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The design of narrow-band Compton scattering sources for specific applications using nuclear

resonance fluorescence (NRF) is presented. NRF lines are extremely narrow (�E=E� 10�6) and require

spectrally narrow sources to be excited selectively and efficiently. This paper focuses on the theory of

spectral broadening mechanisms involved during Compton scattering of laser photons from relativistic

electron beams. It is shown that in addition to the electron beam emittance, energy spread, and the laser

parameters, nonlinear processes during the laser-electron interaction can have a detrimental effect on the

gamma-ray source bandwidth, including a newly identified weakly nonlinear phase shift accumulated over

the effective interaction duration. Finally, a design taking these mechanisms into consideration is outlined.
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I. INTRODUCTION

Nuclear resonance fluorescence (NRF) [1] is an isotope-
specific process in which a nucleus, excited by gamma-
rays, radiates high energy photons at a specific energy. This
process has been well known for several decades, and has
potential high impact applications in homeland security,
nuclear waste assay, medical imaging, and stockpile sur-
veillance, among other areas of interest. Although several
successful experiments have demonstrated NRF detection
with broadband bremsstrahlung gamma-ray sources [2],
NRF lines are more efficiently detected when excited by
narrow-band gamma-ray sources. Indeed, the effective
width of these lines, �E=E, is on the order of 10�6.
Currently, Compton scattering is the only physical process
capable of producing a narrow bandwidth radiation (below
1%) at gamma-ray energies, with state-of-the-art accelera-
tor and laser technologies. In Compton scattering sources,
a short laser pulse and a relativistic electron beam collide
to yield tunable, monochromatic, polarized gamma-ray
photons. Several projects have recently utilized Compton
scattering to conduct NRF experiments: Duke University
[3], Japan [4], and Lawrence Livermore National
Laboratory (LLNL) [5–7]. In particular, LLNL’s
Thomson-radiated extreme x-rays (T-REX) project dem-
onstrated isotope-specific detection of low density materi-
als behind heavier elements [5].

This paper presents, within the context of NRF-based
applications, the theoretical and conceptual design of a
narrow-band monoenergetic gamma-ray (MEGa-ray)
source. Section I gives a brief overview of NRF and

motivates the need for a narrow-band source; Sec. II
highlights Compton scattering properties, via detailed
modeling of spectral broadening mechanisms. In particu-
lar, weakly nonlinear effects are studied in the picosecond
regime. Finally, Sec. III presents a conceptual design for
the source as well as expected gamma-ray performance.

II. NUCLEAR RESONANCE FLUORESCENCE

A. Overview

NRF lines are characterized by a very narrow linewidth
and a strong absorption cross section. For actinides such as
uranium, the NRF linewidth is due to the intrinsic line-
width �0 connecting the excited state to the ground state
and to the Doppler width:

� ¼ ER

�
kTeff

Mc2

�
1=2

; (1)

where ER is the resonant energy (usually MeV), M is the
mass of the nucleus, k is the Boltzmann constant, c is
the speed of light, and Teff is the effective temperature of
the material. This model is valid as long as �0 þ � �
2kTD, where TD is the Debye temperature. Because in most
cases �0 � 1 eV, the total width is just determined by the
thermal motion of the atoms. Debye temperatures for
actinides are usually in the range 100–200 K. Within this
context, the NRF absorption cross section near the resonant
energy is [3]

�ðEÞ ¼ �3=2

�
�

2�

�
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�
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2Ji þ 1

�
�0

�
exp

�
�
�
E� ER

�

�
2
�
;

(2)

where J is the spin, i and j the ground and excited states
respectively, and � the radiation wavelength. Typically,
strong M1 resonances at MeV energies are on the order
of tens of meV wide with an absorption cross section
around 10 barns.
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B. NRF detection and notch refilling

In principle, given the large integrated cross section of
NRF lines, a �-ray beam transmitted through a small
amount of an isotope of interest should exhibit a deep
notch at the resonant frequency, because the NRF light is
scattered into nearly 4� (dipole or quadrupole) solid angle.
In practice, because the notch is very narrow, no detector
currently has the resolution to detect such lines, which
makes NRF detection very tedious.

A few years ago, Bertozzi and colleagues proposed a
method that can ascertain the presence or absence of a
given isotope with lower false positive and negative rates
[8]. In this method, � rays are transmitted through the
material under interrogation to a reference sample contain-
ing the isotope of interest. If NRF is detected from the
reference, one can conclude that the interrogated material
did not contain the isotope. If no NRF is observed, either
the resonant photons have been absorbed by the isotope
in the interrogated sample or the material is optically too
thick. In this case, the interrogated sample transmits a
spectrum containing a notch at the resonant energy, as
illustrated in Fig. 1(a). This method is very advantageous,
and has been used successfully using bremsstrahlung
sources [2,8], and Compton scattering sources [5].

However, it has been shown that the notch can be refilled
by parasitic scattering processes [9], as illustrated in
Fig. 1(b). Compton scattering of photons with energies
larger than the resonant energy yield lower energy photons
that can refill the notch and defeat the interrogation system.
Although is has not been shown experimentally that notch
refilling is an issue, and that bremsstrahlung sources work
well for NRF detection because of their large photon yield,
the photons with energies lower than the resonant energy
will simply contribute to unwanted background and dose
that MEGa-ray sources have the potential to reduce.

Hence, the remainder of this paper focuses on the design
of a narrow-band, precision MEGa-ray sources.

III. COMPTON SCATTERING PROPERTIES

A. Overview

The Compton formula can be derived from energy-
momentum conservation, and expressed as follows:

u� þ �k� ¼ v� þ �q�: (3)

Here, u� and v� are the initial and scattered electron

4-velocities, while k� and q� are the incident and scattered

4-wave numbers, respectively. The 4-velocities are nor-
malized, with u�u

� ¼ v�v
� ¼ 1, and the dispersion rela-

tion implies that k�k
� ¼ q�q

� ¼ 0. Hence, using these

conditions in conjunction with Eq. (3) allows for the elimi-
nation of the scattered electron 4-velocity, and results in

u�ðk� � q�Þ ¼ �k�q
�: (4)

Equation (4) can be also written in a slightly different
manner by introducing the incident and scattered light-
cone variables [10], � ¼ u�k

�, and � ¼ u�q
�, respec-

tively:

�� � ¼ �k�q
�: (5)

Finally, in regular units and 3-vector form: u� ¼ ð�;uÞ;
q� ¼ qð1;nÞ, where n is the unit vector along the direction

of observation; and k� ¼ ðk;kÞ; this yields the well-known
Compton formula:

q

k
¼ �� u:ðk=kÞ

�� n:uþ �ðk� n:kÞ : (6)

FIG. 1. (a) NRF and (b) notch refilling of NRF transmitted spectrum by elastic Compton scattering of higher energy photons.
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Here k is the wave number and � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
is the

electron relativistic factor. This approach is valid in the
linear single photon interaction regime; nonlinear effects
are discussed in a later section. By expressing Eq. (6) in
terms of the interaction geometry of Fig. 2, the Compton
scattering formula becomes

q

k
¼ �� u cos’

�� u cos�þ �k½1� cosð�þ ’Þ� ; (7)

where ’ is the angle between the incident laser and elec-
tron and � is the angle between the incident electron and
scattered gamma-ray photon.

B. Spectral broadening mechanisms

For realistic laser-electron interactions, one has to take
into account the electron phase space and the laser trans-
verse dimensions. In the case of a weakly focused laser
pulse (typical for Compton scattering sources), the coor-
dinates of the wave vector ðkx; ky; kzÞ remain close to their

initial values ð0; 0; k0Þ [11]. The exact nonlinear plane-
wave solution for the 4-velocity has been derived in earlier
work [11–13]:

u� ¼ u0� þ A� � k�
A�ðA� þ 2u�0Þ

2k�u
�
0

; (8)

where u0� is the initial 4-velocity and A� is the laser

4-potential. By using the nonlinear 4-velocity in conjunc-
tion with Eq. (4), one obtains

�
u0� þ A� � k�

A�A
� þ 2u0�A

�

2u0�k
�

�
ðk� � q�Þ ¼ �k�q

�;

(9)

which, after applying the Lorentz gauge condition
k�A

� ¼ 0, and the dispersion relation in vacuum,

k�k
� ¼ 0, simplifies to

u0�k
� �

�
u0� � k�

2u0�k
�
hA�A

�i
�
q� ¼ �k�q

�: (10)

This new relation is a modified form of the Compton
formula, now including the nonlinear ponderomotive force
of the laser field. It is important to note that the general
form of the laser potential is, for a linearly polarized plane
wave, ½A0gð	Þ cosð	Þ; 0; 0�, where	 is the phase and gð	Þ
the laser pulse envelope. Hence, nonlinear effects are a
direct consequence of the inhomogeneous nature of the
laser electrical field.
When referring to the geometry described in Fig. 3,

Eq. (10) becomes

q

k
¼ �� u cosð
þ ’Þ

�� u cosð�þ 
Þ þ ½1� cosð’þ �þ 
Þ�½ h�A�A
�i

2½��u cosð’þ
Þ� þ �k�
: (11)

Here the small angle 
 is different for each electron and
represents the emittance of the electron beam. Note also
that h�A�A

�i is the nonlinear radiation pressure. By look-
ing at the variation of q as a function of all the parameters
in Eq. (11), for on-axis observation (� ¼ 0) one finds that

�q=q / �k=k; (12)

�q=q / �1
4�’

2; (13)

�q=q / 2��=�; (14)

�q=q / ��2�
2; (15)

FIG. 3. Definition of the Compton scattering geometry in the
case of an electron beam.

FIG. 2. Definition of the Compton scattering geometry for a
plane wave interacting with a single electron.

DESIGN OF NARROW-BAND COMPTON SCATTERING . . . Phys. Rev. ST Accel. Beams 14, 050703 (2011)

050703-3



�q=q / � �A2

1þ A2
: (16)

While the gamma-ray spectral width depends directly on
the electron and laser energy spreads, it is also strongly
affected by the electron beam emittance because of the �2

factor. This provides a quick overview of the various
sources of spectral broadening in a Compton scattering
light source. Note that the negative variations are asym-
metric broadening toward lower photon energies.

C. Klein-Nishina formalism

The Compton formula derived above provides a good
approximation for the on-axis spectrum and within small
angles ( � 1=�) of radiation. In general, one has to take
into account the differential cross section to derive the
source brightness. In Compton scattering, the total number
of photons scattered by an electron distribution is given by

N ¼
Z
R4
�j��

�d4x; (17)

where j� ¼ ne
u�
� is the 4-current density and �� ¼ n�

k�
k

the 4-photon flux. ne and n� are the electron and photon
density, respectively. Then

N ¼
Z
R4
�nen�

u�k
�

�k
d4x: (18)

In the case of a single electron, where ne ¼ �½xð�Þ � x�,
the integral over space yields

N ¼
Z þ1

�1
�

�

�k
n�½x�ð�Þ�cdt: (19)

By differentiating the above equation, the number of
photons scattered per unit frequency and solid angle is
derived, assuming that in the case of an uncorrelated
incident photon phase space, corresponding to the
Fourier transform limit, the phase-space density takes the
form of a product, ðd3n�Þ=ðd3kÞ ¼ n�ðx�Þ~n�ðk�Þ:

d2N

dqd�
¼

Z þ1

�1
~n�ðkÞ�ðq� q0Þ

Z þ1

�1
d�

d�

� �

�k
n�½x�ð�Þ�cdtdk: (20)

The quantity d�=d� is the differential cross section.
Here we use the expression as derived by Bhatt et al. [14],
with the spin-independent part only:

d�

d�
¼ 1

2
ð�cÞ2

�
q

�

�
2
�
1

2

�
�

�
þ �

�

�
� 1

þ 2

�

��

� � ð
�u�Þð��v
�Þ

��c

þ ð
�v�Þð��u
�Þ

��c

�
2
�
;

(21)

where  is the fine structure constant, 
� ¼ ð0; 1; 0; 0Þ
corresponds to a linearly polarized incident radiation, and
�� is the scattered 4-polarization. v� ¼ u� þ �cðk� �
q�Þ is the 4-velocity after the scattering event. If we use

the Compton formula in the Dirac delta function of
Eq. (20), it yields to a pole in incident wave number:

kp ¼ qð�� u:nÞ
�� u:m� �qð1�m:nÞ ; (22)

where m ¼ k=k and n ¼ q=q. With this solution, the
integral over k is performed:

d2N

dqd�
¼ d�

d�

�

�k

�
~n�ðkÞ

jdq0=dkj
�
k¼kp

Z þ1

�1
n�½x�ð�Þ�cdt:

(23)

For a Gaussian laser pulse, the photon density in the
Fourier domain is

~n� ¼ exp½�ðk�k0
�k Þ2�ffiffiffiffi

�
p

�k
; (24)

and the incident photon density can be modeled analyti-
cally within the paraxial approximation, and in the case of
a cylindrical focus:

n�ðx; tÞ ¼ N�ffiffiffiffiffiffiffiffiffi
�=2

p 3
w2

0c�t

1

1þ ðz=z0Þ2

� exp

�
�2

�
t� z=c

�t

�
2 � 2

r2

w2
0½1þ ðz=z0Þ2�

�
;

(25)

where N� is the total number of photons in the laser pulse,
�t the pulse duration, w0 the 1=e2 focal radius, and z0 ¼
�w2

0=�0 is the Rayleigh range. To evaluate the integral in

(23), we replace the spatial coordinates by the ballistic
electron trajectory:

xðtÞ ¼ x0 þ ux
�
ct; yðtÞ ¼ y0 þ

uy
�
ct;

zðtÞ ¼ z0 þ uz
�
ct; r2ðtÞ ¼ x2ðtÞ þ y2ðtÞ;

(26)

where we can divide x; y and r by w0 and z and ct by z0 to
obtain the normalized quantities �x, �y, �z, �r, and �t. One finally
obtains the expression
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d2N

d�dq
¼ 1ffiffiffiffi

�
p

�k

�
d�

d�

�

�k

e�ðk�k0Þ2=�k2

j@kqcðkÞj
�
k¼kp

� N�ffiffiffiffiffiffiffiffiffi
�=2

p 3
w2

0c�t

Z 1

�1
1

1þ �z2

�exp

�
�2

�
z0
c�t

�
2ð�t� �zÞ2�2

�r2

1þ �z2

�
d�t: (27)

Example on axis spectra for the previous source developed
at LLNL [6,7] are shown in Fig. 4. It also shows the
important of considering recoil in the case of narrow-
band gamma-ray operation.

D. 1D weakly nonlinear effects

The Klein-Nishina formalism presented above is very
good to model recoil, but does not take into account non-
linear effects. Within the context of laser-plasma and laser-
electron interactions, nonlinear effects are neglected unless
the normalized laser potential A approaches unity.

A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�A�A
�

p
is most commonly described in practical

units: A ¼ 8:5� 10�10 �0½�m�I1=2½W=cm2�, where m0 is
the electron mass, c the speed of light, �0 the laser wave-
length, and I the laser intensity. Typically, for current
MEGa-ray sources, A ’ 0:1 or less. We will show that,
despite being in a regime where A2 � 1, nonlinear effects
can strongly increase the width of the gamma-ray spectra.

Here, nonlinear spectra can be calculated from the elec-
tron trajectories by using the covariant radiation formula
that describes the number of photons scattered per unit
frequency and solid angle:

d2N

dqd�
¼ 

4�2
q

��������
Z þ1

�1
��u

�e�iq�x
�
d�

��������
2

: (28)

 is the fine structure constant; �� and q� are the

4-polarization and the 4-wave number of the scattered
radiation; x�ð�Þ is the electron 4-trajectory that is obtained
by integrating the 4-velocity. For an incident plane wave, it
is useful to use the electron phase, 	 ¼ k�x

�, as the

independent variable. We also introduce the incident

light-cone variable [10], defined by � ¼ d	=d� ¼
k�

dx�
d� ¼ k�u

�. By using Eq. (8), the Lorentz gauge

k�A
� ¼ 0 and the dispersion relation k�k

� ¼ 0, � is

shown to be constant: � ¼ k�u
�
0 . Hence, u�ð�Þ ¼

1
� u�ð	Þ, x� ¼ R

u�

� dc and Eq. (28) now reads

d2N

dqd�
¼ 

4�2

q

�2

����������

Z þ1

�1
u�ð	Þe�iq�

R
ðu�=�Þdcd	

��������
2

:

(29)

To account for recoil, consider a monochromatic inci-
dent plane wave with vanishingly small amplitude
a�A0e

i	, where a�a
� ¼ �1; adding the quantum correc-

tion �k� to the 4-velocity yields u� ¼ �dx�=d	 ¼ u0� þ
A� � k�½ðA�u

�
0Þ=ðk�u�0Þ� þ �k�, which integrates to x� �

x0� ¼ ��1ðu0� þ �k�Þ	. Here, � ¼ @=m0c is the reduced

Compton wavelength of the electron. Defining the incident
4-polarization in a covariant, gauge invariant manner [14],
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FIG. 4. Gamma-ray spectra in the case of Compton scattering (black) and Thomson scattering (blue). Left: T-REX source parameters
(laser: 20 ps FWHM pulse duration, 532 nm wavelength, 34 �m rms spot size, 150 mJ; electron beam: 116 MeV, 40 �m rms spot size,
20 ps FWHM bunch length, 0.5 nC beam charge, 6 mmmrad normalized emittance). Right: future MEGa-ray source parameters (laser
10 ps FWHM pulse duration, 532 nm wavelength, 12 �m rms spot size, 150 mJ; electron beam: 250 MeV, 15 �m rms spot size, 10 ps
FWHM bunch length, 0.25 nC beam charge, 1 mmmrad normalized emittance).
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as 
� ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
�A�A

�
p fA� � k�½ðA�u

�
0Þ=ðk�u�0Þ�g, the scattered

radiation spectral density is

d2N

dqd�
¼ 

4�2

q

�2
A2
0je�iq�x

�
0 j2j��


�j2

�
��������
Z þ1

�1
ei	½1�ð�þ�q�k

�=�Þ�d	
��������

2

: (30)

Equation (30) contains the coherence factor [15], the
dipole radiation pattern, and a Dirac delta function spec-
trum centered at a frequency satisfying the condition: ��
� ¼ �q�k

�, where � ¼ q�u
�
0 is the scattered light-cone

variable [10]. Importantly, this condition satisfies the
Compton formula: considering energy-momentum conser-
vation, we have u0� þ �k� ¼ v� þ �q�, where v� is the

electron 4-velocity after the interaction. Since v�v
� ¼ 1,

½u0� þ �ðk� � q�Þ�½u�0 þ �ðk� � q�Þ� ¼ 1, the sought

after result is obtained using u0�u
�
0 ¼ 1, k�k

� ¼ 0, and

q�q
� ¼ 0. Moreover, in the classical limit where � ! 0,

the Thomson scattering formula is recovered.
Equation (29) can now be used to study nonlinear spec-

tra. First, let the laser 4-potential be

A� ¼ A0ða� sin	þ �b� cos	Þ; (31)

with a�a
� ¼ b�b

� ¼ �1 and a�b
� ¼ a�k

� ¼
b�k

� ¼ 0; � ¼ 0;�1 correspond to linear or circular

polarization states. In the case of a plane wave with an
envelope, gð	Þ, it can be shown that for on-axis radiation,
the linear transverse oscillations do not contribute to the
radiation phase if the wave is counterpropagating with
respect to the electron. The total phase is

� ¼ q�ðx� � x
�
0 Þ

¼ 	

�
ðq�u�0 þ �q�k

�Þ þ q�k
�

2�2
A2
0

�
Z

g2ð	Þðsin2	þ �2cos2	Þd	: (32)

Furthermore, an exact analytical result can be obtained
for a circularly polarized hyperbolic secant pulse, where

gð	Þ ¼ sechð 	
�	Þ:

�� q�

�
ðu�0 þ �k�Þ	 ¼ q�k

�

2�2
A2
0

Z 	

�1
sech2

�
c

�	

�
dc

¼ q�k
�

2�2
A2
0�	

�
1þ tanh

�
	

�	

��
;

(33)

which clearly shows the A2
0�	 scaling of the nonlinear

phase. Choosing the interaction region so that k� ¼
ðk; 0; 0; kÞ, u� ¼ ðcosh�; 0; 0;� sinh�Þ, and q� ¼
ðq; 0; 0;�qÞ, which corresponds to head-on collisions and
on-axis observation, the radiation integral reads

d2N

dqd�
¼ 

4�2

�

k
jA0e

i�A2
0
�	j (34)

�
��������
Z 1

�1
xsin	þycos	

coshð	=�	Þ
�exp

�
i�

�
	ð1þrÞþA2

0�	tanh
	

�	

��
d	

��������
2

: (35)

Here, � ¼ qe2�=k is the normalized Doppler-shifted
(Thomson scattering) frequency, and r ¼ 2�ke� is the
recoil. We note that for linear polarization, A2

0 can be

replaced by hA2
0i ¼ 1

2A
2
0. Two changes of variable lead to

an analytically tractable integral [15]; first, let x ¼ e	=�	;
next, set z ¼ ðx2 � 1Þ=ðx2 þ 1Þ, to obtain

d2N

dqd�
¼ 

4�2

�

k

��������
Z þ1

�1
ð1þzÞ�ð1=2Þ�ði=2Þ�	½�ð1þrÞ�1�ð1�zÞ�ð1=2Þþði=2Þ�	½�ð1þrÞ�1�ðy�ixÞeiA2

0�	�zdz

��������
2

¼

2

�

k
A2
0

XjLði=2Þ�	½�ð1þrÞ�1��ð1=2Þð2iA2
0�	�Þj2sech2

�
��	

2
½�ð1þrÞ�1�

�
: (36)

Here, LnðxÞ is the nth Laguerre polynomial [16].
Spectra for different values of �	 and A are shown
in Fig. 5. The downshifting due to radiation pressure
is evident, and the number of spectral lines is equal
to the nonlinear phase accumulated over the
pulse, A2

0�	½lim	!þ1 tanhð	=�	Þ� � ½lim	!�1 tanh�
ð	=�	Þ� ¼ 2A2

0�	, divided by 2�. In addition, the am-

plitude of the main spectral line first scales quadratically
with A0, then reaches a maximum, and slowly decays, as
the scattered energy is distributed over an increasing num-

ber of spectral lines. The underlying physics can be under-
stood as follows: the inhomogeneous radiation pressure
leads to a slow dephasing between the electron and the
scattered radiation that accumulates over the entire inter-
action; if the nonlinear phase integral is large enough,
interference effects result in discrete anharmonic lines.
Alternatively, one can think of this process as a competi-
tion between the bandwidth of the laser and nonlinear
dephasing: if the laser spectrum is narrow enough, one
can resolve increasingly small nonlinear effects. Example
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spectra are shown in Fig. 5, for variations of A and �	.
Note that when �	 decreases, not only the nonlinear
features disappear but the gamma-ray spectrum broadens
due to a broadening of the laser bandwidth.

E. 3D weakly nonlinear effects

To accurately simulate realistic interactions between a
high brightness electron beam and a laser pulse, and study
their influence on high-precision Compton scattering light
sources, a fully 3D code is required. For long, narrow-band
laser pulses, a direct approach, accounting for fine details
in the correlated electron beam phase space, is computa-
tionally intensive. Instead, one can take advantage of the
slow-varying pulse envelope, paraxial, and weakly
nonlinear approximations to develop a local plane-wave
model leading to analytical expressions for the electron
4-trajectory. The corresponding three small parameters are
�	�1, 
 ¼ ðk0w0Þ�1, and A0, respectively. For large
Doppler upshifts, these conditions ensure that the particle
excursions from ballistic trajectories are very small com-
pared to all other scales characterizing the system. In turn,

this allows the use of a local plane-wave model, where all
dynamical variables become functions of 	: the six-
dimensional input phase space specifies a ballistic trajec-
tory for a given electron, xi�ð	Þ ¼ x0i� þ	ðu0i�=�iÞ;
all other dynamical quantities are evaluated along this
4-trajectory.
A Fourier transform-limited Gaussian laser pulse and a

six-dimensional uncorrelated Gaussian electron beam
phase space are modeled here to provide a baseline ex-
ample; the general method will be the object of another
paper. The three-dimensional electromagnetic fields are
generated from the vector G, by taking A ¼ r�G, thus
ensuring a divergence-free potential vector satisfying the
Coulomb gauge. The electric field is given by E ¼ �@tA,
while the magnetic induction is B ¼ r�A. In the case of
a Gaussian pulse propagating paraxially along the positive
z axis, focused cylindrically, and polarized along the x axis,
the generating function is [17]

Gy¼A0e
�ð	2=�	2Þ�ðr2=1þz2Þ

�cos

�
�	�z

r2

1þz2
�atanðzÞ

�
=k0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þz2

p
: (37)

Here, A0 is the amplitude of the vector potential; k0 ¼
!0=c is the central wave number of the pulse. Space-time
coordinates are normalized as follows: r ! r=w0, z !
z=z0, t ! ct=z0, z0 ¼ 1

2 k0w
2
0 is the Rayleigh range, w0 is

the focal waist, 	 ¼ !0t� k0z is the phase, and �	 ¼
!0��, where�� is the laser pulse duration. Using both the
slow-varying envelope and the paraxial approximations,
and systematically neglecting higher order terms, the
4-potential is derived. Replacing all space-time coordi-
nates by their values along ballistic trajectories, the local
4-velocity can be evaluated by keeping terms of order A0,
A0
, 
, and A2

0; for example, the component parallel to the

polarization, shown in Fig. 6 is
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FIG. 6. Electron trajectories in the laser field for �0 ¼ 100,
A0 ¼ 0:01, �	 ¼ 200, xi ¼ yi ¼ 0, zi ¼ �2, ux0 ¼
uy0 ¼ 0:01, 
 ¼ 0:01 (blue), 
 ¼ 0:025 (red).
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FIG. 5. Single electron spectra for � ¼ 500 and a laser wave-
length of 532 nm. (a) Variation of A ¼ 0:06 (solid blue curve),
0.05 (dashed red curve), 0.04 (dotted green curve), and 0.02 (dot-
dashed black curve) for �	 ¼ 5000 and (b) variation of
�	 ¼ 5000 (solid blue curve), 3000 (dashed red curve), 2000
(dotted green curve), 1000 (dot-dashed black curve) for
A ¼ 0:05.
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uxð	Þ¼ux0þA0

exp½� 	2

�	2� rð	Þ2
1þzð	Þ2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þzð	Þ2p
�
�
1þ4


ux0
�0�uz0

xð	Þzð	Þ
1þzð	Þ2

�
sin½�	�c ð	Þ�;

(38)

where c ¼ �z½r2=ð1þ z2Þ� þ atanðzÞ.
Beyond this point, the flow of the 3D code, explained in

details in Ref. [11], can be summarized as follows. All
dynamical quantities are separated into slow-varying com-
ponents and periodic functions; integrals over the phase are
performed using the approximation:

R
fpd	 ’ hpi�R

fd	þ f
Rðp� hpiÞd	, where pð	þ 2�Þ ¼ pð	Þ,

and where the average is defined as hpi ¼ 1
2�

R
�
�� pd	.

For harmonic functions,
Rðp� hpiÞd	 is analytical, while

the integral over f can be performed efficiently because it
is a slow-varying function. This approximation is used to
evaluate the 4-trajectory and the radiation integral. For
situations dominated by diffraction, the Fourier transform
of the asymmetric Lorentzian envelope yields complex
nonlinear spectra. Finally, for a 6N-dimensional distribu-
tion of input particles in phase space, the radiation is
obtained by incoherent summation; linear (blue) and non-
linear (red) spectra are shown in Fig. 9. Full 3D trajectories
are used for all cases, the linear spectra are calculated from

the ballistic phase
q�
� ðu�0 þ �k�Þ	 only.

IV. SOURCE DESIGN OVERVIEW

This section presents the technological design of the
MEGa-ray source being currently developed at LLNL,
along with the expected gamma-ray performance.

A. Accelerator systems

The accelerator begins with the radio-frequency (rf)
photoinjector, based on an earlier high gradient 7 MeV,
5.5-cell X-band rf photoinjector [18]. Improvements spe-
cific to our application have been implemented. PARMELA

simulations revealed that a longer first half cell, as simu-
lated with SUPERFISH, resulted in a lower final emittance
for the setup planned at LLNL. As a result, a full redesign
of the rf gun has been performed using a longer first half
cell, improved mode separation, a dual feed racetrack
coupler, optimized coupling, and elliptical cross-section
irises [19]. A schematic of the gun, low-energy beam line
and a T53 (SLAC X-band linac section) is shown in Fig. 7.
Superior electron beam quality, with a normalized emit-
tance of 0.4 mmmrad (not including thermal emittance) at
250 pC charge, is ensured by the very high field applied to
the photocathode: 200 MV=m, nominally. Full emittance
compensation is implemented, with an optimum distance
from the photocathode to the first accelerating section
of 0.8 m.

The high power rf system is to provide adequate rf power
to the accelerator to achieve the end-point electron energy.
The accelerator consists of an X-band photogun and six
sections of traveling wave accelerating structure compris-
ing 53 cells, the T53VG3 (with a group velocity which is
3% of c, the speed of light). The X-band photogun is a
modified version of the 5.49 cells rf gun tested at SLAC
(Stanford Linear Accelerator Center) in 2002. The rf
budget for the gun is 20 MW and the fill time of the
structure is 65 ns. The T53VG3 type traveling wave struc-
ture was extensively tested for high gradient operation and
has operated at high gradient with low breakdown rates
[20]. The T-series structures are essentially the low group
velocity (downstream) portion of the original 1.8 m struc-
tures [21]. This structure can be operated with extremely
low trip rate at gradients up to 90 MV=m. The fill time of
this structure is 74.3 ns and an rf power of 70 MW is
budgeted for each section. The high power rf source is an
X-band klystron (XL-4), which was developed by SLAC in
the mid-1990s for the high power testing of the X-band
structures. The XL-4 is a solenoid focused klystron which
requires a 0.47 Tesla solenoid. The high voltage pulse
required by the klystron is provided by a state-of-the-art,
solid-state high voltage modulator. We have chosen the
solid-state modulator (K2-3X) built by ScandiNova for its
pulse-to-pulse stability and solid-state modular design; the
first of these modulators has been delivered and is awaiting
installation. Two klystrons and two high voltage modula-
tors are planned for the LLNL MEGa-ray (monoenergetic
gamma-ray) project. The high power pulsed rf output of
two klystrons is 100 MW, 1:5 �s. The high power rf needs
of the rf gun and accelerator sections are 440 MW for
210 ns (3x fill time). The logical way to achieve this is to
pulse compress the output of the klystrons to 500 MW,
210 ns and to distribute the compressed pulse to the rf gun
and accelerating sections. SLAC has developed and dem-
onstrated SLED (SLAC energy doubler) II with multimode
delayed lines with similar power gain factor [22]. The dual-
mode SLED-II delay lines will be approximately 15 meter

FIG. 7. Low-energy beam line, T53 section and photogun
components. Full supports and rf distribution not shown.
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long with inner diameter of 17 cm. 500 MW, 210 ns pulses
are the desired output of the pulse compression system.
These compressed pulses will be fed into a 13 dB coupler.
The 13 dB (25 MW) output will go to the rf gun. To allow
for tuning and control, a phase shifter and attenuator are
put in this arm. A barrier window is also planned for the rf
gun. This is to limit the number of times the rf gun is
exposed to air and to possibly provide for a configuration in
which the rf gun can be baked and sealed as a unit before
installation. The rest of the compressed power (475MW) is
to be distributed to the linear accelerator sections. A 3 dB
H-hybrid is used to divide the 475 MW in half. Then a
combination of 4.8 and 3 dB H hybrids are used to distrib-
ute the power in one third portions (70 MW) to each T53
section. Phase shifters and other control elements will be
added as needed.

B. Laser systems

The gamma-ray source will comprise two lasers, the
interaction laser system, and the photocathode drive laser
that yields the electron bunch on the photocathode. Both
are seeded by the same fiber oscillator. The general archi-
tecture is similar to that presented in Ref. [6].

First the photoelectrons are generated by a 50 �J,
263 nm spatially and temporally shaped laser pulse. The
oscillator seed is amplified (using standard chirped-pulse
amplification (CPA) methods) in a series of Yb-doped fiber
amplifiers, beginning with standard 6-�m core pre-amps, a
29 �m core intermediate photonic crystal fiber stage, and a
final 85 �m fiber rod amplifier to generate 1 mJ, 1053 nm
pulses at 120 Hz that are compressed to 250 fs. These
pulses are frequency quadrupled, stacked in a hyper-
Michelson pulse stacker, which converts the single input
pulse into eight replicas using three beam splitters; then
transformed from Gaussian to a flattop transverse profile
using refractive optical beam shaping components. This
beam is transported to the photoinjector, resized to 1 mm,
and imaged onto the cathode surface.
Second, the scattering laser should have minimal band-

width and needs to be no shorter than 10 ps; hence, Nd:
YAG with its narrow gain bandwidth is a suitable material
for amplification. Because of the narrow (< 1 nm) band-
width and long (> ns) desired stretched pulse length in the
amplification chain, we developed a novel hyperdispersion
stretcher and compressor pair [23] that provides very high
(> 7000 ps=nm) dispersion. The scattering laser pulse is
generated by preamplifying a selected oscillator pulse in a
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6 �m and 29 �m core fibers to the 30 �J level, then doing
final amplification in a set of diode-pumped Nd:YAG
heads. The diode-pumping architecture allows this system
to produce 1 J laser pulses at 120 Hz; subsequently com-
pressed to 10 ps. This beam is then frequency doubled to
532 nm and transported to the interaction region.

C. Expected gamma-ray properties

By using laser and electron beam properties expected
from the accelerator and laser systems described above, we
have modeled the gamma-ray source properties, and, in
particular, the peak brightness. Instead of using a single
electron, we modeled the electron beam phase space at the
interaction point by using PARMELA, as shown in Fig. 8.
Then spectra from each electron of the beam are incoher-
ently summed to yield the total spectrum from the laser/
electron beam interaction. PARMELA uses macroparticles to
represent the electron bunch and time steps to push parti-
cles. In our simulations, two-dimensional maps of the
radio-frequency fields of the accelerator cavities were
modeled with the SUPERFISH code and imported into the
particle tracker. The space-charge forces are computed
using a quasistatic approximation by transforming into a
comoving reference frame and computing and applying the
Coulomb field on a mesh. For these simulations, 20 000
macroparticles were used. This number was chosen to
provide the required resolution for the Compton scattering
calculation and was much greater than that required to
ensure accurate modeling of the electron beam propagation
through the accelerator.

The resulting gamma-ray spectrum is presented in
Fig. 9, both for the linear and nonlinear case. Because of
the electron beam emittance that broadens the spectrum,
fine nonlinear structures cannot be seen. However, one can
see that the nonlinearity of the interaction decreases the
spectral brightness.

V. CONCLUSION AND OUTLOOK

In this paper, the design of a narrow-band Compton
scattering gamma-ray source is presented within the spe-
cific context of nuclear resonance fluorescence applica-
tions. NRF is a very powerful isotope-specific process
that has potential high impact applications in homeland
security, nuclear waste assay and management, stockpile
surveillance, or medicine. In order for this process to be
fully efficient, it is necessary to operate in a spectrally
narrow regime. In order to assess spectral broadening
mechanisms in Compton scattering, detailed theory mod-
eling is necessary. It is shown that two different formal-
isms, using the Klein-Nishina differential cross section and
the classical radiation formula, yield complementary in-
formation to this problem. Indeed, recoil and nonlinear
effects have to be accounted for when designing high-
precision narrow-band gamma-ray sources. Challenging
technological laser and accelerator designs are currently
being finalized at LLNL for the design of such a new
source of tunable � rays for Department of Homeland
Security and National Nuclear Security Administration
missions.
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