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Coherent electron cooling is an ultrahigh-bandwidth form of stochastic cooling which utilizes the

charge perturbation from Debye screening as a seed for a free-electron laser. The amplified and frequency-

modulated signal that results from the free-electron laser process is then used to give an energy-dependent

kick on the hadrons in a bunch. In this paper, we present a theoretical description of a high-gain

free-electron laser with applications to a complete theoretical description of coherent electron cooling.
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I. INTRODUCTION

Coherent electron cooling (CeC) [1] is a new cooling
method for intense relativistic hadron beams, to be imple-
mented first at the proposed MEeRHIC/eRHIC upgrade to
the RHIC accelerator at Brookhaven National Lab.
Schematically similar to the stochastic cooling already
implemented at RHIC [2], CeC has the advantage that its
coherent bandwidth is on the order of the resonance wave-
length of the operating free-electron laser, so that the cross
correlation that leads to heating and therefore saturation of
the stochastic cooling system is not encountered in CeC.

To achieve a complete theoretical description of coher-
ent electron cooling, models for the propagation of a phase
space perturbation through the pickup [3] and kicker [4]
were developed and presented [5]. All these calculations
are based upon an infinite electron beam with �� 2 energy
spread [6]. However, an exact analytical solution for the
high-gain free-electron laser in the small signal regime,
given an initial phase space perturbation, had not yet been
developed.

A number of analytical models have been developed for
the transverse laser profile for a free-electron laser (FEL).
A set of equations for the full dynamics of a three-
dimensional FEL with betatron oscillations were first writ-
ten down in [7]. Universal scaling for the gain of the FEL in
terms of the energy spread, emittance, and focusing prop-
erties were developed in [8]. A fully three-dimensional

Maxwell-Vlasov equation was studied in [9] and ulti-
mately a procedure for exact and variational solutions to
the laser eigenmodes was presented in [10]. An additional
model using a cold beam and based upon a waveguide
mode expansion was also developed [11]. These results
focus primarily upon an eigenmode of the generated laser
field, without consideration for developing solutions to the
phase space density of the electron bunch. In this paper, we
present a theoretical picture of the full dynamics of the
electron phase space distribution, neglecting betatron os-
cillations, with an intent of using this result in application
to CeC.
In Sec. II, we present an overview of the configuration of

coherent electron cooling, and discuss briefly the existing
results in the pickup and kicker sections. With the context
of this work in mind, we then present a derivation for the
dynamics of a high-gain free-electron laser seeded with an
initial phase space perturbation in Sec. III. This leads to an
equation for an arbitrary transverse distribution of an oth-
erwise infinitely long electron beam. In Sec. IV, we analyze
the case of an infinitely wide beam, which leads to a Green
function for the 3D FEL process with an infinitely wide
beam. A mode expansion method is considered for a finite
beam in Sec. V. To conclude, we consider the specifics of
applying these results to coherent electron cooling in
Sec. VI.

II. OVERVIEW OF COHERENT
ELECTRON COOLING

Coherent electron cooling is schematically identical to
stochastic cooling [12], with a pickup which gathers infor-
mation about the position and energy of the individual
particles in the hadron beam, an amplifier which takes
this signal and amplifies it, and then a kicker which takes
this information and uses it to deliver an energy-dependent
nonconservative kick which decreases the longitudinal
energy spread of the hadron beam (see Fig. 1).
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For CeC, the pickup is a comoving electron bunch and
hadron beam in a drift, where the individual hadron signals
are the Debye screened charge perturbations described in
[3]. The amplifier of the signal is the free-electron laser
which we describe in this paper. The kicker is a chicane
which offsets the hadrons from their initial signals so that
they are displaced from a local maximum of the electron
density in such a way that hadrons with energy greater than
the design energy lose energy, whereas hadrons with en-
ergy less than the design energy gain energy. In both the
kicker and the pickup, it is necessary that the time comov-
ing between the hadrons and the electrons be shorter than a
full plasma oscillation or else the signal will be greatly
diminished.

Because the bandwidth of the coherent kicks from the
amplified signal is on the order of the resonant wavelength
of the FEL, which for most CeC applications is on the order
of a few hundred nanometers, the cross coherence that
arises in stochastic cooling is negligible. Thus, the cooling
system will continue to reduce the energy spread of the
hadron beam until another effect is encountered.

To describe the FEL process, we present a theory that
follows closely the derivation for the FEL instability de-
rived in [13], with the slight modification that the trans-
verse profile of the electron beam is uniform. We then
inject this result into the existing results for the kicker
and pickup, and determine an exact form for the cooling
decrement. But first we begin with a single-particle de-
scription of the dynamics.

III. MAXWELL-VLASOV EQUATIONS

Consistent with the derivations of the high-gain FEL in
[14,15] and summarized in [13], we begin with the equa-
tions of motion for the single particles in an undulator
subject to the radiation field generated by the collective
dynamics of the rest of the beam. The Hamiltonian equa-
tions of motion for small energy deviation and high energy
(� � 1) are given by
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where p0 ¼ H =c, ~Aw ¼ Bw=kwðcoskwzêy � sinkwzêxÞ is
the undulator vector potential (here we only consider

helical undulators), ~A? is the laser field, and Az is the

longitudinal space charge. The scalar potential has been
removed by choice of gauge transformation, and pz has
been used as the generator of longitudinal translations.
The Vlasov equation is derived from the conservation of

single-particle phase space volume, so that
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Following along with the canonical description of insta-
bilities in plasmas [16], we assume that the phase space
density of the electron beam is given by f ¼ f1 þ f0,
where f0 is a thermal background and f1 is the instability.
Furthermore, we assume that jf1j � jf0j. This justifies

(i) dropping the term proportional to ~A2
? that would appear

in Eq. (1b) and (ii) dropping terms proportional to f21 or
higher. Carrying these approximations out and knowing

that ~A?; Az / f1, we obtain the equation of motion
given by
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where K ¼ eAw=mec
2 is the undulator parameter. Absent

from this description is an accounting for the transverse
betatron oscillations in the undulator. In fact, all the trans-
verse dynamics of this theory arise from the Maxwell
equations, and it is assumed that the current distribution
will follow this transverse distribution.
By solving the single-particle equations of motion for an

electron in an undulator, this leads to the relationship

~j? ¼ K

�0

coskwz

sinkwz

 !
jz; (4)

where jz � �ec
R
dH f1ðH ; z; tÞ is the longitudinal cur-

rent density. We consider the transverse laser field in
Fourier space, where its Fourier transform is defined by

~A?¼ 1ffiffiffiffiffiffiffi
2�

p
3

Z
d�d2k?e{

~k?�~r?e{�!rðz=c�tÞ ~A?ðz;�; ~k?Þ: (5)

The transverse Maxwell equation, when Fourier trans-
formed over ~r?, is given by

1ffiffiffiffiffiffiffi
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It is assumed that the envelope function ~A? is slow varying
in the longitudinal direction, and so higher order deriva-
tives in z are small compared to the first derivative. This

allows us to drop terms that go as @2z ~A? over kr@z ~A?.
By dropping oscillating terms that are 2kwz out of phase

with the laser field and defining the Fourier transform
on jz by

FIG. 1. Schematic of coherent electron cooling.
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jz ¼ 1ffiffiffiffiffiffiffi
2�

p
3

Z
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(7)

we obtain for ~Aw � ~A? in Fourier space the expression

~A w � ~A? ¼ �e�{k2?cz=2�!re{kwz
{�K

�!r�0

Z z

0

~jzdz
0; (8)

where the initial laser field has been set to zero as is the
case for CeC.

For the proof of principle, space charge will be a non-
negligible component of the system. To account for space
charge, we consider the longitudinal electric field given by

@tEz ¼ � 4�

c
jz (9)

which, under this Fourier transform, gives

~Ez ¼ � 4�{

c�!r

~jz: (10)

All of this is identical to the one-dimensional theory in [13]
except the additional phase factor of k2?cz=2�!r that

appears in the definition of ~jz, which acts as a detuning.
By applying an identical Fourier transform of the type

performed on the current density to the phase space den-
sity, and assuming that the thermal background is given by

f0 ¼ n0FðEÞRð ~r?Þ;
we obtain the coupled Maxwell-Vlasov equation for the
phase space density of the FEL amplified electron bunch
with an initial phase space perturbation:
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where F ¼ FðEÞ is the normalized energy distribution and
H ¼ E þ E0, where E0 is the average energy of the elec-
tron beam. ~R is the Fourier transform of the transverse
bunch profile.

The equation of motion is identical in form to that of the
one-dimensional theory in [13], with the exception of the
added transverse detuning term k2?c=2�!r. Regardless of

whether the beam is infinite or finite in transverse extent,
the inverse gain length, given by

� ¼
�

E2
0c

2�0

2��e3Kkwn0

��1=3
;

and Pierce parameter, given by

� ¼ �k�1
w ;

are unaffected by the three-dimensional effects.
To obtain the longitudinal current density, we take the

definition ~jz � �ec
R
dE ~f1 to Eq. (11). Introducing the

normalized detuning, space charge parameter, energy, and
transverse wave vector as

Ĉ ¼ ð1� �Þ=� (12a)
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0mc3

(12b)

Ê ¼ 2�E=�E0 (12c)

k̂2 ¼ k2c��1=2�!r (12d)

gives the cleaner and dimensionless form
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dÊ
R̂ð ~q� ~k?Þ:

(13)

At this point, the method of solution depends on whether
the beam is to be considered finite or infinite in transverse
size, which is to say whether the transverse dimension of
the electron bunch r0 is large compared to the diffraction

length scale of the FEL, d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c��1=2�!r

p
.

On the other hand, whether the transverse spacial extent
of the initial perturbation can be modeled profitably as a
delta function in real space (which would be much simpler)
depends on the comparison of the Debye radius to the
transverse length scale, rD=d. If the Debye radius is
much smaller than d; rD=d � 1, then the physics of a point
perturbation in transverse space should match very closely
the physics of the initial phase space perturbation. If
rD=d� 1 then the actual physical distribution is necessary.
If rD=d � 1 then we expect the FEL to be essentially one
dimensional. By necessity, rD � r0 for the models utilized
in [3,5] to be valid. These considerations hold for both the
infinite and finite beam solutions.

IV. INFINITE BEAM SIZE

We first consider a beam that is infinite in the transverse
direction, as it is analytically simpler than the finite beam
size but still contains a reasonable amount of physics in its
own right. This can be considered in terms of the ratio
r0=d, where r0 is the typical transverse width scale of the
electron beam and d is the diffraction length scale of the
FEL. If r0=d � 1 then the beam is effectively infinite and
the treatment in this section is useful. Otherwise the finite
beam solution of the next section needs to be employed.
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For an infinite beam, ~Rð ~q� ~k?Þ ¼ �ð ~q� ~k?Þ so the
above Eq. (11) reduces to

~jz¼�ec
�E0

2�

Z
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(14)

This is identical in form to the equations of motion for
the one-dimensional FEL [13] with the identification of

Ĉ3D ¼ Ĉ� k̂2?. Because of this similarity, we omit many
of the details and cut to the solution by Laplace transform
for the current, which is given by

J ðsÞ ¼
�ec �E0
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dÊ 1
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s� D̂ð1� {s�̂2
pÞ

; (15)
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dÊ
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dÊ

1

sþ {ðĈ3D þ ÊÞ (16)

determines the dispersion relation. Equation (15) gives
immediately the linear response function in Laplace space
for the current density perturbation versus an initial phase
space perturbation

~jz ¼
Z

dÊ0Kðs; Ĉ3D; E0Þ~f1j0ðE0Þ (17)

such that
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K is the linear response function of the modulated current
density to an initial phase space perturbation. We will use
this function to calculate a Green function for the FEL
phase space distribution, which we will denote GFEL.

By inserting Eq. (15) back into Eq. (11), and Laplace

transforming for ~f1 in the ẑ coordinate, we obtain a com-
parable expression to Eq. (15) for the phase space density
of the perturbation of the e-beam given by

~f1ðs;Ĉ3D; k̂?; ÊÞ¼ 1
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(19)

The form of this equation allows us to write down the
Green function for the phase space density of an infinitely
wide e-beam in an FEL amplifier as

GFELðs; Ĉ3D; k̂?; Ê; Ê
0Þ

¼ 1
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� dF̂

dÊ

1

sþ {ðĈ3D þ Ê0Þ ; (20)

where the new FEL phase space density in Laplace-Fourier
space is given by

~f1ðs; Ĉ3D; k̂?; ÊÞ
¼
Z

dÊ0GFELðs; Ĉ3D; k̂?; ÊjÊ0Þ~f1ðĈ3D; k̂?; Ê
0Þj0: (21)

It is interesting to note that this Green function can be
clearly divided into two parts. The first part represents
Landau damping and single-particle noncooperative mo-
tion in the FEL undulator. This process does not lead to
gain, and the term representing it can be dropped in a
description of the FEL process. The second part contains
the growing roots of the dispersion relation, and represents
the cooperative gain process of the FEL. It is this Green
function that is of practical application for the theory of
coherent electron cooling.
The dynamics in the ẑ variable are determined by the

roots of the dispersion relation, given by

s� D̂

1� {�̂2
pD̂

¼ 0: (22)

There is another pole from the sþ {ðĈ3D þ EÞ term in the
denominator, but the pole associated with this term will
either oscillate or decay, and therefore does not represent
amplification as a result of the FEL process, but rather a
Landau damping of the initial perturbation due to its own
energy spread.
As an example calculation, we consider an initial phase

space perturbation that is monoenergetic, instantaneous in
time, and a point source. We place this in the context of a
cold electron beam, where the dispersion relation is well
known.
In Fourier space, the transform of the initial condition is

given by

~f1j0 ¼ �ðÊ � Ê0Þ; (23)

where it is infinitely broad in the ~k? and Ĉ variables.
Inserting this directly into the Green function calculation

and taking the inverse Laplace transform on s gives a sum
with three purely oscillating terms and with the three
modes of the FEL process. The resulting expression is
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extremely cumbersome, and its physical intuition is em-
bodied already in the Green function. We therefore only
consider the single growing root of the FEL process from
here on.

The phase space density is then approximately given by

~f1ðẑ; Ĉ3DÞ � 1

sþ þ {ðĈ3D þ ÊÞ
1

sþ þ {ðĈ3D þ Ê0Þ

�
�

1þ {�̂2
psþ

1� D̂0jsþð1� {sþ�̂
2
pÞ � D̂jsþ

�

� dF̂

dÊ
expðsþẑÞ; (24)

where sþ is the root of the dispersion relation with positive

real value. Expectedly, all dependence on ~k? has dropped

out, and only Ĉ3D remains as the natural Fourier parameter
for the infinite electron beam.

Recall the definition of the Fourier transformed phase
space density as

f1ðz; z=c� t; ~r?; EÞ
¼ 1ffiffiffiffiffiffiffi

2�
p

3

Z
d�d2k?e{

~k?� ~r?e{�!rðz=c�tÞ

� e{kuze�{k2?cz=2�!r ~f1ðz; �; ~k?; EÞ: (25)

It would now be useful to transform the integrals into

integrals over Ĉ3D and k̂? in order that we can determine
the dynamics of this initial perturbation in real space.
Recalling the definitions of the parameters leaves

f1ðẑ; �; r̂?; ÊÞ
¼ � 1ffiffiffiffiffiffiffi

2�
p

3

2!r

c���1
e{�

Z
dĈ3Dd

2k̂?e{k̂?�r̂?e�{�ðĈ3D�k̂2?Þ�

� e�{k̂2?ẑ ~f1ðĈ3D; ẑ; ÊÞ þ c:c:; (26)

where � ¼ !rðz=c� tÞ þ kuz is the ponderomotive phase.
It is interesting to note that, although the detailed temporal
information cannot be extracted from this integral imme-
diately, the transverse profile can be calculated directly as

~f1 / 1

ẑþ ��
e�{r2?=½4ð��þẑÞ�: (27)

Because this is a pure phase, it has no transverse size
information intrinsic to it. The trouble arises from the equal

value given to all ~k? by an infinitely small point source,
which allows the signal to propagate transversely instantly
as we have not properly accounted for a Lorentz covariant
description of the transverse electron dynamics.

A slightly less mathematically pathological case is to
consider an initially Gaussian transverse distribution, infi-
nitely short. In this case, the previous separation also occurs
and the resulting width goes as �2

r̂ � �̂2
0 � {ð��þ ẑÞ and

the profile is Gaussian rather than sinusoidal.

V. FINITE BEAM SIZE

Having considered the simpler case of the transversely
infinite beam, we now turn our attention to the case of a
finite transverse beam profile. To achieve this, we consider
an expansion in the eigenmodes of the transverse beam
profile, as the Maxwell-Vlasov equation for a finite beam is
an integral equation with the beam profile function as its
kernel. From there, we can separate out the transverse and
longitudinal dynamics, and observe that in real space there
is no spreading of the eigenmodes, consistent with optical
guiding.

A. Eigenmode expansion

For the case when ~R is not a delta function, it is bene-
ficial to expand the current density solutions in the eigen-
modes of the ~R kernel defined by

c ‘ð ~kÞ ¼ 1

!‘

Z
d2 ~q ~Rð ~k� ~qÞc ‘ð ~qÞ; (28)

where for this sectionwe drop the overhats and subscripts to
simplify the notation. This is best calculated by expanding
~Rð ~k� ~qÞ as a matrix in terms of some orthonormal basis.
We shall consider such an example calculation later, but for
now we assume such an eigenbasis is already known.
For any reasonably smooth definition of the transverse

beam profile, ~Rð ~k� ~qÞ ¼ ~Rð ~q� ~kÞ, that is that the kernel
of the eigenvalue equation is Hermitian [17]. This being
the case, we know that the eigenvectors are orthogonal and
the eigenvalues are all real, with the orthogonality condi-
tion being Z

d2qd2kc ‘ð ~kÞc mð ~qÞ ¼ �‘m; (29)

given that the eigenfunctions are square normalized.
Expanding the integral of the longitudinal current den-

sity in a series of the eigenmodes givesZ ẑ

0
dẑ0~jzðẑ0Þ ¼

X
‘

c ‘ð ~kÞ?e{k2 ẑa‘ðẑÞ: (30)

Looking back at the definition of the Fourier transform

for the current, it is clear that the e{k
2
? ẑ terms will cancel,

and there is no change in the transverse extent of the
current perturbation, which is consistent with the optical
guiding discussed in the literature [18].
The current Eq. (14) can then be reduced to a system of

coupled equations for the expansion coefficients. That
equation is given by

a0‘� {Qm;‘am

¼�ec
�E0

2�

Z
dÊ
Z
d2k̂?e{ðĈþÊ�k̂2?Þẑ ~f1j0c ‘ðk̂?Þ
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Z ẑ

0
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fanþ {�̂2
p½a0‘þ {Qm;‘am�gdF̂

dÊ
; (31)
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where Qm;‘ ¼
R
d2kk2c mð ~kÞc ‘ð ~kÞ measures the coupling

between the different eigenmodes of the transverse beam
profile. This system of equations may be solved by Laplace
transform and leads to the equation

fðs�D̂!m½1þ {s�̂2
pÞ��‘;mþ���ð1þ {�̂2

p!mÞQ‘;mgam¼ ~f‘1;

(32)

where ~f‘1 is the c ‘ component of the initial phase space
perturbation, and

D̂ ¼
Z

dÊ
dF̂

dÊ

1

sþ {ðĈþ ÊÞ (33)

determines the dispersion relation for each growing mode.
It is worth noting, at this point, that the ‘ index could

refer to multiple indices, particularly since this is a two-
dimensional model it could refer to both the azimuthal and
axial indices, as will be the case when we consider the
Gaussian beam profile below. For that particular case, the
different azimuthal modes are uncoupled in the Q matrix,
so the radial modes for a particular azimuthal mode are the
ones coupled by the Q matrix, while differing azimuthal
modes do not mix. This will become apparent during the
calculation below.

B. Gaussian profile

As an example of this calculation, we consider a
Gaussian transverse beam profile. The procedure for solv-
ing the initial value problem is as follows: (i) Calculate the
eigenfunctions and corresponding eigenvalues to Eq. (28).
(ii) Calculate Qm;‘ to determine the correct dispersion

relation. (iii) Invert Eq. (32) and solve for the initial value
problem Each of these steps should be identical for any
other transverse bunch profiles; we present only the
Gaussian case here.

We begin with a Gaussian beam profile, whose Fourier
transform is given by

~Rð ~k? � ~qÞ ¼
�

L̂ffiffiffiffiffiffiffi
2�

p
�
2
exp

�
�ð ~k? � ~qÞ2

2L̂�2

�
(34)

and the eigenfunctions therefore satisfy the equation

c ‘ð ~k?Þ¼ 1

!‘

Z
d2 ~q

�
L̂ffiffiffiffiffiffiffi
2�

p
�
2
exp

�
�ð ~k?� ~qÞ2

2L̂�2

�
c ‘ð ~qÞ: (35)

It is most convenient to consider this particular form in
Cartesian coordinates, and in keeping with this we expand

c ‘ð ~pÞ ¼ 	mðpxÞ	nðpyÞ; (36)

where each of the individual 	 satisfy an eigenvalue equa-
tion of the form

	mðp{Þ¼ 1


m

Z 1

�1
dp0

{

L̂ffiffiffiffiffiffiffi
2�

p

�expf�ðp2
{ þp02

{ �2p{p
0
{Þ=2L̂�2g	mðp0

{Þ; (37)

where the resulting eigenvalue for c ‘ is given by !‘ ¼

n
m. It is convenient to define the normalized variable

� ¼ p{L̂ so that the above eigenvalue equation is given by

	mð�Þ ¼ 1


̂m

Z 1

�1
d�0

� expf�ð�2 þ�02 � 2��0Þ=2g	mð�0Þ; (38)

where 
̂m ¼ 
m

ffiffiffiffiffiffiffi
2�

p
. The appropriate scaling for the trans-

verse beam size for the full eigenvalue is given by

!‘ ¼ !̂‘

2�
;

where !̂‘ ¼ 
̂m
̂n. To calculate the normalized eigenval-
ues, we expand the kernel of this single-variable integral
equation in terms of Hermite polynomials, as they are
already related to the paraxial Maxwell equations [19].
It turns out from the properties of Hermite polynomials

that only the evens and odds couple, so each 	m is a series
in either even or odd Hermite polynomials. In this case, the
matrix equation for the even Hermite polynomials is given
approximately by the matrix elements:

Ga;b ¼
Z 1

�1
d�

Z 1

�1
d�0 expf�ð�2 þ�02 � 2��0Þ=2g

�Hað�Þe��2=2Hbð�0Þe��02=2: (39)

Furthermore, to good approximation, the expansion can
be carried out for the first two Hermite functions in the
series. We therefore consider the two-mode case. For the
principle even mode, the matrix is given by

G ¼
2
ffiffiffi
�
3

p
1
3

ffiffiffiffiffi
2�
3

q

1
3

ffiffiffiffiffi
2�
3

q ffiffiffi
�
3

p
0
B@

1
CA (40)

for the vector components ½H0ð�Þ; H2ð�Þ�t expð��2=2Þ.
The eigensystem here has eigenvalue 
̂even ¼ 2:2382 with
corresponding eigenvector

~veven ¼
0:9294

0:3690

 !

and a smaller eigenvalue 
̂2 ¼ 0:83178 with correspond-
ing eigenvector

�0:1465

0:3690

 !
:

To validate these numerical results we take the matrix to
next order, i.e., to order H4ð�Þ in the expansion, and the
matrix is given by

G ¼
2
ffiffiffi
�
3

p
1
3

ffiffiffiffiffi
2�
3

q
1
9

ffiffiffi
�
2

p
1
3

ffiffiffiffiffi
2�
3

q ffiffiffi
�
3

p
17
54

ffiffiffiffi
�

p
1
9

ffiffiffi
�
2

p
17
54

ffiffiffiffi
�

p 227
324

ffiffiffi
�
3

p

0
BBBBB@

1
CCCCCA (41)
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which yields an eigensystem given by 
̂0
1 ¼ 2:3157, 
̂0

2 ¼
1:2005, and 
̂0

3 ¼ 0:27073 with corresponding normalized
eigenvectors

~v1¼
0:8772

0:4244

0:2245

0
BB@

1
CCA ~v2¼

�0:1724

0:2376

0:2245

0
BB@

1
CCA ~v3¼

0:03343

�0:1879

0:2245

0
BB@

1
CCA:

We can conclude from this that the largest eigenvalue
can be accurately determined to within 3% with the 2� 2
matrix expansion, and from analysis of the eigenvector
components the H4ð�Þ level of expansion is negligibly
small compared to the other two components for the
eigenvector with the maximal eigenvalue.

Carrying out a similar procedure for theH1ð�Þ �H3ð�Þ
eigenmode gives a maximal eigenvalue 
̂odd ¼ 1:7161 and
eigenvector

~vodd ¼
0:8456

0:5339

 !
:

It is now necessary to calculate the various matrix
elements for Q. For the purposes orderly bookkeeping,
we define the following modes:

c even ¼ 	evenð�xÞ	evenð�yÞ (42a)

c odd ¼ 	oddð�xÞ	oddð�yÞ (42b)

cþ ¼ 1ffiffiffi
2

p ½	oddð�xÞ	evenð�yÞ
þ 	evenð�xÞ	oddð�yÞ� (42c)

c� ¼ 1ffiffiffi
2

p ½	oddð�xÞ	evenð�yÞ
� 	evenð�xÞ	oddð�yÞ� (42d)

as the orthonormal basis of expansion. The corresponding
eigenvalues are given by !̂even ¼ 5:0095, !̂odd ¼ 2:945,
and !̂þ ¼ !̂� ¼ 3:8410. Under this particular basis the
Hermite polynomials have a particularly nice relation for
the Q matrix elements, and Q is diagonal. The individual
modes do not couple, and their growth rates are determined
by the dispersion relation,

½s� D̂!mð1þ {s�̂2
pÞ� þ ð1þ {�̂2

p!mÞQm;m ¼ 0: (43)

The individual Q are given by Qeven ¼ 2:514 46=L̂4,

Qodd ¼ 6:352 75=L̂4, and Qþ ¼ Q� ¼ 4:433 33=L̂4. The
growth rate for these parameters is given in Fig. 2, with

L̂ ¼ 3.
To recap, we have calculated an eigenbasis for the

transverse beam profile, yielding a linear superposition of
even- and odd-numbered Hermite polynomials, and their
corresponding eigenvalues. The series is truncated at two
dominant modes, and because of the particular nature of
the Hermite polynomial expansion basis, the Q matrix is
diagonal. If Q had off-diagonal matrix elements, there

would be ‘‘gain leakage’’ between the connected
eigenvectors.

C. One-dimensional limit

Because the eigenvalues are totally independent of the
transverse size, and only Q is dependent, it is straightfor-
ward to get directly to the one-dimensional beam limit for
the dispersion relation. By redefining the normalization as

~s ¼ s!�1=3
m (44a)

~C ¼ Ĉ!�1=3
m (44b)

~�2
p ¼ �̂2

p!
1=3
m (44c)

~Qm ¼ Qm!
�1=3
m ; (44d)

the dispersion relation takes the form

~s� {

ð~sþ { ~CÞ2 ð1þ {~s~�2
pÞþð1þ {~�2

p!
2=3
m Þ ~Q¼0: (45)

The actual scaling is such that, for large beams, the portion
of this dispersion relation identical in form to the one-
dimensional dispersion relation comes to strongly domi-
nate over the perturbation correction for finite size, taken
by the value of Qm. For the case of an infinitely large
transverse size all functions are eigenmodes and all eigen-
values are unity, therefore we can obtain the one-
dimensional limit through this limit.

VI. DISCUSSION

We have presented a theoretical model for the dynamics
of a high-gain free-electron laser with three-dimensional
effects. The model is analytically solvable up to a numeri-
cal Fourier transform, and for that reason is useful for

FIG. 2. Growth rates for three eigenmodes: (i) the top shows a
mode with largest eigenvalue, (ii) the middle shows the degen-
erate case of the odd/even mixtures, (iii) the bottom shows
smallest eigenvalue.
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benchmarking the massive tracking programs used to
simulate FELs. All results in this paper are reduced to a
handful of dimensionless numerical Fourier transforms.

When applying the finite beam case, we observe that
only the principle four modes grow rapidly. The higher
order modes have eigenvalues substantially smaller than
these modes, and can be neglected in comparison to the
principles. We can therefore conclude from this model that
an FEL can be effectively characterized by only a handful
of well-understood eigenmodes. Furthermore, this particu-
lar model includes optical guiding by consideration of the
transverse eigenmodes of a stationary beam. By contrast,
we observe spreading of the infinite beam case at a slower
than linear rate.

The principle goal of this solution to the three-
dimensional FEL equations is to develop an understanding
of the charge modulation at the end of the undulator. A
thorough understanding of the phase information of the
FEL instability is necessary to properly calibrate the chi-
cane and inject the hadrons with a proper displacement
with respect to the local charge maxima of the bunch. This
model provides the phase information up to a three-
dimensional Fourier integral, which is well bounded
and provides adequate benchmarking for numerical
simulations.

The existing analytical models for the kicker and pickup
of CeC involve an infinitely large electron beam, or equiv-
alently that the initial perturbation be small compared to
the transverse size of the electron beam. The results are
also obtained analytically for the �� 2 distribution. To
match up with these theories, we consider the case where
~Rðk̂? � q̂Þ ¼ �ðk̂? � q̂Þ and with the corresponding dis-
persion relation for a �� 2 distribution. The results for
�� 2 are not presented in this paper, but it is straightfor-
ward to obtain the dispersion relation from the dispersion
integral, and we can now consider a complete description
of the phase space evolution of the electron bunch through
the CeC process.

This analytical model was developed to provide bench-
marking for the proof of the principle CeC system to be
implemented at RHIC. For the FEL for the proof of
principle, the transverse size of the electron bunch is
r0 � 3 mm, the resonant wavelength is 
r � 0:5 �m,
and a gain length of approximately ��1 ¼ 3 m. In this
case, the transverse length scale d � 0:35 mm and it is
expected that the three-dimensional infinite beam theory
should be a reasonable description of the FEL amplifier
portion of CeC.

At present this model has no way of coping with a
transverse momentum spread in the initial phase space
perturbation or with betatron oscillations, because all of

the dynamics are taken directly from Maxwell’s equations.
As such, it is not clear what effect transverse momentum
spread and betatron oscillations will have on the phase
information of the amplified signal. Numerical modeling
or a more complete theoretical description are necessary to
account for these effects.

ACKNOWLEDGMENTS

The authors would like to thank Michael Blaskiewicz
and Evgeny Saldin for helpful discussion. This work was
supported by Brookhaven Science Associates, LLC under
Contract No. DE-AC02-98CH10886 with the U.S.
Department of Energy.

[1] V. N. Litvinenko and Y. S. Derbenev, Phys. Rev. Lett. 102,
114801 (2009).

[2] M. Blaskiewicz, J. Brennan, and J. Severino, Phys. Rev.
Lett. 100, 174802 (2008).

[3] G. Wang and M. Blaskiewicz, Phys. Rev. E 78, 026413
(2008).

[4] G. Wang, c-AD Lecture (2009).
[5] G. Wang, M. Blaskiewicz, and V.N. Litvinenko, in

Proceedings of the First International Particle
Accelerator Conference, Kyoto, Japan (2010), p. 873.

[6] A � distribution in a variable x is a normalized distribution
of the form f�ðxÞ / ð1þ x2=q2Þ�� where q is the spread
parameter.

[7] K. Kim, Phys. Rev. Lett. 57, 1871 (1986).
[8] L. Yu, S. Krinsky, and R. L. Gluckstern, Nucl. Instrum.

Methods Phys. Res., Sect. A 304, 516 (1991).
[9] Y. H. Chin, K.-J. Kim, and M. Xie, Phys. Rev. A 46, 6662

(1992).
[10] M. Xie, Nucl. Instrum. Methods Phys. Res., Sect. A 445,

59 (2000).
[11] E. Hemsing, A. Gover, and J. Rosenzweig, Phys. Rev. A

77, 063830 (2008).
[12] D. Mohl, G. Petrucci, L. Thorndahl, and S. van der Meer,

Phys. Rep. 58, 73 (1980).
[13] E. L. Saldin, E. A. Schneidmiller, and M.V. Yurkov, The

Physics of Free Electron Lasers (Springer, New York,
2000).

[14] R. Bonifacio, C. Pellegrini, and L. Narducci, Opt.
Commun. 50, 373 (1984).

[15] E. L. Saldin, E. A. Schneidmiller, and M.V. Yurkov, Nucl.
Instrum. Methods Phys. Res., Sect. A 313, 555 (1992).

[16] A. Vlasov, Sov. Phys. Usp. 93, 721 (1968).
[17] F. Tricomi, Integral Equations (Dover Publications, New

York, 1957).
[18] E. Scharlemann, A. Sessler, and J. Wurtele, Phys. Rev.

Lett. 54, 1925 (1985).
[19] S. Niles, J. Blau, and W.B. Colson, Phys. Rev. ST Accel.

Beams 13, 030702 (2010).

STEPHEN WEBB, GANG WANG, AND VLADIMIR LITVINENKO Phys. Rev. ST Accel. Beams 14, 051003 (2011)

051003-8

http://dx.doi.org/10.1103/PhysRevLett.102.114801
http://dx.doi.org/10.1103/PhysRevLett.102.114801
http://dx.doi.org/10.1103/PhysRevLett.100.174802
http://dx.doi.org/10.1103/PhysRevLett.100.174802
http://dx.doi.org/10.1103/PhysRevE.78.026413
http://dx.doi.org/10.1103/PhysRevE.78.026413
http://dx.doi.org/10.1103/PhysRevLett.57.1871
http://dx.doi.org/10.1016/0168-9002(91)90920-L
http://dx.doi.org/10.1016/0168-9002(91)90920-L
http://dx.doi.org/10.1103/PhysRevA.46.6662
http://dx.doi.org/10.1103/PhysRevA.46.6662
http://dx.doi.org/10.1016/S0168-9002(00)00114-5
http://dx.doi.org/10.1016/S0168-9002(00)00114-5
http://dx.doi.org/10.1103/PhysRevA.77.063830
http://dx.doi.org/10.1103/PhysRevA.77.063830
http://dx.doi.org/10.1016/0370-1573(80)90140-4
http://dx.doi.org/10.1016/0030-4018(84)90105-6
http://dx.doi.org/10.1016/0030-4018(84)90105-6
http://dx.doi.org/10.1016/0168-9002(92)90836-S
http://dx.doi.org/10.1016/0168-9002(92)90836-S
http://dx.doi.org/10.1070/PU1968v010n06ABEH003709
http://dx.doi.org/10.1103/PhysRevLett.54.1925
http://dx.doi.org/10.1103/PhysRevLett.54.1925
http://dx.doi.org/10.1103/PhysRevSTAB.13.030702
http://dx.doi.org/10.1103/PhysRevSTAB.13.030702

