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Beam position monitors are an important diagnostics tool for particle accelerator operation and related

beam dynamics research. The measurement of the beam deflection angle, or moving direction of a charged

particle beam with respect to the beam pipe axis, can provide useful additional information. Beam

monitors sensitive to the beam’s azimuthal B-dot field (sometimes referred as B dots) are used to measure

the displacement (position) of the beam centroid, as the beam generates a dipole term of the azimuthal

magnetic field. Similarly, a dipole term of the axial magnetic field will be generated by the beam moving

in a direction not parallel to the axis of the beam pipe. In this paper, a new method using the axial B-dot

field is presented to measure the beam deflection angle directly, including the theoretical background.

Simulations using the MAFIA numerical code have been performed, demonstrating a good agreement to the

new established analytical model.
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I. INTRODUCTION

In accelerators a charged particle beam propagates
inside an evacuated, conducting beam pipe, and under-
goes a transverse motion due to the magnetic guiding
fields. An accurate measurement of the transverse beam
displacement is very important for understanding the
underlying beam physics of the transverse particle mo-
tion, i.e., the so-called beam optics. For example, in
linear induction accelerators, the measurement of the
beam transverse displacement can be used to determine
how to correct the beam center position error to sup-
press the transverse emittance growth due to cockscrew
effect [1].

Additionally, when a beam of high intensity propagates
in the conducting beam pipe, it interacts with the surround-
ings and the likely existing background plasma may en-
counter instabilities such as beam breakup effects [2] and
ion hose instabilities [3,4]. Usually, the transverse beam
displacement is measured at a series of locations along the
beam pipe, which gives the beam orbit information of the
beam centroid, e.g., to understand beam instabilities based
on the amount of growth rate. The beam centroid position
measurement can be performed by using azimuthal B-dot
monitors [5–9].

The principle of an azimuthal B-dot beam positing
monitor is shown in Fig. 1.

The time integrated signal of the wire-loop electrode
is proportional to the azimuthal magnetic field. For a
displaced line current inside a long conducting cylindrical
pipe, its azimuthal magnetic field at the inner wall

(more specifically speaking, infinitely close to the inner
wall) of the conducting pipe can be expressed [10–12]:

B�ðr ¼ b; �Þ ¼ �0I

2�b

1� �2

1þ �2 � 2� cosð�� ’Þ ; (1)

where I is the beam current, b is the inner radius of the
beam pipe, � ¼ a=b is the normalized magnitude of the
beam displacement, and ða; ’Þ is the transverse beam
position in cylindrical coordinates system ðr; �Þ.
At the four locations xþ , yþ , x� , and y� of the loop

electrodes (see Fig. 1), Eq. (1) has a very simple form in
approximation for small displacement (� � 1) [12]:

B�ðr ¼ b; � ¼ 0Þ ¼ B0ð1þ 2� cos’Þ (2)

B�ðr ¼ b; � ¼ �=2Þ ¼ B0ð1þ 2� sin’Þ (3)

B�ðr ¼ b; � ¼ �Þ ¼ B0ð1� 2� cos’Þ (4)

B�ðr ¼ b; � ¼ 3�=2Þ ¼ B0ð1� 2� sin’Þ; (5)

where B0 ¼ �0I=2�b is the magnetic field at the inner
wall of beam pipe for a centered beam. One can conclude
that the magnetic field difference between the xþ direction
and the x� direction is proportional to the displacement in
the x direction, and vice versa for the vertical coordinate.
Therefore the azimuthal B-dot beam position monitor of

four small loop electrodes at the xþ , yþ , x� , and y�
locations can measure any transverse beam displacement
in the x-y plane.
As the beam centroid offset is varying along the z axis,

the related azimuthal magnetic field also varies. The rela-
tion between azimuthal and axial magnetic field compo-
nents is given by Maxwell’s equation:

@Bz

r@�
� @B�

@z
¼ @Er

c2@t
: (6)
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Equation (6) is only valid for fields near the inner surface
of the beam pipe and it assumes that the radial beam
current density jr in this region is very small and its
contribution to the magnetic fields can be neglected.

According to Eqs. (2)–(5), the derivative of the azimu-
thal magnetic field with respect to the axial position z is
proportional to the beam deflection angle, x0 ¼
dða cos’Þ=dz, y0 ¼ dða sin’Þ=dz. This hints that there is
an analytic expression which relates the axial magnetic
field to the beam deflection angle, and there is a method to
measure the beam deflection angle directly. A simple,
direct measurement of the beam deflection angle will
provide additional, useful information about the beam
dynamics in accelerators.

In Sec. II we will establish the theory, explaining the link
between axial magnetic fields and beam deflection angle.
Section III discusses various configurations of the axial
B-dot wire loops to measure the beam deflection angle. In
Sec. IV we compare our analytical investigations with
numerical simulations using the MAFIA code, often used
for solving Maxwell’s equation problems.

II. THEORY

A. Approximation of a slow temporal variation
and a small beam displacement

Consider a slow temporal variation of the beam, i.e.,
the contribution of the displacement current dE=dt to
B� is small, and furthermore only small displacements
(� � 1) of the beam inside a long conducting pipe.
Shokair derived a closed expression for the azimuthal
magnetic field, taking a z dependence of the nonlocal
beam current into account [10]:

Bzðr¼b;�;zÞ¼�0I

2�

�
1

b
þ 2

b2

Z 1

�1
dk

e�ikz

2�
�ðkbÞ~uðk;�Þ

�
;

(7)

where � is defined as Eqs. (8)–(10)

�ðxÞ ¼ xK1ðxÞ
xQ1ðxÞ þ P1ðxÞ ; (8)

QnðxÞ¼�x

�

Z 2�

0
dc sinðc Þsinðnc ÞK0½x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2cosðc Þ

q
�;
(9)

PnðxÞ ¼ 1þ x

2�

Z 2�

0
dc cosðc Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cosðc Þ

q
K1½x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cosðc Þ

q
�; (10)

and ~uðk; �Þ is the Fourier transform of uðz; �Þ ¼ �ðzÞ�
cos½’ðzÞ � ��, KðxÞn is the modified Bessel function of
second kind.
Assuming a slow temporal variation of the displacement

current, the right-hand side of Eq. (6) approximates to zero.
Combining Eqs. (6) and (7) gives

FT

�
@Bz

r@�

�
¼ �ik~uðk; �Þ 2�0I

b2
�ðkbÞ: (11)

Applying the inverse Fourier transform to Eq. (11) yields

@Bzðr¼b;�;zÞ
@�

¼�0I

2�b

Z 1

�1
�ðkbÞ@~u

@z
ðk;�Þe�ikzdk; (12)

where @~u
@z ðk; �Þ is the Fourier transform of @u

@z ðz; �Þ with

respect to z.
From (12) we derive an expression for Bz,

Bzðr¼b;�;zÞ¼��0I

�b

Z 1

�1
�ðkbÞ@~v

@z
ðk;�Þe�ikzdk; (13)

where @~v
@z ðk; �Þ is the Fourier transform of @v

@z ðz; �Þ with

respect to z, and vðz; �Þ ¼ �ðzÞ sin½’ðzÞ � ��.
If we symbolize the inverse Fourier transform of �ðkbÞ

as gðzÞ, Eq. (13) can be represented in the form of a
convolution integral:

Bzðr¼b;�;zÞ¼��0I

�b

Z 1

�1
@v

@z0
ðz0;�Þgðz�z0;bÞdz0: (14)

For the case of the xþ , x� , yþ , and y� direction, we
get the results

Bzðr¼b;�¼0;zÞ¼��0I

�b

Z 1

�1
y0ðz0Þgðz�z0;bÞdz0 (15)
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FIG. 1. Diagram of azimuthal B dot.
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Bzðr¼b;�¼�;zÞ¼�0I

�b

Z 1

�1
y0ðz0Þgðz�z0;bÞdz0 (16)

Bzðr¼b;�¼�=2;zÞ¼�0I

�b

Z 1

�1
x0ðz0Þgðz�z0;bÞdz0 (17)

Bzðr¼b;�¼3�=2;zÞ¼��0I

�b

Z 1

�1
x0ðz0Þgðz�z0;bÞdz0;

(18)

where x0 and y0 are the beam deflection angles in the x and
the y direction, respectively. Equations (15)–(18) show that
Bz is proportional to the weighted average of the beam
deflection angle, with gðz; bÞ as a weighting function.

The function gðz; bÞ times b gives the longitudinal extent
of the axial magnetic field due to the beam deflection. The
value of gðz; bÞ times b can be evaluated numerically [10],
see the plot of gðz; bÞ times b in Fig. 2 over a longitudinal
range z of several beam pipe radii b.

B. Approximation of a small ratio of azimuthal to axial
image current

In the case of pulsed beam propagating with small
displacement � � 1 and small deflection angle x0 � 1
y0 � 1, the ratio of azimuthal image current (J�) and axial
image current (Jz) is small, i.e., the image charges on the
inner surface of the conducting beam pipe travel with the
same velocity as the charged beam

��c ¼ Jz; (19)

where � is density of the image charge density and �c is
the velocity of the bunched beam. Equation (19) relates to

Erðr ¼ b; �Þ ¼ B�ðr ¼ b; �Þc=�: (20)

Inserting Eq. (20) into Eq. (6) results in

@Bz

r@�
¼ @Er

c2@t
þ @B�

@z
¼ dB�ðr; �; z; t ¼ t0 þ z=�cÞ

dz
: (21)

A point charge with charge q, traveling at relativistic
velocity along a conducting beam pipe with circular cross
section, generates an azimuthal magnetic field of [13]

B�ðr¼b;�Þ¼ X1
m¼0

2qam

1þ�m0

� 1

4�"0c
�ðz�ctÞ

�cos½mð��’Þ� � 2

bmþ1
; (22)

where �m0 ¼ 1 if m ¼ 0 and �m0 ¼ 0 if m � 0.
For a line charge with density of �ðz� �ctÞ, we need to

replace q�ðz� ctÞ in Eq. (22) by �ðz� �ctÞ. Actually,
Eq. (22) is equivalent to Eq. (1). Equation (22) holds only if
� and ’ are constant. For an arbitrary transverse displace-
ment along z and small beam deflection angle, the trans-
verse displacement vary slowly with z, and B is determined
by the local transverse displacement (or in other words, the
contribution of the z dependence of nonlocal beam dis-
placement is not significant); therefore Eq. (22) still holds.
Inserting Eq. (22) into Eq. (21) yields the axial magnetic
field

Bzðr¼b;�Þ¼ X1
m¼1

�0Iðz��ctÞ
�b

�a
m�1

bm�1
fa0 sin½mð��’Þ�

�a’0cos½mð��’Þ�g: (23)

Neglecting higher order terms, Eq. (23) simplifies to

Bzðr ¼ b; � ¼ 0Þ ¼ 2B0

�
�y0 � x0yþ y0x

b

�
(24)

Bzðr ¼ b; � ¼ �=2Þ ¼ 2B0

�
x0 þ x0yþ y0x

b

�
(25)

Bzðr ¼ b; � ¼ �Þ ¼ 2B0

�
y0 � x0yþ y0x

b

�
(26)

Bzðr ¼ b; � ¼ 3�=2Þ ¼ 2B0

�
�x0 þ x0yþ y0x

b

�
(27)

The axial magnetic field difference between the xþ and
the x� direction is

Bzðr ¼ b; � ¼ 0Þ � Bzðr ¼ b; � ¼ �Þ ¼ �4B0y
0; (28)

and the axial magnetic field difference between the yþ and
the y� direction is

Bzðr¼b;�¼�=2Þ�Bzðr¼b;�¼3�=2Þ¼4B0x
0; (29)

where B0 ¼ �0Iðs��ctÞ
2�b is the magnetic field at the inner wall

surface of the beam pipe for a centered beam.
Equations (24)–(27) provide a solution of the axial

magnetic field dependence to the deflection angle for a
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FIG. 2. The value of function bgðz; bÞ.

DIRECT MEASUREMENT OF THE BEAM DEFLECTION . . . Phys. Rev. ST Accel. Beams 14, 052804 (2011)

052804-3



pulse beam propagating with small beam displacement
(� � 1) and small deflection angles (x0 � 1, y0 � 1),
i.e. Bz=B� � 1.

For relativistic beams both sets of equations, Eq. (15)–
(18) and Eq. (24)–(27), can be used to compute the axial
magnetic field. The first set of equations, derived under the
approximation of a slow temporal variation and small
displacement of the beam, takes into account the contribu-
tion of a nonlocal beam current.

The latter set of equations neglects the nonlocal effects,
but has the time dependence and higher accuracy because
the multiplication term of beam deflection angle and nor-
malized beam displacement is included. In the case where
x0 and y0 vary slowly along the axial position (wavelength
is larger than several beam pipe radii), the nonlocal effects
are not significant, so the latter set of equations is appli-
cable. In the case where the nonlocal effects are significant,
the function gðz; bÞ should be convoluted to Eqs. (24)–(27)
to get more accurate results.

For nonrelativistic beams under the slow temporal varia-
tion approximation, i.e., for long bunches, Eqs. (15)–(18)
are still valid. In the case of a nonrelativistic beam with
short bunches, Eq. (21) still holds, but the time dependence
in Eq. (22) becomes invalid. We need to modify the

common term B0 ¼ �0Iðs��ctÞ
2�b in Eqs. (24)–(27) to account

for the longitudinal bunch profile.

III. AXIAL B-DOT CONFIGURATIONS FOR
DIRECT MEASUREMENT OF THE BEAM

DEFLECTION ANGLE

In the case of relativistic or nonrelativistic beams having
long bunches and with known longitudinal beam current
profile Iðz� �ctÞ, a direct measurement of the axial mag-
netic field can be realized simply by locating four wire-loop
antennas at the xþ , x� , yþ , and y� positions (see
Fig. 3); similar to the azimuthal B-dot beam position moni-
tor arrangement of Fig. 1, but here the loops are oriented to
detect the axial B field. Applying Eqs. (28) and (29) we
simply can measure the beam deflection angles x0 and y0.
In the case the longitudinal bunch profile is unknown, we

may combine axial and azimuthal B-dot wire loops
in a symmetric arrangement at the same z location, as shown
in Fig. 4. The signals from the four wire loops detecting the
azimuthal magnetic field may be used to measure the trans-
verse beam displacement, as well as the longitudinal bunch
profile, while the four wire loops detecting the axial mag-
netic field are used for the beam angle measurement.
In case of a nonrelativistic beam with short bunches we

can use the same ‘‘double’’ configuration (Fig. 4), the
common mode signal B0 is measured by the azimuthal
B-dot loop electrodes, required to determine the beam
angle based on Eqs. (28) and (29) using the axial B-dot
loop electrodes.

radius of the beam 
pipe is b

beam a
ϕϕ   

beam 

cable

loop 

FIG. 3. Four wire loops to measure beam deflection angle.

beam a
ϕϕ   

beam 

Bz

Bθθ

FIG. 4. Azimuthal B dots and axial B dots are composed to measure beam current, displacement, and beam deflection angle.
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Strictly speaking, nonlocal effects are always present,
only in the case that the beam deflection angle varies
slowly along z (betatron wavelength is larger than several
beam pipe radii), the beam deflection angle can be mea-
sured locally by using the axial B-dot method. If the
betatron wavelength is short, the axial magnetic field has
to be measured at several locations along z, and the beam
angles can be determined by inverse convolution. This
approach is similar to the method given in Shokair’s paper
[10], which measures the azimuthal magnetic field at a
series of axial location and computes the beam displace-
ment profile through inverse convolution.

IV. SIMULATIONS TO VERIFY THE
THEORETICAL RESULTS

A series of numerical simulations have been performed
to verify the analytic approach.

A. A relativistic beam inside a beam pipe of circular
cross section along a lattice with four steering magnets

1. Geometry

The beam pipe has a circular cross section of 147 mm
diameter and is 10.5 m long. The four steering magnets are
located at 3, 4.5, 6, and 7.5 m distance from the beam
entrance; these four locations are labeled C, D, E, and F in

Fig. 5, respectively. The magnetic fields are recorded in the
x-y plane at four locations 3.75, 5.25, 6.75, and 9 m, labeled
G, H, I, and J.

2. Parameters of injected beam

The injected beam has a Gaussian temporal profile with
standard deviation of 5 ns. Its total charge is 20 �C and its
energy is pc ¼ 1 TeV. The transverse distribution is uni-
form and has a radius of 5 mm. The beam is injected at the
center, along the axis.

3. Simulation software

The MAFIA S module is used to compute the magnetic
field of steering coils. The TS3 module is used to
self-consistently compute the fields in the presence
of the beam.

4. Boundary conditions

The boundary conditions in the longitudinal direction
(A and B plane in Fig. 5) are set to be waveguide. All
modes with frequency less than 4 GHz are included, and
can propagate through the waveguide boundary.

5. Simulation results

The trajectory of the beam with respect to the beam pipe
center is shown in Fig. 6. A closed, asymmetric beam bump

 B A

C D E FG H I J Beam

FIG. 5. Geometry of simulation in Sec. IVA.
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is performed in the horizontal plane; no deflection is
applied in the vertical plane.

The axial magnetic fields at the ‘‘H’’ plane location are
shown in Fig. 7, plotted for the four locations of the wire
loops. The temporal profile of the axial magnetic field is
Gaussian, and has the same standard variation of 5 ns.
Because it is not possible for MAFIA (or the authors cannot
find a proper way) to include all modes in the waveguide
boundary, the modes with intrinsic frequency higher than
4 GHz are not included in the waveguide boundary. For
these modes the simulation geometry acts like a cavity, so
noise will stimulate these modes and lead to the oscilla-
tions of the magnetic field after the beam leaves the
observation positions. Applying Eq. (29), we compute
the beam deflection angle of �8:78 mrad at z ¼ 5:25 m
in the horizontal, and almost zero in the vertical plane.
This is in very good agreement to the numerical result,
showing a deflection angle of �8:86 mrad in the horizon-
tal plane.

B. A quasirelativistic beam inside a beam pipe
of circular cross section along a lattice with four

steering magnets and a solenoid

1. Geometry

The physical layout is the same as in Sec. IVA, except a
solenoidal magnet is added. The physical layout is shown
in Fig. 8. The solenoid covers the longitudinal region from
0.6 to 9.6 m. Beside recording the magnetic fields at the G,
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FIG. 7. (a) Bz at x ¼ b, y ¼ 0; (b) Bz at x ¼ �b, y ¼ 0; (c) Bz at x ¼ 0, y ¼ b, (d) Bz at x ¼ 0, y ¼ �b, where b is the radius of the
beam pipe. For all four plots z ¼ 5:25 m.
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FIG. 8. Geometry of simulation in Sec. IVB.
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H, I, and J planes, we also record the fields along the four
lines (x ¼ b, y ¼ 0, z¼0–10:5m; x ¼ �b, y¼0, z¼
0–10:5m; x ¼ 0, y ¼ b, z¼0–10:5m; x ¼ 0, y ¼ �b,
z ¼ 0–10:5 m) to analyze the deflection angle along z.

2. Parameters of injected beam

The injected beam has a Gaussian temporal profile
with standard deviation of 1 ns. Its total charge is 20 nC
and the energy is pc ¼ 5 MeV. The transverse distribution
is uniform and has a radius of 5 mm. The beam is
injected with a horizontal offset of x ¼ 3 mm and along
the z axis.

3. Simulation results

The recorded fields along the four lines (x ¼ b, y ¼ 0,
z¼0–10:5m; x¼�b, y ¼ 0, z¼0–10:5m; x ¼ 0, y ¼ b,
z ¼ 0–10:5 m; x ¼ 0, y ¼ �b, z ¼ 0–10:5 m) allow a
presentation of the virtually measured deflection angle in
the horizontal plane along the lattice based on Eqs. (28)
and (29), shown in Fig. 9, labeled as ‘‘measured xp using
axial B dot field.’’ For comparison, the real deflection angle
of the beam computed by statistics of the beam is also
shown and labeled with ‘‘xp of beam centroid.’’ To under-
stand the influence of the nonlocal contribution of the beam
current to the axial magnetic field, we also included the
plot labeled ‘‘smoothed xp of beam centroid,’’ which is
based on the convolution of the beam deflection angle with
the weighting function gðzÞ. Figure 9 shows a very good
agreement between the analytical computation based on
Eqs. (28) and (29) and the numerical results. The example
demonstrates that the method can be applied also for
the case of a fast varying betatron motion, although, at
the extreme points (zoomed in Fig. 9), the nonlocal

contribution of the beam current needs to be taken into
account to achieve correct results.

V. DISCUSSION

The relation between the axial magnetic field and the
deflection angle of the beam is derived in two ways. Both
methods give very similar results, in one case the nonlocal
effects of the beam current are taken into account, in the
other case the time dependence is included into the ex-
pressions. The analytical methods show that the difference
of the axial magnetic fields between the xþ and the x�
locations is proportional to the deflection angle of the beam
in the y� direction, while the yþ minus y� field differ-
ence returns the beam angle in the x� direction. Both
analytical methods enable a direct measurement of the
beam deflection angle. A comparison, using numerical
simulations based on the MAFIA code, demonstrates a
very good agreement between numerical results and the
theory.
It should be noted, the axial magnetic field is much

smaller than the azimuthal field. In case of a 1 mrad
beam deflection angle, the axial magnetic field is only
about 0.2% of the azimuthal magnetic field. One can
isolate the axial B-dot monitors with azimuthal magnetic
field by aligning the loops in one plane vertical to the beam
pipe axis with high accuracy. The difference signal of
opposite wire-loop antennas will eliminate large parts of
the residual contribution of the azimuthal magnetic field.
Although the axial magnetic field is weak, it is possible to
detect the field. For a typical beam in a linear induction
linac, with a peak current of 2 kA, a rise time of 20 ns,
propagating in a beam pipe of 70 mm radius, a beam
deflection angle of 1 mrad can be detected by a 10 turn
wire loop of 1 cm2 area, which generates a 0.6 V signal,
which is not too difficult to be measured precisely.
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