reduces to

X00 þ �X ¼ � q

m�3
b�

2
bc

2

�r ��l

xpr � xpl

þ 2P

xpr � xpl

�
X� xpr þ xpl

2

�
; (34)

and

3½Rxpr
xpl dxðNx

N Þ �
Rxpr
xpl dxðNx

N Þ2�
xb

¼ 1;

thereby reducing the envelope equation (29) to simply

x00b þ �xb � P� "2

x3b
¼ 0: (35)

Note that Eqs. (34) and (35) are decoupled for a uniform
density sheet beam with the centroid equation independent
of xb and the envelope equation independent of X. From
Eq. (34), the image force acting on the centroid is a linear
defocusing force which is zero when the beam is centered
in the aperture with X ¼ hxi ¼ ðxpr þ xplÞ=2. Even though
self-field forces are long range in 1D, the image force
becomes weak when the fractional deviation of X from
the aperture center at ðxpr þ xplÞ=2 is small due to relative

values of induced charge on the two plates being closely
tuned. Naturally, the image force also becomes weak for
small beam perveance P. From Eq. (35), the space-charge
defocusing term of a uniform density sheet beam is simply
a constant (P). This structure a posteriori motivates the
choice of numerical coefficients incorporated in the
definition of the sheet-beam perveance P in Eq. (30).
The constant space-charge defocusing term acting in the
envelope equation contrasts forms found in 2D and 3D
systems for uniform density beams. In the 2D and 3D cases
space-charge strength varies inversely with the beam
envelope extent.

Analysis by Sacherer [6] shows that the distribution,

f ¼ N

2�"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð ~xxbÞ2 � ðxb~x0�x0

b
~x

" Þ2
r

��

�
1�

�
~x

xb

�
2 �

�
xb~x

0 � x0b~x
"

�
2
�
; (36)

satisfies the 1D Vlasov-Poison system consistent with the
assumption of uniform beam density in Eq. (32). Here,
�ðxÞ is the unit-step function defined by �ðxÞ ¼ 0 for
x < 0, and �ðxÞ ¼ 1 for x > 0. The distribution (36) is
the 1D analog of the well-known 2D KV distribution
[16,21,26]. It is straightforward to show that the KV dis-
tribution (36) is a function of Courant-Snyder invariants
[20,21,27] of the linear equation of motion,

~x 00 þ �~x� P

xb
~x ¼ 0; (37)

which describes a particle moving within the uniform
density beam (i.e., j~xj< xb). Although the sheet-beam
KV distribution diverges at the phase-space edge, it does
not possess the same degree of singularity (delta function)
in phase space as occurs for the 2D KV distribution. The
1D KV distribution (36) is the unique self-consistent
distribution that produces a uniform density beam and
evolves consistently with the envelope equation (35) with
" ¼ const. An interesting feature of the construction in 1D
is that it is consistent with image charges because image
forces are linear in 1D and are therefore consistent with the
preservation of Courant-Snyder invariants. This contrasts
the situation for a 2D KV distribution where image forces
generally must be neglected [except for cases where
boundaries can be chosen for zero net image force such
as an axisymmetric (@=@	 ¼ 0) beam confined within an
axisymmetric pipe] for consistency with a KV distribution
because the net image force on a particle within the beam
generally varies nonlinearly with respect to the proximity
of the particle relative to the aperture.
The existence of a self-consistent, uniform density sheet

beam satisfying the centroid and envelope equations (34)
and (35) motivates construction of an rms-equivalent beam
analogously to the well-known 2D case. As in 2D, one can
aid the interpretation of a general sheet beam evolving with
nonuniform density by replacing the actual sheet-beam
distribution f with an ‘‘rms-equivalent’’ KV sheet-beam
distribution. The rms-equivalent beam has uniform density
with the same species ðq;mÞ, energy (�b), charge (N, or
equivalently P), and identical first and second order mo-
ments as the nonuniform density beam as summarized in
Table I. The rms-equivalent beam will have identical cen-
troid ðX; X0Þ and envelope ðxb; x0bÞ phase-space coordi-

nates, and emittances (") as the nonuniform density
beam it replaces. The subsequent evolution of the rms-
equivalent beam according to the coupled envelope and
centroid equations (34) and (35) with constant normalized
emittances generally provides a reliable model for the
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statistical evolution of the real beam if nonlinear force
effects leading to emittance growth are sufficiently small.
The envelope of a space-charge dominated beam will gen-
erally be insensitive to modest emittance growth that may
result from nonlinear forces because the emittance term
"2=x3b in the envelope equation is small. Alternatively, the

rms-equivalent prescription can be applied as a function of s
to aid interpretation of the evolution of the physical beam.

The rms-equivalent beam can be used to form a conve-
nient, dimensionless measure of space-charge strength in a
periodic or continuous focusing channel. For a periodic
channel with �ðsþ LpÞ ¼ �ðsÞ, techniques analogous to

those presented in Ref. [21] for 2D beams show that
particles moving within an rms-equivalent beam which is
matched to the focusing channel [i.e., KV rms-equivalent
parameters chosen so that the envelope solution to Eq. (35)
has the periodicity of the lattice with xbðsþ LpÞ ¼ xbðsÞ]
have phase advance

� ¼ "
Z siþLp

si

ds

x2b
(38)

per lattice period. The choice of si within the lattice period
is arbitrary. The ratio �=�0 can be applied as a convenient,
normalized measure of space-charge strength with
�=�0 2 ð0; 1Þ with �=�0 ! 1 corresponding to a warm
beam (P 	 "=x3b) with zero space-charge intensity and

�=�0 ! 0 corresponding to a cold beam (P 
 "=x3b)
with maximum space-charge intensity. For the
special case of a continuously focused beam with
� ¼ k2�0 ¼ const, the choice of lattice period Lp to mea-

sure phase advances is arbitrary, and it can be shown that

�

�0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� P

k2�0xb

s
: (39)

It is straightforward to show that this result is consistent
with the linear equation of motion (37) for any particle
evolving within a KV beam.

It is interesting to contrast centroid and envelope oscil-
lations in X and xb supported by an rms-equivalent sheet
beam and contrast results with those found in higher-
dimensional models [16–19]. First, for the centroid X, con-
sider the special case of a sheet beam transported without

bending (�l ¼ �r) and with an aperture centered about
x ¼ 0 (applied focus center) with xpr ¼ �xpl ¼ xp. Then

the centroid equation (34) takes the form of Hill’s equation

X00 þ �effX ¼ 0 (40)

with

�eff ¼ �� P

xp
: (41)

This equation of motion shows that in this situation the
image charges act as a continuous defocusing correction to
the applied focusing function � and therefore the standard
treatments from accelerator physics of single-particle orbits
moving in a prescribed focusing function �effðsÞ can be
applied to describe the centroid orbit [20]. The lack of non-
linear amplitude dependence in the sheet-beam image force
results in a stable centroid orbit that does not increase in
amplitude as oscillations advance in s (or phase), which is
contrary to what is found (typically weak amplitude in-
creases in s) in higher-dimensional models [17–19].
However, the sheet-beam model has a roughly correct
image-charge induced shift in the phase advance of centroid
oscillations when compared to higher-dimensional models
[17–19]. Changes in this simplified centroid analysis due to
an asymmetric aperture (xpr � �xpl) and/or bending forces

(�l � �r) are straightforward to analyze.
Next, envelope oscillations in xb for a sheet beam can be

better understood by carrying out a standard stability analy-
sis taking xb ¼ xb0 þ �xb with xb0 satisfying the envelope
equation (35) in the absence of perturbations (i.e., �xb¼0).
Assuming j�xbj=xb0 	 1 and expanding Eq. (35) to lead-
ing order gives the linearized envelope equation

�x00b þ ��xb þ 3
"2

x4b0
�xb ¼ 0: (42)

Typically, xb0 is taken to be the matched solution when
applied to a periodic lattice [i.e., for �ðsþ LpÞ ¼ �ðsÞ,
xb0ðsþ LpÞ ¼ xb0ðsÞ]. Note that there is no direct modu-

lation of the space-charge (perveance) term in Eq. (42) as is
the case for ‘‘quadrupole’’ symmetry envelopemodes found
in 2D transverse models of an unbunched
beam [17]. The special case of a continuous focusing
channel with � ¼ k2�0 ¼ const and a matched envelope

xb0 ¼ const satisfying k2�0xb0 � P� "2=x3b0 ¼ 0 further

clarifies the correspondence between 1D and 2D model
results. Assuming harmonic variations in �xb / eiks

with i � ffiffiffiffiffiffiffi�1
p

and k the mode wave number, the linear
envelope equation (42) reduces to a dispersion relation
showing stable oscillations with relative spatial oscillation
frequency

k

k�0
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3"2

k2�0x
4
bo

vuut ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

�
�

�0

�
2

s
: (43)

Here, in the second form of the dispersion given, the
continuous focusing phase advance formula (39) has been

TABLE I. Sheet-beam rms equivalency with ~x ¼ x� hxi and
~x0 ¼ x0 � hx0i.

rms Calculated

Quantity equivalent from distribution

Perveance P ¼ q2N=ð2�0m�3
b�

2
bc

2Þ
Centroid coordinate X ¼ hxi
Centroid angle X0 ¼ hx0i
Envelope coordinate xb ¼ ffiffiffiffiffiffiffiffiffiffiffi

3h~x2ip
Envelope angle x0b ¼ ffiffiffi

3
p h~x~x0i= ffiffiffiffiffiffiffiffih~x2ip

Emittance " ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih~x2ih~x02i � h~x~x0i2p
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applied to express the result in terms of�=�0. Note that the
mode frequency variation in�=�0 is identical to the familiar
quadrupole mode in 2D [17], thereby showing that the
analog of quadrupole envelope mode oscillations can be
faithfully modeled in the sheet-beam system. However, the
higher frequency ‘‘breathing’’ modes supported in 2D are
not found in the sheet-beam model. Analysis presented in
Refs. [16,17] can be paralleled to analyze the stability
properties of envelope modes supported by a matched sheet
beam in a periodic focusing channel.

Finally, it is interesting to illustrate similarities in the
sheet-beam model and higher-dimensional beam models
with regard to rms emittance evolution. First, we differ-
entiate the rms-edge emittance definition in Eq. (31) with
respect to s and apply the equation of motion (28) along
with h~xi ¼ 0 ¼ h~x0i to show that

d

ds
"2 ¼ 36P

N
½h~x2ih~x0Nxi � h~x~x0ih~xNxi�: (44)

This result can be shown to be equivalent to a statement
that nonlinear components of the direct space-charge field
drive rms emittance growth in the sheet-beam model.
Analysis in Appendix B shows that for the special case
of a symmetric beam [i.e., nðxÞ ¼ nð�xÞ] in a symmetric
geometry without bending (i.e., xpr ¼ �xpl ¼ xp and

�l¼�r¼ const, and consequently X¼0¼X0), Eq. (44)
can be recast as [10]

d

ds
"2 ¼ 18

Nm�3
b�

2
bc

2
hx2i3=2 d

ds

�
WF

hx2i1=2
�
; (45)

where

WF � q2N2xp
4�0

� �0
2

Z xp

�xp

dx

��������@�@x
��������2

¼ q2

�0

Z xp

0
dxNxðN � NxÞ

(46)

is a measure of field energy. Note that WF ¼ const�W,

where W ¼ ð�0=2Þ
Rxp�xp dxj@�=@xj2 is the self-field

energy per unit area for this geometry. This result is similar
to the results obtained for unbunched axisymmetric
beams in 2D by Lapostolle, Lee, Wangler, and coauthors
in Refs. [28–31]. As is the case in 2D, for fixed charge

and envelope half-width xb ¼ ffiffiffiffiffiffiffiffiffiffiffi
3h~x2ip

, a uniform
density sheet beam is found to minimize W [10], so from
WF ¼ const�W and Eq. (46), one expects as in 2D beams
that symmetric local beam evolutions tending to make
the beam density profile less/more uniform will decrease/
increase the rms-edge emittance ". If the effect of emittance
evolution is negligible on the mean square beamwidth hx2i,
then Eq. (45) can be integrated to obtain

"2 � "2i ’
18

Nm�3
b�

2
bc

2
hx2iðWF �WFiÞ

’ � 18

Nm�3
b�

2
bc

2
hx2iðW �WiÞ;

(47)

where subscript i denotes initial values.

C. Parametric equivalences with
higher-dimensional beam models

When applying the 1D sheet-beam model to analyze
higher-dimensional beam models, it is desirable to employ
sheet-beam parameters that are reasonably ‘‘equivalent’’ to
the higher-dimensional formulations. A simple equiva-
lence prescription to an unbunched, 2D transverse model
of a coasting beam without bending is to set initial (s ¼ si)
sheet-beam parameters as follows:
Trivially, one should employ the same particle species

(q, m) and axial velocity (�b) in the sheet-beam model as
the 2D model. For either continuous or quadrupole (mag-
netic or electric) focusing channels, the applied focusing
function � of the sheet-beam model can be set as

� ¼ �j; (48)

where�j with j ¼ x or y to represent either the x- or y-plane

focusing function �x or �y of the 2D system. For the case of

solenoid focusing and an axisymmetric beam, it is reason-
able to take �j in Eq. (48) to be the Larmor-frame focusing

strength [17,32] of the higher-dimensional model and inter-
pret the sheet-beam model result as if it were in the rotating
Larmor frame. Formulas relating the focusing function � to
applied field components for continuous, electric, and mag-
netic quadrupole, and solenoidal focusing can be found in
Refs. [16–19]. Aperture plate distances can be set to the
beam pipe radius rp of the 2D system (i.e., xpr¼�xpl¼rp)

for approximately correct image strengths.
The sheet-beam perveance P [Eq. (30)] can be set

from the usual 2D beam dimensionless perveance
Q � q
=ð2��0m�3

b�
2
bc

2Þ (
 ¼ const here denotes the

2D beam line-charge) by requiring the rms-equivalent
uniform density beams in both the sheet beam and the
2D model to have the same characteristic transverse spatial
extent and density scale n̂. This results in both systems

having the same plasma frequency !p ¼ ½q2n̂=ð�0mÞ�1=2
characteristic of collective effects. For a sheet beam

with characteristic extent xb ¼
ffiffiffiffiffiffiffiffiffiffiffi
3h~x2ip

and density
n̂ ¼ N=ð2xbÞ, and a 2D beam with characteristic radial
extent rb and density n̂ ¼ 
=ðq�r2bÞ, taking equal densities
and xb ¼ rb gives an equivalent sheet-beam perveance of

P ¼ 2Q

rb
: (49)

In applying Eq. (49) to 2D systems without x- and y-plane
symmetry and 2D rms-equivalent elliptical beam edge
radii rx and ry, it is reasonable to take rb ¼ rx or rb ¼ ry
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to analyze the x- or y-plane, or rb ¼ ffiffiffiffiffiffiffiffiffi
rxry

p
if a plane-

average value is preferred for a beam which is not highly
elliptical. For the case of a periodic focusing lattice and a
matched beam with significant period variation, it is rea-
sonable to replace rx and ry by period averages.

In a similar manner to the perveance equivalence, it is
reasonable to set the rms-edge emittance " ¼ 3"x;rms with

"x;rms ¼ ½h~x2ih~x02i � h~x~x0i2�1=2 [see Eq. (31)] of the sheet

beam in terms of the usual rms-edge emittance "x ¼
4"x;rms of the 2D beam with

" ¼ "x: (50)

Note that the difference in edge coefficients of 3 (1D) and
4 (2D) in" and "x result from the differing dimensionality of
the transverse phase space. If there are significant x- and
y-plane variations in the 2D emittances, then it may be
preferable to replace "x ! "y in the equivalence (50) or

replace "x ! ffiffiffiffiffiffiffiffiffiffi
"x"y

p
depending on whether particular plane

or average properties are desired. Similar, but more approxi-
mate, equivalences can be developed to the 2D case pre-
sented above to apply the sheet-beam model to 3D bunched
beams.

Further insight can be achieved by applying the equiva-
lency procedure outlined above to a 2D continuously focused
beam with focusing strength �x ¼ �y ¼ k2�0 ¼ const, per-

veance Q, rms-edge emittances "x ¼ "y ¼ const, and

matched envelope radii rx ¼ ry ¼ rb ¼ const. Thematched

beam envelope equation k2�0rb �Q=rb � "2x=r
3
b ¼ 0 (see

Ref. [17]) can then be solved for rb, which is then inserted
in the perveance equivalency condition (49) to obtain a
simple expression for the equivalent sheet-beam perveance
with continuous focusing strength � ¼ k2�0 as

P ¼ 23=2k�0Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 4k2�0"

2
x

qr : (51)

In the limit of a space-charge dominated 2D beam,
Q 
 k�0"x, the equivalency condition (51) reduces to

P=k�0 ’ 2
ffiffiffiffi
Q

p
. Conversely, in the limit of an emittance

dominated 2D beam, k�0"x 
 Q, and the equivalency con-

dition (51) reduces to P=k�0 ’ 2Q=
ffiffiffiffiffiffiffiffiffiffiffiffi
k�0"x

p
. It is interesting

to point out that, for KV beam distributions in the context of
this continuous focusing equivalency, both depressed and
undepressed orbits of particles within the sheet beam and
along the principal axis of the 2D beam will be the same for
the same initial conditions within the beam.

III. THERMAL EQUILIBRIUM SHEET BEAM
IN A CONTINUOUS FOCUSING CHANNEL

Thermal equilibrium distributions have been extensively
studied in 2D non-neutral plasmas confined in Penning-
Malmberg traps [33–35] and continuously focused beams
[18,19,21,34,36,37]. Results based on a 1D sheet-beam

model can also be found in the Appendix of Ref. [8]. For
a continuously focused (� ¼ k2�0 ¼ const) sheet beam in

free space (without conducting apertures or bending), the
thermal equilibrium distribution is given by

fðHÞ ¼
�
m�b�

2
bc

2

2�T

�
1=2

n̂ exp

��m�b�
2
bc

2H

T

�
: (52)

Here, T ¼ const is the thermodynamic temperature
(expressed in energy units) in the laboratory frame and
n̂ ¼ const is the characteristic density scale. This thermal
equilibrium distribution is the special stable (@f=@H<0)
equilibrium that any initial distribution function
fðx; x0; s ¼ siÞ, however complex, will ultimately relax
to through collisional effects outside the Vlasov model.
Although the time scale of collisional relaxation is typi-
cally slow relative to beam residence times in a machine,
collective effects and couplings to external errors and
noise sources can drive enhanced rates of relaxation. In
this regard the sheet-beam thermal distribution (52) can be
considered the preferred equilibrium of the system.

A. Equilibrium solution

We analyze properties of the sheet-beam thermal equilib-
rium distribution (52) exploiting a close analogy to exten-
sively analyzed theory presented in Appendix F of Ref. [21]
for the thermal equilibrium of a continuously focused
2D cylindrical beam. First, the local kinetic temperature
Tx and beam density n are calculated from Eq. (52) as

Tx � m�b�
2
bc

2

R1
�1 dx0x02fR1
�1 dx0f

¼ T ¼ const;

n �
Z 1

�1
dx0f ¼ n̂e�c ;

(53)

where

c � m�b�
2
bc

2

T

�
1

2
k2�0x

2 þ q�

m�3
b�

2
bc

2

�
: (54)

Consistent with the reference choice �ðx¼0Þ¼0,
c ðx¼0Þ¼0, and n̂ ¼ nðx ¼ 0Þ is identified as the on-
axis density. Note that the local kinetic temperature is
spatially uniform—as should be expected with a thermal
equilibrium distribution. However, the density n varies in x
due to the applied focusing potential ( / k2�0x

2) and the self-

field potential�, both of which are included in the effective
potential c .
Using Eqs. (53) and (54), the Poisson equation (3) for

thermal equilibrium can be expressed in scaled form as

@2

@�2
c ¼ 1þ�� e�c ; (55)

and solved subject to the boundary conditions c ð�¼0Þ¼0

and @c
@� j�¼0 ¼ 0. Here,
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� � �3
b�

2
bc

2k2�0

!̂2
p

� 1; (56)

� � x=ð�b
DÞ is a scaled x coordinate, and 
D �
½T=ðm!̂2

pÞ�1=2 and !̂p � ½q2n̂=ð�0mÞ�1=2 denote the

Debye length and plasma frequency formed from
the peak (on-axis) density scale n̂ and temperature T. The
parameter � 2 ð0;1Þ is a positive, dimensionless parame-
ter relating the ratio of applied to space-charge defocusing
forces and is analogous to the scaled parameter commonly
employed in analysis of 2D thermal equilibrium beams and
non-neutral plasmas [21,38]. A particular choice of gamma
factors has been made so that T corresponds to the (non-
relativistic) kinetic temperature defined in the boosted
beam frame [16,21].

The transformed Poisson equation (55) is highly non-
linear and must, in general, be solved numerically for c .
The numerical solution is illustrated in Fig. 2, where the
normalized density

N ð�Þ � nð�Þ
n̂

¼ expð�c Þ (57)

is plotted versus � ¼ x=ð�b
DÞ for values of � covering
several decades. Only positive � is shown because nð�Þ ¼
nð��Þ. For small values of �, the scaled densityN varies
little from unity from � ¼ 0 until intermediate-to-large
values of � [corresponding to a large number of Debye
lengths, since � ¼ x=ð�b
DÞ], where N rapidly falls to
exponentially small values as � increases by 4–5 units
(i.e., Debye lengths). The width in � of the x-falloff varies
little with �, whereas the edge of the flat, central region
scales as �edge ¼ 2:3log10ð�Þ. The extreme flatness of N
when � 	 1 leads to numerical precision problems when
directly integrating Eq. (55) for c using standard numerical
methods. Because of this, the numerical solution is con-
structed by transforming Eq. (55) for �N ¼ 1�N ¼
1� expð�c Þ and then numerically solving for �N ð�Þ
out to near the beam edge where �N starts varying rapidly,

and then the solution is continued from this near-edge point
until N becomes exponentially small by directly integrat-
ing the transformed Poisson equation (55). This procedure
rapidly generates accurate solutions for arbitrarily small
values of � without use of special high precision numerical
methods. Details of this numerical procedure are given in
Ref. [39]. For � 
 1, e�c 	1þ� and Eq. (55) can be
analytically solved to show that

c ’ 1þ �

2
�2; N ¼ e�c ’ e�ð1þ�Þ�2=2; (58)

thereby showing, consistently with results in Fig. 2, that the
x-density profile N ð�Þ becomes Gaussian in what will be
shown to correspond to the warm beam limit. Approximate,
closed form analytical solutions for � 	 1 can also be
constructed using methods presented for the cylindrical
beam cases in Refs. [21,38].
For modeling applications the sheet-beam thermal dis-

tribution parameters n̂ and T, or equivalently,

T� � T

m�b�
2
bc

2
; (59)

should be related to standard parameters applied in
accelerator physics such as focusing strength (k�0), rms

emittance ("), and perveance (P) in addition to particle
parameters q, m, �b, and �b. Similarly, the scaled
equilibrium parameter � can be better interpreted when
cast in terms of the relative space-charge strength
of an rms-equivalent beam. To derive equations of con-
straint to implement this parameter conversion, first
from Eq. (56)

n̂ ¼ �0m�3
b�

2
bc

2k2�0

q2ð1þ�Þ : (60)

Using this result, we have

ð�b
DÞ2 ¼ ð1þ �Þ T
�

k2�0
; (61)

and the integrated density N can be expressed as

N ¼
Z 1

�1
dxn

¼ 2�0m�3
b�

2
bc

2k�0

q2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T�

1þ �

s Z 1

0
d�N ;

(62)

and the perveance P [Eq. (30)] can be expressed as

P ¼ q2N

2�0m�3
b�

2
bc

2
¼ k�0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T�

1þ �

s Z 1

0
d�N : (63)

This perveance expression is also useful when recast as

T� ¼
�
P

k�0

�
2 1þ �

ðR1
0 d�N Þ2 : (64)

FIG. 2. Scaled density N ¼ nð�Þ=n̂ ¼ expð�c Þ plotted ver-
sus the scaled x coordinate � ¼ x=ð�b
DÞ calculated from the
solution of the transformed thermal equilibrium Poisson equa-
tion (55) for indicated values of �.
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Similarly, from the definition of the rms-edge emittance "
[Eq. (31)] reduces to

"2 ¼ 9hx2ihx02i
with the moments hx2i and hx02i calculated directly from
the distribution as

hx2i ¼ 1þ �

k2�0
T�
R1
0 d��2NR1
0 d�N

; hx02i ¼ T�; (65)

and T� is eliminated using Eq. (64) to obtain

"2 ¼ P4

k6�0
9ð1þ �Þ3

R1
0 d��2N

ðR1
0 d�N Þ5 : (66)

The emittance expression (66) can be alternatively
recast as the constraint

k3�0"

P2
¼ 3ð1þ�Þ3=2 ð

R1
0 d��2N Þ1=2
ðR1

0 d�N Þ5=2 : (67)

Because the right-hand side (rhs) of this equation is a
function of � and k3�0"=P

2 is a ratio of accelerator pa-

rameters, Eq. (67) can be applied as a nonlinear integral
constraint fixing the scaled equilibrium parameter �.
Alternatively, the tune depression �=�0 2 ð0; 1Þ of a
matched rms-equivalent beam can be calculated to
interpret the value of � for the thermal equilibrium sheet
beam. Equation (39) is applied to calculate �=�0 using

xb ¼
ffiffiffiffiffiffiffiffiffiffiffi
3hx2ip

as

�

�0
¼
�
1� Pffiffiffi

3
p

k2�0
ffiffiffiffiffiffiffiffihx2ip �

1=2

¼
�
1� 1ffiffiffi

3
p ð1þ�Þ

ðR1
0 d�N Þ3=2

ðR1
0 d��2N Þ1=2

�
1=2

:

(68)

Here, we employ Eqs. (63) and (65) to calculate the ratio

P=ðk2�0
ffiffiffiffiffiffiffiffihx2ip Þ as a function of �. Equation (68) is numeri-

cally evaluated to plot � as a function of �=�0 2 ð0; 1Þ in
Fig. 3. From this plot it is evident that space-charge domi-
nated beams with small values of �=�0 are modeled by
thermal equilibria with extremely small values of �.

The constraints in Eqs. (60)–(68) are applied to clarify
changes in the sheet-beam equilibrium as space-charge
intensity varies in Fig. 4. The density profile nðxÞ and
contours of the phase-space distribution fðx; x0Þ are plotted
for a constrained scale equilibriumwithP=k�0 ¼ const and

are illustrated as the relative space-charge strength (as
measured by rms-equivalent beam �=�0Þ is varied. These
plots can be interpreted as showing how an equilibriumwith
fixed focusing strength (k�0 ¼ const) and charge (i.e., per-

veanceP ¼ const) varies in structure as the temperature (or
equivalently, T�) or phase-space area (i.e., emittance ") is
varied. In Fig. 4(a) the scaled density is plotted for x > 0.
The corresponding kinetic temperature is spatially uniform

with value Tx ¼ T ¼ const. Contours of the scaled distri-
bution fðHÞ=fð0Þ are shown in Figs. 4(b)–4(d) for high,
intermediate, and low values of �=�0 (or space-charge
intensity). Scaled parameters for the thermal equilibrium
solution presented in Fig. 4 are given in Table II. Parameters
are divided into scale independent ones applicable to any
physical scalewith the corresponding value of�=�0 (or�),
and parameters dependent on the specific value of P=k�0

employed in Fig. 4. In Table II, xb ¼
ffiffiffiffiffiffiffiffiffiffiffi
3hx2ip

denotes an rms
measure of the beam half-width. Results presented in Fig. 4
are very similar to 2D thermal equilibrium beam results
presented in Appendix F of Ref. [21]. Note from the devel-
opment in Sec. II C that, if the goal is to choose the best
sheet-beam equivalent parameters to higher-dimensional
systems, the parameters (including P=k�0) should be ad-

justed for the particular operating point set by the charge,
emittance, and focusing strength. For example, the continu-
ous focusing equivalency condition (51) could be applied.
For simplicity of presentation, this optimized equivalence
detail is neglected in Fig. 4.
Figure 4(a) illustrates how the thermal equilibrium den-

sity profile sharpens and becomes more step-function-like
with increasing relative space-charge strength (i.e., small
�=�0, or equivalently, small T�), and consistent with the
limiting form in Eq. (58) becomes Gaussian-like for weak
space-charge strength (i.e., �=�0 � 1, or equivalently
large T�). The peak density n̂ increases with increasing

space-charge strength, while the statistical beam edge xb ¼ffiffiffiffiffiffiffiffiffiffiffi
3hx2ip

decreases with increasing space-charge strength.
The extreme flatness of the density profile as the beam
cools can be understood as resulting from strong Debye
screening of the linear applied focusing force. Properties of
Debye screening in the sheet-beam model are detailed in
Sec. III B. Contrasting Figs. 4(b)–4(d), note for weak
space-charge that the phase-space contours are nearly el-
liptical indicating nearly linear dynamics with the applied

FIG. 3. Dimensionless thermal equilibrium parameter � ¼
�3
b�

2
bc

2k2�0=!̂
2
p � 1 plotted versus rms-equivalent beam tune

depression �=�0 as calculated from Eq. (68).
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focusing field dominating. In this situation, one expects
particle oscillation frequencies close to the frequency that
particles oscillate in the (linear) applied focusing field. In
contrast, for strong space-charge, the phase-space contours

(note the large change in the scale of the axes) become
approximately rectangular indicating nearly force-free par-
ticle motion deep within the beam core until particles enter
the edge region where a strong nonlinear force transition

TABLE II. Dimensionless parameters for a sheet-beam thermal equilibrium presented in Fig. 4 calculated for specified values of
�=�0. Scale independent parameters applicable to any physical size thermal equilibrium and scale dependent parameters employed for
the specific choice equilibrium employed in Fig. 4 are grouped in separate columns to the left and right.

Scale independent Scale dependent with P
k�0

¼ 0:01

�=�0 � ðk3�0"Þ=P2 ðk2�0x2bÞ=½T=ðm�b�
2
bc

2Þ� k�0�b
D
T

m�b�
2
b
c2

k�0xb k�0"

0.9 2.879 24.99 3.686 5:399� 10�2 7:515� 10�4 0.052 63 2:499� 10�3

0.8 1.093 6.204 4.641 1:866� 10�2 1:663� 10�4 0.027 78 6:204� 10�4

0.7 0.5181 2.712 6.027 9:841� 10�3 6:379� 10�5 0.019 61 2:712� 10�4

0.6 0.2500 1.481 8.157 6:117� 10�3 2:993� 10�5 0.015 63 1:481� 10�4

0.5 0.1097 0.9009 11.68 4:109� 10�3 1:522� 10�5 0.013 33 9:009� 10�5

0.4 3:780� 10�2 0.5757 18.18 2:844� 10�3 7:794� 10�6 0.011 90 5:757� 10�5

0.3 7:562� 10�3 0.3681 32.29 1:941� 10�3 3:740� 10�6 0.010 99 3:681� 10�5

0.2 3:649� 10�4 0.2201 72.91 1:220� 10�3 1:488� 10�6 0.010 42 2:201� 10�5

0.1 5:522� 10�8 0.1030 294.6 5:885� 10�4 3:463� 10�7 0.010 10 1:030� 10�5

FIG. 4. Thermal equilibrium distribution for a constrained scale set by P=k�0 ¼ 0:02. In (a) the scaled density profile
½q2=ð�0m�3

b�
2
bc

2Þ�nðxÞ is plotted versus the dimensionless x coordinate k�0x for rms-equivalent beam space-charge strengths �=�0 ¼
0:9; 0:8; . . . ; 0:1. In (b), (c), and (d), normalized distribution contours fðHÞ=fð0Þ ¼ const are plotted as a function of k�0x and x0 for
�=�0 ¼ 0:9, 0.5, and 0.1. Contours are labeled by the value of fðHÞ=fð0Þ. Values of �=�0 correspond to the equilibrium parameters in
Table II. Panels are ordered to allow direct contrasts with Fig. 19 in Ref. [21].
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effectively reflects the particle back towards the core. In
this situation, one expects a broad spectrum of amplitude-
dependent particle oscillation frequencies. The particle
frequency distribution is explicitly calculated in
Sec. III C and results verify this interpretation.

B. Debye screening

Paralleling Davidson’s 2D analysis carried out in
the non-neutral plasma case [23,33] which is directly
applicable to continuously focused beams, we show that
the 1D sheet-beam thermal equilibrium distribution de-
scribed in Sec. III A produces the same characteristic
Debye screening of applied perturbations as found in 2D
and 3D geometries. This similarity of results between the
1D sheet beam and more physical, higher-dimensional
models occurs in spite of the radically different long-range
structure of the Coulomb interaction in 1D. One expects
that similar Debye screening of perturbations leads to
similar collective effects, thereby supporting the idea that
the simple sheet-beam model can be applied to better
understand strong space-charge effects.

First, consider a ‘‘test’’ sheet charge placed at the origin
(x ¼ 0) with charge density � ¼ �t�ðxÞ. Here, �t ¼ const
is the surface charge density representing the test sheet
charge and �ðxÞ is a Dirac-delta function. The solution of

the 1D Poisson equation in free space, @2

@x2
� ¼ � �

�0
, gives

the ‘‘bare’’ electric field

� @�

@x
¼ sgnðxÞ �t

2�0
: (69)

Next, we consider the total potential � produced by the
test sheet charge inserted in a thermal equilibrium sheet
beam which is assumed to adiabatically adapt to the pres-
ence of the test charge. The Poisson equation describing
this situation is

@2

@x2
� ¼ � q

�0

Z 1

�1
dx0fðHÞ ��t

�0
�ðxÞ: (70)

The parameter �t can be made arbitrarily small for con-
sistency with the assumption that the equilibrium is al-
lowed to adiabatically adapt to the presence of the test
charge. We expand the potential as

� ¼ �0 þ ��; (71)

where �0 is the equilibrium potential in the absence of the
test charge and �� is the perturbed potential from the test
charge. The test charge is taken to be sufficiently small

where j q��
�2
b
T
j 	 1, and consistent with the adiabatic as-

sumption, we have to leading order

nðxÞ ¼
Z 1

�1
dx0fðHÞ ¼ n̂e�c ’ n̂e�c 0ðxÞe�q��=ð�2

b
TÞ

’ n̂e�c 0ðxÞ
�
1� q��

�2
bT

�
:

Here, c 0 ¼ 1
T� ½12 k2�0x2 þ q�0

m�3
b
�2
b
c2
�. Using this leading-

order expansion and the fact that �0 satisfies the thermal
equilibrium Poisson equation (70) in the absence of the test
charge (�t ¼ 0) yields the perturbed Poisson equation for
��:

@2

@x2
�� ’ q2

�0�
2
bT

n̂e�c 0ðxÞ��� �t

�0
�ðxÞ: (72)

We further assume a relatively cold beam equilibrium
(i.e., � 	 1 and �=�0 small). Then, consistent with the
analysis in Sec. III A, the density is flat near the test charge
(i.e., c 0 ’ 0 and the forces from the equilibrium self-fields
and the applied focusing approximately cancel each other)
and we can then take

n̂e�c 0ðxÞ ’ n̂: (73)

Under these approximations, the Poisson equation (72) for
the perturbed potential becomes

@2

@x2
��� ��

ð�b
DÞ2
’ ��t

�0
�ðxÞ (74)

with 
D ¼ ½�0T=ðq2n̂Þ�1=2. The solution of Eq. (74) for ��
which is regular as jxj ! 1 is

��ðxÞ ’ �b
D�t

2�0
e�jxj=ð�b
DÞ; (75)

and the corresponding electric field is

� @��

@x
’ sgnðxÞ �t

2�0
e�jxj=ð�b
DÞ: (76)

The solutions in Eqs. (75) and (76) for the potential and
electric field produced by the screened test charge are valid
out to values of x near the edge of the beam where nðxÞ
varies significantly from n̂.
Comparing Eqs. (69) and (76) for the bare and screened

electric field of the test charge, note that screening

FIG. 5. Contrast of the bare (black) and screened (red) electric
field of a test sheet charge inserted at x ¼ 0 in a thermal
equilibrium sheet beam.
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provided by the sheet-beam equilibrium results in the bare
electric field produced by the test charge being exponen-
tially damped in terms of the distance from the test charge
in relativistic Debye lengths �b
D. The bare and screened
electric fields are contrasted in Fig. 5. As summarized in
Table III, this classic 1D Debye screening exponential
factor has the same form in terms of the variation of the
exponential damping factor of the potential �� with dis-
tance from the test charge as is found (approximate form)
in 2D and (exact form) in 3D [40]. This equivalence in
Debye screening characteristics between the 1D, 2D, and
3D models occurs in spite of the radically different form of
the Coulomb field in the three cases. As in the 2D and 3D
systems, the screened interaction in 1D does not require
overall charge neutrality and beam particles redistribute to
screen the bare free-space field produced by the test
charge. Because the collective screening properties in 1D
have the same characteristic scaling as in higher-
dimensional models, one expects similar collective effects
in the sheet-beam model relative to the more physical,
higher-dimensional models. This supports the use of
simpler-to-solve sheet-beam models to guide intuition on
collective effects. Use of radically different models having
similar Debye screening properties is considered an under-
lying reason why simpler, lower-dimensional numerical
simulations can represent processes in physical systems
of higher dimensions [41].

The sheet-beam Debye screening result also lends physi-
cal insight on why the density profile n is extremely flat at
high space-charge intensity for a wide variety of choices of
fðHÞ corresponding to smooth, self-consistent equilibrium
distributions [see, for example, the 1D thermal choice in
Sec. III A, and 2D choices in Appendices D–F of Ref. [21]
for waterbag, parabolic, and thermal forms]. Space-charge
adapts to screen out the linear applied focusing force
(leading to a uniform density profile since a uniform den-
sity profile produces linear self-field forces) until distances
far enough from the center are reached where there is
insufficient charge in the equilibrium to further screen
the applied focusing force, after which the density rapidly
falls to low values with an edge shape characteristic of the
specific equilibrium distribution function fðHÞ. For the
thermal equilibrium sheet beam, the smooth edge density
profile rapidly falling off to exponentially small values is
the result of the smooth exponential dependence in

Eq. (52). If desired, the analysis presented above can be
extended by not taking the uniform density approximation
in Eq. (73) and/or changing the position of the test charge
in the equilibrium [�t�ðxÞ ! �t�ðx� xtÞ with x ¼ xt the
position of the test sheet charge] to study how the Debye
screening is modified as the test charge approaches the
edge of the beam and/or space-charge becomes weak.

C. Distribution of particle oscillation frequencies

In accelerator physics, particle oscillation frequencies
are of fundamental interest. Effects are often interpreted in
terms of resonances between characteristic particle oscil-
lation frequencies and (periodic) applied and self-field
produced perturbations acting on the beam. Therefore, it
is important to understand how the distribution of particle
oscillation frequencies changes due to intense self-field
effects. Historically speaking, space-charge effects have
often been interpreted with uniform density ‘‘KV’’-type
distributions which produce linear self-field forces that are
more amenable to analytic analysis. In such a KV descrip-
tion of beams, all particles internal to the core distribution
have the same characteristic oscillation frequency regard-
less of the amplitude of their oscillations. Consequently,
the KV model can predict strong resonances and pro-
nounced instability. Such results are often at odds with
simulations and laboratory experiments with more physi-
cal, smooth distributions which have a spectrum of oscil-
lation amplitude-dependent frequencies and both lesser
degrees of instability and lesser consequences thereof
due to low saturation amplitudes. Here, we extend results
first presented in Appendix A of Ref. [8] and employ the
sheet-beam model with a thermal equilibrium distribution
to show that strong space-charge results in a broad distri-
bution of particle oscillation frequencies consistent with
expectations of enhanced stability. Implications of results
are broadly discussed.
First, consider a sheet beam in a continuous focusing

channel with � ¼ k2�0 ¼ const without an aperture (free

space) and an unspecified equilibrium distribution fðHÞ.
For any particle in the distribution, H ¼ 1

2 x
02 þ 1

2 k
2
�0x

2 þ
q�

m�3
b
�2
b
c2
¼ const. The value of H can be taken as a measure

of the particle oscillation amplitude and the number of
particles with a particular value of H is determined by

TABLE III. Form of the screened potential produced by a test charge inserted in a continuously focused thermal equilibrium beam
distribution in 1D, 2D, and 3D models. Here, 
t ¼ const is line-density of a test charge in 2D, qt ¼ const is the charge of the test
charge in 3D, and the Debye length 
D ¼ ½�0T=ðq2n̂Þ�1=2 is defined the same in 1D, 2D, and 3D.

Test charge density Screened potential

Dimension Distance measure � ¼ �� ’
1D jxj �t�ðxÞ �b
D�t

2�0
e�jxj=ð�b
DÞ

2D r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p

t

�ðrÞ
2�r


t

2
ffiffiffiffiffi
2�

p
�0

rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ð�b
DÞ

p e�r=ð�b
DÞ, r 
 �b
D

3D r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
qt�ðxÞ�ðyÞ�ðzÞ qt

4��0r
e�r=ð�b
DÞ
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the value of fðHÞ. Methods analogous to those presented in
Ref. [42] can be applied to show that the continuously
focused equilibrium potential is necessarily symmetric
with �ðxÞ ¼ �ð�xÞ. Using these results, the wavelength

 of a full cycle of the closed particle orbit in the 1D
equilibrium can be expressed as


 ¼
I
orbit

ds ¼ 23=2
Z xt

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H � ð12 k2�0x2 þ q�

m�3
b
�2
b
c2
Þ

r ; (77)

where x ¼ xt > 0 is the turning point of the orbit
(i.e., x ¼ xt corresponds to x0 ¼ 0 and x00 < 0) which
satisfies the constraint

1

2
k2�0x

2
t � q�ðx ¼ xtÞ

m�3
b�

2
bc

2
¼ H: (78)

Here, without loss of generality, we have assumed a
potential reference �ðx ¼ 0Þ ¼ 0 so that H > 0 for all
particles. Use of an action-angle formulation [43] with
J ¼ H

orbit dxx
0 and 
 ¼ @J=@H produces an identical

formula to evaluate as the direct calculation leading to
Eq. (77).

It is convenient to denote the depressed wave number of
the particle oscillation by

k� � 2�



: (79)

In the absence of beam space-charge (P ! 0), all particles,
regardless of the value of H, have the same undepressed
wave number of particle oscillations under the action of the
linear applied focusing force, i.e.,

lim
P!0

k� ¼ k�0 � 2�


0

¼ const: (80)

We measure the relative particle oscillation wave number
by

k�
k�0

¼ 
0



¼ 2�

ðk�0
Þ : (81)

The value of k�=k�0 will depend on the value of H in the

particle distribution fðHÞ. Because space-charge is defo-
cusing and cancels out part of the applied focusing force
over the orbit cycle, particles oscillate less rapidly in the
presence of space-charge (P> 0), and we have 
 � 
0

(with the equality holding for P ¼ 0) and k�=k�0 2 ½0; 1�.
Thus, k�=k�0 provides an easy-to-interpret, scale indepen-

dent, normalized measure of spatial oscillation frequency
in the distribution fðHÞ.

For a sheet-beam thermal equilibrium, some straightfor-
ward analysis using the results of Sec. III A shows that
Eqs. (77) and (78) can be expressed in scaled dimension-
less form as

ðk�0
Þ ¼ 23=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p Z �t

0

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~H� c

q ; (82)

and

c ð� ¼ �tÞ ¼ ~H: (83)

Here, �t ¼ xt=ð�b
DÞ is the scaled turning point of the
orbit, and

~H � m�b�
2
bc

2

T
H ¼ H

T� (84)

is the scaled Hamiltonian.
Several limits of Eq. (82) can be simply calculated and

are useful to help verify numerical calculations. First,
for � 
 1, Eq. (58) can be applied for c to calculate

�t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~H=ð1þ �Þ

p
and show that

ðk�0
Þj�
1’23=2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ�

p

�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ~H=ð1þ�Þ
p

0

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~H�ð1þ�Þ�2=2

q
¼2�:

(85)

This result shows that Eq. (82) is consistent with the
required result that all particles oscillate with wavelength

 ¼ 
0 ¼ 2�=k�0 in the applied focusing force when

space-charge defocusing forces are negligible. Next, re-
gardless of the value of �, for small-amplitude particle
oscillations with ~H 	 1 we calculate the limiting form of
ðk�0
Þ. Taking c � ~H 	 1, Eq. (55) can be solved to

show that c ’ ��2=2 giving �t ’
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~H=�

p
. Using these

results in Eq. (82), the resulting integral can be calculated
to show that

lim
~H!0

ðk�0
Þ ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

�

s
; (86)

thereby showing there is always a minimum oscillation

frequency in the distribution with lim ~H!0
k�
k�0

¼
lim ~H!0

2�
k�0


¼
ffiffiffiffiffiffiffiffi
�

1þ�

q
.

The distribution of particle oscillation frequencies cal-
culated in an equilibrium can be more readily interpreted
when cast in normalized form. For the sheet-beam thermal
equilibrium, we define

Fð ~HÞ � fð ~HÞR1
0 d ~Hfð ~HÞ ¼ e� ~H (87)

as a normalized [i.e.,
R1
0 d ~HFð ~HÞ ¼ 1] distribution with

Fð ~HÞd ~H giving the fraction of particles with oscillation
amplitude within d ~H of ~H. Carrying out a probability
transform from the variable ~H to k�=k�0, we take

Fðk�=k�0Þdðk�=k�0Þ ¼ Fð ~HÞd ~H and obtain

Fðk�=k�0Þ ¼ e� ~H

dðk�=k�0Þ
d ~H

¼ �ðk�0
Þ2e� ~H

2�
dðk�0
Þ
d ~H

: (88)
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Fðk�=k�0Þ is the normalized [i.e.,
R
1
0 dðk�=k�0Þ�

Fðk�=k�0Þ ¼ 1] distribution of relative oscillation fre-

quencies in the beam with Fðk�=k�0Þdðk�=k�0Þ giving

the fraction of particles with relative frequencies within
dðk�=k�0Þ of ðk�=k�0Þ.

We numerically generate plots of the normalized distri-
bution of sheet-beam oscillation frequenciesF as a function
of k�=k�0 for specified values of the thermal equilibrium

parameter � ¼ �3
b�

2
bc

2k2�0=!̂
2
p � 1 [Eq. (56)] as follows.

Step 1.—Using the formulation in Sec. III A, the solu-
tion for the effective potential c ð�Þ of the equilibrium is
numerically calculated for specified � out to a sufficiently
large cutoff value of �. h

Step 2.—The scaled oscillation wavelength ðk�0
Þ is

calculated as a function of ~H using Eqs. (82) and (83) for
discretized values of ~H 2 ½0; ~Hmax�. Here, ~Hmax is a
sufficiently large cutoff value of ~H to resolve the ‘‘tail’’
of the distribution and the discretized values of ~H must
generally be appropriately spaced to resolve features of the
distribution. h

Step 3.—The derivative dðk�0
Þ=d ~H is numerically

calculated as a function of ~H using the discretized
data in (2). h

Step 4.—Equations (88) and (81) are applied to para-
metrically plot the frequency distribution Fðk�=k�0Þ versus
k�=k�0 using the discretized data points in ~H. h

In this procedure we find that care must be taken in
spacing discretized values of ~H 2 ½0; ~Hmax� to achieve
sufficient accuracy when calculating dðk�0
Þ=d ~H. Points

were taken with uniform increments in log ~H to concentrate
resolution for small ~H with systematic spacing while still
covering a large range with a reasonable number of points.

Results calculated from steps 1 and 2 of this procedure
are presented in Fig. 6 where the normalized particle
oscillation wavelength 
=
0 ¼ ðk�0
Þ=ð2�Þ and fre-

quency k=k�0 ¼ 
0=
 are plotted versus the transformed

Hamiltonian ~H. Curves are shown for indicated values of
rms-equivalent beam space-charge strength as measured
by�=�0 2 ð0; 1Þ (or equivalently, the equilibrium parame-
ter � given in Table II). Properties of the thermal equilib-
rium distribution for these values of �=�0 can be found in
Sec. III A. Results are consistent with the weak space-
charge limit in Eq. (85) as evident by the curve for 
=
0

in Fig. 6(a) with �=�0 ¼ 0:9 approaching unit value.
Limiting values of 
=
0 and k�=k�0 as ~H ! 0 are con-

sistent with Eq. (86). Note from Fig. 6(b) that the fre-
quency of particle oscillations k� varies more over the

indicated range of particle oscillation energy measured
by ~H as the space-charge strength increases (i.e., smaller
values of �=�0).

Results obtained from steps 3 and 4 of the procedure to
calculate the frequency distribution F versus normalized
particle oscillation frequency k�=k�0 2 ð0; 1Þ are shown in
Fig. 7. The curves are applicable to thermal equilibrium
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FIG. 6. Scaled particle oscillation wavelength 
=
0 ¼
ðk�0
Þ=ð2�Þ (a) and oscillation frequency k�=k�0 ¼ 
0=


(b) versus dimensionless transformed Hamiltonian ~H. Shown
for rms-equivalent beam space-charge strength �=�0 ¼
0:9; 0:8; 0:7; . . . ; 0:1. Scaled equilibrium parameters correspond-
ing to �=�0 are given in Table II.

FIG. 7. Normalized frequency distribution F versus
normalized particle oscillation frequency k�=k�0 for the thermal

equilibrium sheet beam. Shown for rms-equivalent beam space-
charge strength �=�0 ¼ 0:9; 0:8; 0:7; . . . ; 0:1. Corresponding
Hamiltonian dependencies used to calculate the plot are given
in Fig. 6. Statistical and extreme properties of the distribution
curves are given in Table IV and quantities tabulated are illus-
trated graphically in Fig. 8.
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distributions of arbitrary physical scale and illustrate
changes over a broad range of relative space-charge
strength. Table IV summarizes corresponding properties
of the frequency distribution plots Fðk�=k�0Þ. Statistical
properties of F tabulated include: mean frequency (�F),
rms frequency spread about the mean frequency (�F),
frequency width measure (Fw), and relative frequency
width (Fw=�F). These quantities are defined by

mean:�F�k�=k�0;

rmswidth:�F�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk��k�Þ2

q
=k�0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2��k�

2
q

=k�0;

widthmeasure:Fw�2
ffiffiffi
3

p
�F;

relativewidth:Fw=�F:

(89)

Here, overlines denote averages with respect to the fre-
quency distribution F, i.e.,

� � � ¼
Z 1

0
dðk�=k�0Þ � � �F: (90)

The 2
ffiffiffi
3

p
coefficient multiplying the rms width �F in the

definition of the statistical width measure �F is taken to

give a reasonable sense of the width of F in k�=k�0 about

k�=k�0. The factor is motivated by analogy to the 1D rms-

equivalent sheet-beam discussion in Sec. II B. The relative
width Fw=�F simply measures the frequency width (Fw)
relative to the mean frequency (�F) to give a better sense
of the effective spread in frequencies. Extreme measures of
the distribution are also tabulated including the value of F
and k�=k�0 at the peak and left-edge cutoff of F. To aid

interpretation, quantities tabulated are illustrated in Fig. 8
for Fðk�=k�0Þ shown for the midrange value �=�0 ¼ 0:5.

To better understand the parametric variations of the
frequency distribution F illustrated in Fig. 7 and
Table IV, first note that for �=�0 corresponding to weaker
rms-equivalent beam space-charge (i.e., nearer the
�=�0 ¼ 0:9 case), F is sharply peaked with relatively
small width in k�=k�0. As space-charge becomes stronger

(reduced �=�0), the distribution becomes broader in width
and more smoothly varying relative to the �=�0 ¼ 0:9
case. Regardless of the value of �=�0 2 ð0; 1Þ, there is
always a lower bound value of k�=k�0 > 0 at the left of the

distribution. This value is consistent with the ~H ! 0 limit
value calculated from Eqs. (86) and occurs because for
finite �=�0 Debye screening does not result in a perfectly
flat density profile within the core of the beam with an
appropriate value where the space-charge defocusing force
will cancel the linear applied focusing force. However, for
very strong space-charge (see �=�0 ¼ 0:1; 0:2 curves and
corresponding table entries) this minimum value of k�=k�0
is very close to zero because the density profile in the core
is exceedingly flat from almost complete Debye screening
of the linear applied focusing field. Conversely, for weak
space-charge (see the �=�0 ¼ 0:8; 0:9 curves and table
entries) the density profile deep within the core of the
beam is near Gaussian shaped and there is only limited
cancellation of the applied focusing strength. In all cases,
the frequency distribution F is an asymmetric function of

k�=k�0 about the mean frequency (i.e., k�=k�0 ¼ k�=k�0).

The average normalized frequency k�=k�0 is not generally

equal to the rms-equivalent beam tune depression �=�0

FIG. 8. Quantities listed in Table IV illustrated for
�=�0 ¼ 0:5.

TABLE IV. Statistical and extreme values of the frequency distribution F for the thermal equilibrium sheet-beam parameters plotted
in Fig. 7. Values tabulated are illustrated graphically in Fig. 8.

Statistical measures Extreme measures

Mean rms Width Relative width At Max½F� At left F cutoff

�=�0 � �F ¼ k�=k�0 �F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� � k�

2
q

=k�0 Fw ¼ 2
ffiffiffi
3

p
�F Fw=�F F k�=k�0 F k�=k�0

0.9 2.879 0.886 0.0176 0.0610 0.0689 27.3 0.862 27.3 0.862

0.8 1.093 0.774 0.0354 0.123 0.159 12.1 0.723 12.1 0.723

0.7 0.5181 0.663 0.0531 0.184 0.277 7.13 0.598 7.09 0.584

0.6 0.2500 0.557 0.0696 0.241 0.433 5.03 0.515 4.47 0.447

0.5 0.1097 0.456 0.0833 0.289 0.634 4.12 0.434 2.79 0.314

0.4 3:780� 10�2 0.361 0.0915 0.317 0.878 3.83 0.352 1.58 0.191

0.3 7:562� 10�3 0.274 0.0898 0.311 1.14 4.03 0.270 0.698 0.0866

0.2 3:649� 10�4 0.190 0.0750 0.260 1.37 4.94 0.177 0.153 0.0191

0.1 5:522� 10�8 0.102 0.0465 0.161 1.58 8.18 0.0912 0.001 91 0.000 235
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(i.e., k�=k�0 � �=�0), though the difference becomes

substantially less for both relatively weak (see �=�0¼
0:9) and strong (see �=�0 ¼ 0:1) space-charge than for
the broad middle range of �=�0 (see �=�0 ¼ 0:8–0:3).
Also, both the peak value and left cutoff of F closely
coincide for weaker space-charge (same values to the
precision tabulated for �=�0 ¼ 0:9, 0.8) but shift signifi-
cantly as space-charge becomes stronger. In both the ex-
treme limits of weak (�=�0 ! 1) and strong (�=�0 ! 0)
space-charge, F becomes a Dirac-delta function with unit
area under the curve but infinite height and zero width.
However, properties of the delta-function representation
are very different in the weak and strong space-charge
limits. In the weak case, the distribution is one-sided

with zero width with mean frequency k�=k�0 ! 1. In the

strong case, the mean frequency goes to zero (k� ! 0)

while the spread relative to the mean appears to remain
broad as the limit is approached (i.e., Fw=�F large). Note
from Table IV that the frequency width relative to the mean
frequency (i.e., the relative width Fw=�F) appears to
monotonically increase with increasing space-charge
strength (decreasing �=�0).

The parametric results for distribution of particle oscil-
lation frequencies in the sheet-beam thermal equilibrium
likely have properties in common with a wide variety of
smooth, continuously focused sheet-beam distributions.
Here we conclude this section with a point discussion on
such similarities, together with a more speculative point
discussion on the extent to which features found for the
continuously focused sheet-beam thermal distribution
might extrapolate to provide guidance for periodically
focused systems in higher dimensions and resulting impli-
cations for transport and stability of beams with intense
space-charge. By nature, these point discussions are more
speculative than the systematic developments presented up
to this point. It is hoped that this discussion can help
stimulate future research.

Point 1.—Many features illustrated for the thermal equi-
librium distribution including the sharp left cutoff of the
frequency distribution F in k�=k�0 and both the approxi-

mate scaling of rms distribution width Fw and relative
width Fw=�F in k�=k�0 are likely to persist for other

choices of equilibrium sheet-beam distributions fðHÞ that
are reasonably smooth. However, the shape of the tail of F
for high values of k�=k�0 is likely to vary with the specific

form of the distribution. Distributions with a maximum H
cutoff in fðHÞ will have a corresponding, upper-bound
value of k�=k�0 where F ! 0. This contrasts the situation

for the thermal distribution where F smoothly reduces to
exponentially small values as k�=k�0 becomes larger.

Procedures introduced in this paper to calculate the equi-
librium structure (see Sec. III A) and the corresponding
distribution of particle oscillation frequencies F for the
thermal equilibrium distribution can be straightforwardly
adapted to other continuously focused equilibrium

distributions fðHÞ. Specific examples of other equilibria
with significantly different phase-space structures include
1D sheet-beam equilibria analogous to the 2D continuous
focusing waterbag and parabolic equilibria presented in
Appendices D and E in Ref. [21]. h
Point 2.—The broad distribution of particle oscillation

frequencies found for strong space-charge is not surprising
given the equilibrium structure plots presented in
Sec. III A. When space-charge is weak, particle oscillation
frequencies are only slightly depressed from the oscillation
frequency in the linear applied focusing force which is
independent of the amplitude of oscillation. But as space-
charge defocusing becomes strong, Debye screening in the
core of the beam leads to a flat density profile with a nearly
linear space-charge defocusing force which almost cancels
the applied focusing, resulting in nearly force-free motion
within the core. Particles with large enough oscillation
amplitude enter the edge of the beam and the applied
focusing force overwhelms the rapidly dropping space-
charge force and reflects the particles within a few Debye
lengths. Thus, for stronger space-charge, the frequency of
particle oscillation becomes strongly dependent on ampli-
tude (as measured by the transformed Hamiltonian ~H) as
evident from the low �=�0 curves in Fig. 6(b). h
Point 3.—The statistical width Fw (or equivalently, the

rms width�F) of the frequency distribution F for a thermal
equilibrium sheet beam appears broadest for �=�0 � 0:4
but remains relatively broad over a wide range of strong
space-charge—including the extreme case shown with
�=�0 ¼ 0:1. To the extent this broad parametric width is
preserved for other relatively smooth, but nonthermal,
near-equilibrium and rms-matched beam distributions,
this width helps clarify why space-charge dominated
beams have been observed in laboratory experiments and
simulations appear to have robust stability to internal
modes [44–46]. Although the single-particle frequencies
do not simply correspond to collective mode frequencies,
the spectrum of frequencies of the equilibrium beam
strongly influences collective mode properties. This can
be understood from the method of characteristics
[18,19,23], which shows that small-amplitude mode per-
turbations evolve according to a linear operator acting
along characteristic orbits in the equilibrium. Thus, the
spectrum of single-particle frequencies in the equilibrium
can strongly impact collective mode properties. Generally
speaking, one expects a broader distribution of frequencies
in the equilibrium to result in a lesser degree of instability
with both smaller growth rates and smaller unstable
parameter regions with lower saturation amplitudes for
unstable perturbations. h
Point 4.—Vlasov simulations of 2D transverse continu-

ously focused beams support the point made above, that
beams with strong space-charge exhibit a high degree of
stability. Initial rms envelope-matched 2D beams having
highly nonuniform density and/or kinetic temperature
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profiles are found to rapidly relax with little net emittance
growth or envelope mismatch even for very strong space-
charge strength [47]. Such results suggest a broad under-
lying spectrum of particle and wave oscillation frequencies
in beams with strong space-charge even when the initial
distribution is far from equilibrium form. Similar results
are found in periodic quadrupole focusing channels [48].
Effective relaxations of initial semi-Gaussian beam distri-
butions resulting from phase mixing and nonlinear wave
interactions are found in simulations to occur most rapidly
for �=�0 � 0:5 where results here suggest that the fre-
quency spectrum is most broad [49]. h

Point 5.—Simulations and theory show that, if beam
stability is defined practically in terms of limited rms
emittance growth and halo generation, then a wide variety
of 2D initial distributions are stable when transported in a
periodic quadrupole transport channel without errors re-
gardless of space-charge intensity—so long as the applied
focusing strength is �0 & 85 per lattice period [45,46].
Large rms emittance growth results from significant num-
bers of near-edge particles rapidly evolving outside the
statistical edge (core) of the beam and rapidly increasing
in oscillation amplitude due to interaction with matched
envelope oscillations of the core beam, rather than from
growth of collective modes internal to the core of the beam.
Interior mode instabilities, if present, appear to saturate at
low amplitudes with little consequence. Insofar as the
continuously focused thermal equilibrium sheet beam can
provide a model for particle orbits in a nonequilibrium
periodic quadrupole focusing channel, results found here
showing a broad range of particle oscillation frequencies in
the core of beams with intense space-charge further sup-
port the relative lack of detrimental internal mode insta-
bility noted above. h

Point 6.—It has been observed that the rms-equivalent
KV distribution works well to model beams with smooth
distributions and weak space-charge [50]. This occurs in
spite of the expectation that in weak space-charge regimes
smooth distribution beams should have nonuniform
(Gaussian-like in the thermal equilibrium case) density
profiles leading to more nonlinear space-charge forces.
The frequency distribution plots of the smooth thermal
distribution suggest why the smooth distribution can be
well modeled by a KV distribution in spite of the (small)
nonlinear self-field forces. As �=�0 ! 1 the frequency
distribution F becomes sharp with narrow rms width in

k� with k�=k�0 ’ �=�0. Thus, particle orbits in the

smooth distribution should be well approximated by parti-
cles making up an rms-equivalent KV distribution in spite
of the (small) nonlinear space-charge force being modeled
by a linear force. This suggests that the KV model can be
reliable to predict low-order collective mode resonances
when space-charge intensity is relatively weak. In weak
space-charge regimes spurious instabilities of the KV
model associated with the singular KV distribution form

are less problematic: in 2D continuous focusing models, all
KV modes are stable for �=�0 > 0:3985 (see Appendix B
of Ref. [51]). Recent experiments and simulations
supporting the reliability of the KV model as an aid to
interpret space-charge effects for relatively weak space-
charge are presented in Ref. [9]. h
Point 7.—Conversely to the weak space-charge case

discussed in the point above, in the strong space-charge
limit the KV model is expected to provide a poor approxi-
mation to smooth distributions. For thermal distributions
this failure occurs in spite of the fact that for low values of
�=�0 the density profile is very uniform for many Debye
lengths before rapidly falling to exponentially small values
in a few Debye lengths at the beam edge (see Sec. III A).
The broad range of particle frequencies in smooth distri-
butions is expected to strongly modify the collective re-
sponse, other than for lowest order (envelope) modes. The
plethora of strongly unstable, higher-order KV modes
[50,51] appears to be suppressed, or saturates at low am-
plitudes with little consequence, when equilibrium orbits
no longer advect perturbations with a single characteristic
frequency. Historically, sheet-beam model results with KV
distributions were first applied by Sacherer [6] to analyze
space-charge induced resonance effects in rings.
Interpretations and extensions to higher dimensions pre-
sented by Baartman in Ref. [7] have also been influential.
Present results suggest that extrapolating such KV model
results for collective mode resonances may be questionable
when applied to collective modes beyond lowest order
when space-charge intensity is high. However, this does
not imply that all KV model results are invalid. For ex-
ample, lowest order linear (envelope) instability appears
robust enough to extrapolate to other distributions [44–46].
Also, Startsev et al. [52–54] analyzed a robust low-order
transverse-longitudinal collective instability by applying
the method of characteristics using (single-frequency)
KVorbit equilibrium characteristics with perturbation op-
erators for a smooth (thermal) core distribution to estimate
growth rates, and found good agreement with r-z Vlasov
simulation results. h

Point 8.—Because generally k�=k�0 � �=�0, it follows

that the unique particle oscillation frequency in an rms-
equivalent KV beam does not equal the average oscillator
frequency in the thermal distribution. Similar deviations
from rms equivalency are reasonable to expect for other
smooth distributions and suggest caution in the application
of rms-equivalent parameter interpretations. Notice from
Table IV that for the thermal equilibrium sheet beam

k�=k�0 <�=�0 for all values of �=�0 except �=�0 ¼
0:1 where the deviation is small. The deviation of k�=k�0
from �=�0 approaches zero in both the weak (�=�0 ! 1)
and strong (�=�0 ! 0) space-charge limits. h
Point 9.—In recent studies by Dorf et al. in

Refs. [55,56], x- and y-plane particle oscillation frequen-
cies are calculated by spectral analysis of orbits in

SHEET BEAM MODEL FOR INTENSE SPACE CHARGE: . . . Phys. Rev. ST Accel. Beams 14, 054201 (2011)

054201-19



continuous and periodically focused beams with
unbunched thermal equilibrium core distributions.
Characteristic widths and scaling of 2D frequency distri-
butions agree well with the 1D sheet-beam model pre-
sented here, suggesting further that the sheet-beam model
can be broadly applied. The primary difference between
the 1D and 2D results appears to be that the sharp left
cutoff in 1D becomes rounded in 2D, which is likely
attributable to dimensional scaling of 2D volume measures
folded into the distribution projection. Note also that
in a 2D system with nonlinear space-charge forces,
Floquet’s theorem does not apply and particle orbits are
not closed in the x or y planes, so phase advances (fre-
quencies) are formally ill posed. However, nearly constant
frequency distributions obtained by transforming long
orbits suggest that for equilibrium like distributions fre-
quency projections can be regarded as nearly stationary,
which furthers correspondence to the 1D model results
presented here. h

Point 10.—Finally, it appears likely that halo properties
should be significantly different in the sheet-beam model
relative to higher-dimensional models. A large amplitude
halo is primarily driven by the breathing envelope mode
[57]. In the sheet-beam model, the lower frequency quad-
rupole envelope mode appears to be accurately represented
[see Sec. II B and Eq. (43)], but the higher-frequency
breathing mode is not supported. Furthermore, scaling of
space-charge forces with distance outside the envelope of
an rms-equivalent core is different in the sheet-beammodel
(constant) relative to higher-dimensional models (falloff
with distance) [46]. Together these features likely result in
different characteristic halo resonances in the sheet-beam
model relative to higher-dimensional models. However, for
nontenuous halo processes leading to space-charge in-
duced transport limits as described in Refs. [45,46],
it is possible that resulting stability thresholds due
to a variety of collective processes driving a significant
fraction of particles well outside the beam core may be
similar in sheet-beam models, though the final saturated
beam states could differ due to different halo resonances
supported. h

IV. CONCLUSIONS

A 1D sheet-beam model has been reviewed and ex-
tended in a manner intended to enable applications to a
broad range of beam transport problems with intense
space-charge. A full Vlasov model with and without finite
geometry effects, as well as reduced centroid and envelope
moment descriptions, were developed. Specific attention
was paid to the choice of sheet-beam parameters appro-
priate to represent more realistic, higher-dimensional beam
models. The reduced complexity of the 1D sheet-beam
model enables significant analytical progress on a variety
of difficult problems with self-consistent space-charge.
The sheet-beam model also provides a simple framework

which can be exploited to evaluate advanced methods for
direct Vlasov simulations.
The efficacy of the sheet-beam model was illustrated

with solutions to several problems of fundamental interest.
A sheet-beam thermal equilibrium distribution was devel-
oped in a continuous focusing model to provide an ex-
ample of a realistic, smooth distribution function. The
thermal equilibrium was thoroughly analyzed and shown
to have remarkably similar properties to higher-
dimensional models in terms of both the equilibrium struc-
ture and Debye screening properties of a test charge placed
in the equilibrium. These results support the conclusion
that the sheet-beam model can be applied to reliably model
beam equilibria and collective waves that closely resemble
those in higher-dimensional models. The simplicity of the
1D sheet-beam model was further exploited to explicitly
calculate the self-consistent distribution of particle oscil-
lation frequencies within the thermal equilibrium distribu-
tion. Results were presented in a manner which applies to
any thermal equilibrium regardless of physical scale, and
quantified how strong space-charge significantly broadens
the distribution of particle oscillation frequencies. Because
a broader distribution of frequencies is expected to have
reduced consequences of resonances with perturbations,
this result helps explain the robust stability to internal
modes typically observed in beams with intense space-
charge in both laboratory experiments and numerical
simulations.
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APPENDIX A: SYSTEM ENERGY
CONSERVATION CONSTRAINT

For continuous focusing with � ¼ k2�0 ¼ const, the

Vlasov equation (14) can be operated on withRxpr
xpl dx

R1
�1 dx0 12 x

02 � � � and the boundary conditions

fðx ¼ xpl; xprÞ ¼ 0 applied to the result to show that

@

@s

Z xpr

xpl

dx
Z 1

�1
dx0

1

2
x02f

�
Z xpr

xpl

dx
Z 1

�1
dx0

�
k2�0xþ

q

m�3
b�

2
bc

2

@�

@x

�
x0

2

@f

@x0
¼ 0:

(A1)

Similarly, the continuity equation
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@

@s
nþ @

@x

Z 1

�1
dx0x0f ¼ 0 (A2)

is derived as usual by operating on the Vlasov equation
with

R1
�1 dx0 � � � and applying the boundary condition

fðx0 ! �1Þ ¼ 0 to the result. The continuity equation
(A2) and the Poisson equation (3) with n ¼ R1

�1 dx0f
can then be applied together with partial integration to
express Eq. (A1) as

@

@s

�Z xpr

xpl

dx
Z 1

�1
dx0

�
1

2
x02 þ 1

2
k2�0x

2

�
f

þ �0
2m�3

b�
2
bc

2

Z xpr

xpl

dx

��������@�@x
��������2
�

¼ �0
m�3

b�
2
bc

2
�

@

@s

@�

@x

��������x¼xpr

x¼xpl

:

(A3)

The terms within f� � �g in Eq. (A3) can be identified (in
order expressed) with the usual scaled ‘‘kinetic,’’ applied
focusing potential, and electric field energies of the
bounded 1D system. The term on the rhs of Eq. (A3) is
related to the scaled energy flow provided by an external
power source required to impose potentials � ¼ �l;�r on
the plates at x ¼ xpl; xpr. If �l ¼ const and �r ¼ const,

the s derivative can be moved through �l and �r to obtain

�
@

@s

@�

@x

��������x¼xpr

x¼xpl

¼ @

@s

�
�r

@�

@x

��������x¼xpr

��l

@�

@x

��������x¼xpl

�
: (A4)

Equations (A3) and (A4) immediately imply the energy
conservation constraint given in Eq. (21). Further clarifi-
cation of the external source term in Eq. (21) is achieved by
applying the field solution in Eq. (10) to show that

�r

@�

@x

��������x¼xpr

��l

@�

@x

��������x¼xpl

¼ ð�r ��lÞ2
xpr � xpl

þ qð�r ��lÞ
�0ðxpr � xplÞ

Z xpr

xpl

dxNx þ qN�r

�0
: (A5)

Because �l, �r, and N are constants and the geometry is
fixed, Eqs. (A4) and (A5) show that we can replace

�0
m�2

b�
2
bc

2

�
�r

@�

@x

��������x¼xpr

��l

@�

@x

��������x¼xpl

�

! qð�r ��lÞ
m�2

b�
2
bc

2ðxpr � xplÞ
Z xpr

xpl

dxNx

(A6)

in Eq. (21) because the new term differs from the replaced
term by a constant. This replacement explicitly shows that
the external source term can be eliminated when �l ¼
�r ¼ const because it is a constant (replacement term
vanishes). The physical interpretation of this result is that
the plate bias does not matter when the left and right plates
are connected—as must be the case on the physical basis.
Similarly, if �l ¼ �r � const, Eq. (10) can be applied

to show that � @
@s

@�
@x j

x¼xpr
x¼xpl

¼ 0 and consequently the

conservation Eq. (21) can be applied in this case with no
external source term. If desired, the field solution in
Eq. (10) can be applied to recast the field energy
�0
2

Rxpr
xpl dxj @�@x j2 in Eq. (21) in explicit form.

APPENDIX B: FIELD-ENERGY
EMITTANCE RELATION

Under the assumption of a symmetric beam with nðxÞ ¼
nð�xÞ focused within a symmetric geometry with xpr ¼
�xpl ¼ xp with no bending (�r ¼ �l ¼ const), the field

resolution in Eq. (11) has only a direct (free-space) com-

ponent. In this case, ~x ¼ x, ~x0 ¼ x0,Nx ¼ � �0
q

@�
@x þ N

2 , and

Eq. (44) can be expressed as

d

ds
"2¼� 18q

m�3
b�

2
bc

2

�
hx2i

	
x0
@�

@x



�hxx0i

	
x
@�

@x


�
: (B1)

For notational simplicity in this reduced geometry, we
denote

Ns
x �

Z x

0
d~xnð~xÞ ¼ Nx � N

2
; (B2)

so that � @�
@x ¼ q

�0
Ns

x and express the self-field energy per

unit area as

W ¼ �0
2

Z xp

�xp

dx

��������@�@x
��������2¼ q2

�0

Z xp

0
dxðNs

xÞ2: (B3)

Following Anderson in Ref. [10], some manipulations
then show that the field moments in Eq. (B1) can be
expressed as

	
x
@�

@x



¼ � 1

qN

�
q2N2xp
4�0

�W

�
;

	
x0
@�

@x



¼ � 1

qN

d

ds

�
q2N2xp
4�0

�W

�
:

(B4)

The hx @�
@x i moment in Eq. (B4) is straightforward to calcu-

late using Eq. (23) to show that hx @�
@xi ¼ � 2q

�0N

Rxp
0 dxxNs

xn

and then applying n ¼ @Ns
x

@x and partial integration. The

hx0 @�@ximoment can be obtained by first directly calculating
dW
ds ¼ 2q2

�0

Rxp
0 dxNs

x
@Ns

x

@s . Then @Ns
x

@s in this expression is recast

by first operating on the Vlasov equation (14) withR1
�1 dx0 � � � to derive the continuity equation @n

@sþ
@
@x ð

R1
�1 dx0x0fÞ ¼ 0, after which the continuity equation

is integrated for the symmetric density profile to first show

that @N
s
x

@s ¼ �R1
�1 dx0x0f. Using this expression and adding

q2N2xp
4�0

¼ const within the s derivative then obtains the

given result. The field moments (B4) are then inserted in
Eq. (45) and d

ds hx2i ¼ 2hxx0i is applied to obtain
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d

ds
"2 ¼ 18

Nm�3
b�

2
bc

2

�
hx2i dWF

ds
� hxx0iWF

�

¼ 18

Nm�3
b�

2
bc

2
hx2i3=2 d

ds

�
WF

hx2i1=2
�
; (B5)

with WF � q2N2xp
4�0

�W [Eq. (46)], thereby deriving

Eq. (45).
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