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The oblate spheroidal shape is close to the commonly used elliptical rf cavity shape employed in

accelerators. Here we solve the oblate spheroidal radial and angular wave functions to obtain the

frequencies of the axisymmetric TM and TE modes. We develop a semianalytic formalism to calculate

the characteristic parameters, such as shunt impedance, of higher order modes (HOMs). Our formulation

is applied to calculate the HOM frequencies of the INDUS-2 and ILC cavities, and the agreement with

three-dimensional finite element calculations is excellent. Using this formalism we investigate the effect

of changing the oblate shape, and predict an optimized range of �0 (one of the key parameters to define the

geometry), to reduce the number of significant HOMs.
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I. INTRODUCTION

The solution for the eigenfrequencies of any rf cavity
depends on its boundary shape. Available analytical calcu-
lations are limited to regular shapes such as the rectangular
box, the cylinder (pillbox), and the sphere where the
Helmholtz and Laplace equations are solved in the respec-
tive (Cartesian, cylindrical, and spherical) coordinates to
obtain the eigenfrequencies [1]. However, these standard
shapes are not among any popular accelerating cavity
structures. In fact, the cavity shape is determined by the
particle energy and the frequency of the rf cavity. Besides
these, other parameters such as shunt impedance, quality
factor, surface electric and magnetic fields, and HOMs also
affect the overall cavity shape and dimensions. Based on
some of these constraints, the elliptically shaped �-mode
cavity is a general choice for accelerators [2]. In �-mode
structures the cavity gap is ��=2, where � is the ratio of
particle velocity to the velocity of light and � is the
wavelength of the cavity resonating frequency. Such ellip-
tical shaped cavities resemble the spheroidal oblate shape,
where it is possible to obtain the analytical solution by
solving the wave equation in spheroidal coordinates.
Hence, the study of oblate spheroidal shapes is useful
from the point of view of accelerating cavities.

The design of any standard axisymmetric rf cavity shape
is generally defined by eight independent parameters: cav-
ity gap (Cg), cavity radius (Cr), cavity beam tube radius

(Cb), wall angle (�), iris ellipse dimensions ðai; biÞ, and
equator ellipse dimensions ðae; beÞ. For many designs, the
wall angle is positive, and in this case, the cavity shape
resembles the spheroidal oblate shape—except near the
axis (see Fig. 1)—where it is possible to obtain the ana-
lytical solution by solving the wave equation in spheroidal
coordinates. Hence, the study of oblate spheroidal shapes is
useful from the point of view of studying axisymmetric
modes in elliptical cavities.

FIG. 1. Profile of a typical elliptical rf cavity (INDUS-2 rf
cavity in bold line) and equivalent oblate shape (dashed line).
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The work on analytical formulations for spheroidal
eigenfrequency has been carried out by many researchers.
Kokkorakis and Roumeliotis [3,4] have tabulated the co-
efficients of a series solution of spheroidal eigenfrequen-
cies. However, their solution was valid only for small
perturbations from the spherical shape. Li et al. [5,6]
similarly obtained eigenfrequencies for a spheroidal con-
ducting cavity with better accuracy and for a slightly
higher deviation from the spherical shape. However, both
of these are not applicable to realistic oblate shaped cav-
ities used in accelerators.

While obtaining the eigenfrequencies, the accuracy of
the solutions depends upon the calculation of spheroidal
angular and radial wave functions. The formulation of
these harmonics in terms of series solutions has been
well documented by Stratton et al. earlier in 1956 [7] and
Flammer in 1957 [8]. Apart from this, these harmonics are
tabulated in terms of a power series expansion by
Abramowitz and Stegun [9]. Li et al. [10] have reviewed
various methodologies for evaluating the spheroidal angu-
lar and radial functions (for both prolate and oblate shapes)
and their eigenvalues. Thompson [11,12] has also solved
the spheroidal wave harmonics by using rigorous compu-
tations. Zhang and Jin [13] have provided FORTRAN

programs for accurate calculation of these functions.
However, these solutions have been used for applications
such as wave propagation using antennas [5,14] and fluid
dynamics [15], and have not yet been used to obtain the
eigenfrequencies of oblate spheroidal shapes with large
eccentricity.

In the present work, the eigenfrequencies for general
oblate shapes are obtained with high accuracy for nearly
the entire range of eccentricities. A least-squares polyno-
mial fit has been formulated which provides a ready solu-
tion of the eigenfrequencies of oblate shapes. Further, the
radial and angular functions have also been fitted with a
polynomial to obtain the characteristics constants of the
fundamental and higher order axisymmetric modes of rf
cavities. The cavity frequencies and characteristic con-
stants are verified by comparing these values with those
of the INDUS-2 rf cavity [16] and the ILC cavity [17].
Finally, the effect of variation in the cavity shapes is
studied in detail in an effort to obtain cavities with reduced
effectiveness of HOMs.

It should be noted that, as with any analytic work, there
are limitations in applying the results to actual, operating,
cavities. First, the analytic shape is symmetric and explic-
itly excludes modes with nonzero azimuthal index.
Second, for cavity shapes that have nose cones, such as
the Cornell cavity, the deviation from the oblate shape is
large, and our analysis is not applicable. Third, since the
deviations from the oblate spheroidal shape are greatest at
the iris, this approach is not useful for calculating the peak
electric field, which is defined by the iris area. Finally,
penetrations, such as the beam pipe, will perturb the

geometry, and change the modes. The last issue has been
addressed by comparing our analytic results with those of
detailed finite element method (FEM) simulations of an
actual cavity geometry, and with experiment. We find that
deviations in the higher-order mode frequencies are within
5%–10%, which gives us confidence in the usefulness of
our analytic approach.

II. SPHEROIDAL COORDINATES AND
CORRESPONDING WAVE EQUATION

There are two types of spheroids: prolate and oblate. A
prolate spheroid is formed by rotating an ellipse around its
major axis while an oblate spheroid is formed by rotating
an ellipse around its minor axis. Since typical accelerating
cavities in accelerators are close to the oblate geometry, we
focus only on oblate spheroids. Figure 2 shows the geome-
try of the oblate spheroid, which can be described by the
curvilinear orthogonal coordinate system ð�; �;�Þ. These
coordinates vary in the range �1<�< 1, 0< �<1,
and 0<�< 2� for oblate cavities [7–13].
They are related to the Cartesian coordinates ðx; y; zÞ by

x ¼ d

2
cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2Þð�2 þ 1Þ

q
(1)

y ¼ d

2
sin�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2Þð�2 þ 1Þ

q
(2)

z ¼ d

2
��: (3)

In the above equations d is the distance between the two

foci, and is given by d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
, where a is the length

FIG. 2. Oblate spheroidal coordinates �, �, and � for constant
parameter values.
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of the major axis and b is the length of the minor axis of the
ellipse.

Ellipses of various sizes are described in the oblate
spheroidal system by the parameter �, which is the ratio
of the axis of rotation to the focal distance of the ellipse. For
the oblate system, � � 0, with � ¼ 0 representing a disk
and � ! 1 representing a sphere. Figure 3 shows the
variation of � with the ellipse ratio (ratio of minor axis to
major axis). The parameter � describes a system of hyper-
bolas and the parameter� describes a plane and is identical
to the variable � in the spherical coordinate system.

The oblate spheroidal coordinates form a curvilinear
orthogonal system, with metric coefficients given by

h� ¼ d

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

1� �2

s
;

h� ¼ d

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

�2 � 1

s
;

h� ¼ d

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2Þð�2 þ 1Þ

q
:

(4)

The Helmholtz wave equation in these coordinates can
be written as

@

@�

�
h�h�
h�

@W

@�

�
þ @

@�

�
h�h�

h�

@W

@�

�
þ @

@�

�
h�h�

h�

@W

@�

�
þ k2h�h�h�W ¼ 0; (5)

where W is the wave function and kð¼ 2�=�Þ is the wave
number.

For an oblate system, substituting for the metric coef-
ficients from Eq. (4) in the wave equation [11–13], one
obtains

@

@�

�
ð1� �2Þ@W

@�

�
þ @

@�

�
ð�2 þ 1Þ @W

@�

�

þ �2 þ �2

ð1� �2Þð�2 þ 1Þ
@2W

@�2
þ c2ð�2 þ �2ÞW ¼ 0; (6)

where c ¼ kd=2 ¼ �d=�.
This equation can be solved by separation of variables as

follows. Write

Wð�; �;�; cÞ ¼ Smnð�ic; �ÞRmnð�ic; i�Þ�ð�Þ; (7)

where Smnð�ic; �Þ and Rmnð�ic; i�Þ are the spheroidal
angular and radial functions, respectively. Here c is in-
cluded explicitly to indicate that it is a parameter in both S
and R. Substituting Eq. (7) in Eq. (6) and separating
variables, one obtains differential equations for the angular
Smnð�ic; �Þ and the radial function Rmnð�ic; i�Þ as

d

d�

�
ð1��2ÞdSmnð�ic;�Þ

d�

�

þ
�
�mnþc2�2� m2

1��2

�
Smnð�ic;�Þ¼0; (8)

d

d�

�
ð�2þ1ÞdRmnð�ic;i�Þ

d�

�

�
�
�mn�c2�2� m2

�2þ1

�
Rmnð�ic;i�Þ¼0: (9)

Here m and n are separation constants and �mn is referred
to as the characteristic value.
As mentioned earlier when � ! 1 (i.e. d ! 0, hence

c ! 0), the spheroid becomes a sphere. Accordingly, the
spheroidal angular wave function Smnð�ic; �Þ becomes
the associated Legendre function, and the spheroidal radial
wave function Rmnð�ic; i�Þ becomes the spherical Bessel
function. Therefore, the spheroidal angular wave function
Smnð�ic; �Þ can be expanded in an infinite series of the
associated Legendre functions, and the spheroidal radial
wave function Rmnð�ic; i�Þ can be expanded in an infinite
series of the spherical Bessel functions [7–13].
The spheroidal angular functions Smnð�ic; �Þ are usu-

ally expanded into spherical Legendre functions of the first
kind, Pm

mþkð�Þ, or the second kind,Qm
mþkð�Þ. For functions

of the first kind and the second kind, which are regular at
n ¼ �1, one can write [13]

S1mnð�ic; �Þ ¼ X1
k¼0;1

dmn
k ð�icÞPm

mþkð�Þ (10)

and

S2mnð�ic; �Þ ¼ X1
k¼0;1

dmn
k ð�icÞQm

mþkð�Þ; (11)

where the superscripts 1 and 2 refer to the first and second
kind, respectively, and dmn

k ð�icÞ are the expansion coef-

ficients which are determined by solving a three-term
FIG. 3. Plot of � as a function of the ratio of minor axis to
major axis.
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recurrence relation [13] obtained by substituting Eqs. (10)
and (11) into Eq. (8) (for both first and second kinds). As an
example, the plot of the angular wave function of the first
kind and its derivative for m ¼ 1, n ¼ 1, and c ¼ 1:0 is
shown in Fig. 4. The spheroidal angular wave functions are
calculated using a FORTRAN program.

The spheroidal radial functions, Rmnð�ic; i�Þ, are usu-
ally expanded on the basis of spherical Bessel, Neumann,
or Hankel functions and can be written as [13]

Rl
mnð�ic;i�Þ¼

� X1
k¼0;1

ð2mþkÞ!
k!

dmn
k ð�icÞ

��1
�
1� 1

�2

�
m=2

� X1
k¼0;1

ikþm�n ð2mþkÞ!
k!

dmn
k ð�icÞZðlÞ

mþkðc�Þ;

(12)

where dmn
k ð�icÞ are the expansion coefficients defined

earlier for the spheroidal angular wave functions.

ZðlÞ
mþkðc�Þ represents the spherical Bessel functions given

by

ZðlÞðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2z
Jnþ1=2ðzÞ

r
¼ jnðzÞ ðspherical Bessel functionÞ (13)

Zð2ÞðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2z
Ynþ1=2ðzÞ

r
¼ ynðzÞ ðspherical Neumann functionÞ (14)

Zð3ÞðzÞ ¼ jnðzÞ þ iynðzÞ
¼ h1nðzÞ ðspherical Hankel function of first kindÞ

(15)

Zð4ÞðzÞ¼ jnðzÞ� iynðzÞ
¼h2nðzÞðspherical Hankel function of second kindÞ:

(16)

The radial function of the first kind and its derivative are
plotted in Fig. 5, by varying the value of c, for m ¼ 1,
n ¼ 1, and � ¼ 1. The radial functions are calculated
using another FORTRAN program.

III. CAVITY ELECTRODYNAMICS IN OBLATE
SPHEROIDAL COORDINATES

A. TM AND TE MODE FORMULATIONS

Assuming a harmonic time dependence of the magnetic
(H) and electric (E) fields, the wave equations for the fields
can be written in the axisymmetric oblate spheroidal coor-
dinate system, i.e. ð�; �Þ, as

@

@�

�
h�

h�h�

@ðh�H�Þ
@�

�
þ @

@�

�
h�

h�h�

@ðh�H�Þ
@�

�

þ!2�"
h�h�
h�

ðh�H�Þ ¼ 0 (17)

and

@

@�

�
h�

h�h�

@ðh�E�Þ
@�

�
þ @

@�

�
h�

h�h�

@ðh�E�Þ
@�

�

þ!2�"
h�h�
h�

ðh�E�Þ ¼ 0: (18)

Let h�H� ¼ AnUðc; �ÞVðc; �Þ for TM modes in

Eq. (17), where An is a constant and Uðc; �Þ and Vðc; �Þ
are functions of Rð�ic; i�Þ and Sð�ic; �Þ, respectively. We
then obtain the following two differential equations:

d

2
ð�2 þ 1Þ d

2U

d�2
þ ½d3�2!2�"� s�U ¼ 0; (19)

d

2
ð1� �2Þ d

2V

d�2
þ ½d3�2!2�"� s�V ¼ 0: (20)

Here s is the separation constant.
Equations (19) and (20) can be compared with the oblate

spheroidal Eqs. (8) and (9). For the axisymmetric case
FIG. 4. Angular function of first kind Smn and its derivative
S0mn for m ¼ 1, n ¼ 1, and c ¼ 1:0.

FIG. 5. Radial function and its derivative of first kind for m ¼
1, n ¼ 1, and � ¼ 1.
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(and form ¼ 1), theU and V as given in Refs. [5,6] can be
written in terms of R and S as

Uðc; �Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 þ 1Þ

q
Ri
1nð�ic; i�Þ; (21)

Vðc; �Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2Þ

q
S1nð�ic; �Þ: (22)

Then, for the TM modes, the fields H�, E�, and E� can be

written as

H�¼An

h�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2þ1Þ

q
Ri
1nð�ic;i�Þ

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q
S1nð�ic;�Þ

�
;

(23)

E� ¼ 1

j!h�h�

@

@�
ðh�H�Þ; (24)

E� ¼ 1

j!h�h�

@

@�
ðh�H�Þ: (25)

The surface of an oblate spheroid is defined by � ¼ �0, a
constant. For metallic spheroids (conducting boundary) the
tangential electric field E� is zero at �0. Hence, from

Eq. (25),

d

d�

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

q �
Ri
1nð�ic; i�Þ

����������¼�0

¼ 0: (26)

By the principle of duality, the field components for the
TE modes can be obtained by substituting E� forH�,�H�

for E�, and �H� for E�, respectively. Hence, for TE

modes h�E� ¼ BnUðc; �ÞVðc; �Þ (where Bn is another

constant similar to An) and the fields E�, H�, and H�

can be written as

E�¼Bn

h�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2þ1Þ

q
Ri
1nð�ic;i�Þ

�

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1��2Þ
q

S1nð�ic;�Þ
�
; (27)

H� ¼ � 1

j!h�h�

@

@�
ðh�E�Þ; (28)

H� ¼ 1

j!h�h�

@

@�
ðh�E�Þ: (29)

In this case the tangential electric fieldE� goes to zero at

� ¼ �0. Hence, the TE modes are given by

½Ri
1nð�ic; i�Þ�j�¼�0

¼ 0 (30)

The frequencies of the TM and TE modes can be calcu-
lated by solving Eqs. (26) and (30), i.e., by evaluating the
zeros of the radial function and its derivative, for a given
�0, i.e., for a given geometry of the cavity. To study how
the mode frequencies vary with cavity geometry, this has to
be repeated for different �0. It is clearly difficult to obtain
an analytic expression for the mode frequency as a function
of �0. We have therefore chosen a graphical approach.
Figures 6 and 7, respectively, show (for the axisymmetric
case, i.e., with p ¼ 0) the plot of the radial function

FIG. 6. Function for TE modes plotted against c� by varying
�0 from 0.1 to 100.

FIG. 7. Function for TM modes plotted against c�0 by varying
�0 from 0.1 to 100.

TABLE I. Mode indices of oblate and pillbox shapes.

TM/TE oblate shape

modes

Equivalent TM/TE

pillbox shape modes

1,1,0 0,1,0

2,1,0 0,1,1

3,1,0 0,1,2

4,1,0 0,1,3

3,2,0 0,2,2

2,2,0 0,2,1

5,1,0 0,1,4

4,2,0 0,2,3

6,1,0 0,1,5
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[Eq. (12)] and its derivative as a function of c�0, for
different �0s, ranging from 0.1 to 100. The variable c�0

is chosen since the zeros of the function in terms of c�0

give us the corresponding eigenfrequencies fmnp, where

the indicesm, n, and p refer to the periodicities of the fields

with reference to �, �, and �, respectively. For readers
used to the nomenclature of the pillbox cavity, it must be
mentioned here that the nomenclature of the TM and TE
indices for the oblate shape is different from the pillbox
(cylindrical) shaped cavities because of the difference in
the coordinate system. TM and TE mode indices of the
oblate shape that are equivalent to those for the pillbox
shape are given in Table I.
For each curve in Figs. 6 and 7, i.e., for each �0 or each

cavity geometry, there will be many zeros, each corre-
sponding to a different mode, the frequency (fmn0) of
which is determined from the corresponding value of c
(since c ¼ �dfmn0

ffiffiffiffiffiffiffi
�"

p
). For each mode, one can there-

fore obtain the mode frequency for each �0, and then plot
the mode frequency (or, equivalently, c�0) as a function of
�0, i.e., as a function of changing cavity geometry. We then
fit a polynomial expression to this curve to get an analytic
expression for mode frequency as a function of �0. The
accuracy of the curve fitting is ensured using a sixth-order
fit, and a least-squares algorithm. This is done for each TE
and TM mode.
As an example, the exactly calculated frequencies (in

terms of c�0) of two TM modes (110 and 410) are plotted
as a function of �0 in Fig. 8 for �0 ranging from 0.1 to 100.
The corresponding frequencies of the two TE modes (110
and 410) are plotted in Fig. 9. It can be seen that the curves
shown in Figs. 8 and 9 have a high degree of nonlinearity in
the entire range of �0 ¼ 0:1 to 100. Since a single curve fit
would have been poor in this entire range, the range for �0

is divided into �0 ¼ 0:1 to 1 and �0 ¼ 1 to 100 for the
purpose of fitting. The formulations of this curve fit for the
two different ranges are given by polynomial functions in
Eqs. (31) and (32), where the coefficients a0 to a6, and b0
to b6 are calculated for each TM and TE mode:

fmn0 ¼ 1

�d�
ffiffiffiffiffiffiffi
�"

p ½a6�6 þ a5�
5 þ a4�

4 þ a3�
3

þ a2�
2 þ a1�þ a0� ð0:1< �0 < 1Þ (31)

FIG. 8. Frequencies in terms of c�0 vs �0 for TM modes.

FIG. 9. Frequencies in terms of c�0 vs �0 for TE modes.

TABLE II. Coefficients of TM modes for �0 ¼ 0:1 to 1. All the modes have p ¼ 0.

m n p a6 a5 a4 a3 a2 a1 a0

1 1 0 �65:34 193.93 �220:858 121.98 �35:03 7.515 �0:224

1 2 0 �0:5 0.99 0 �1:23 0.48 1.969 3.143

1 3 0 48.61 �187:34 292.36 �235:803 102.69 �21:001 8.337

2 1 0 �33:73 133.93 �212:361 169.83 �71:273 16.028 0.740

2 2 0 �23:59 77.56 �98:49 60.13 �18:272 4.424 4.609

2 3 0 �14:98 46.91 �56:46 32.43 �9:39 3.157 7.811

3 1 0 0.11 0.23 0.88 �3:56 0.95 5.145 0.169

3 2 0 �29:7 107.13 �152:968 108.89 �40:89 11.739 2.599

3 3 0 �22:22 76.8 �102:671 66.16 �21:93 7.466 6.086

4 1 0 73.2 �233:251 293.88 �185:144 58.5 �4:022 1.965

4 2 0 �39:68 132.967 �172:054 107.08 �33:44 8.833 4.480

4 3 0 �65:27 192.36 �221:838 124.91 �35:88 8.795 7.635
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fmn0 ¼ 1

�d�
ffiffiffiffiffiffiffi
�"

p
�
b6
�6

þ b5
�5

þ b4
�4

þ b3
�3

þ b2
�2

þ b1
�
þ b0

�
ð1< �0 < 100Þ: (32)

The coefficients a6 to a0 of Eq. (31), determined from
the least-squares fit, are tabulated in Tables II and III for
TM and TE modes, respectively, for the range �0 ¼ 0:1
to 1. Similarly, the coefficients (b6 to b0) can be deter-
mined for the range �0 ¼ 1 to 100 in Eq. (32). These fits
are also shown in Figs. 8 and 9, and it can be seen that the
agreement is excellent.

It should be noted that oblate cavities corresponding to
�0 > 1 are not of practical interest as far as rf accelerating
cavities are concerned. For example, the cavities of Tesla
(1.3 GHz) and INDUS-2 (505.8 MHz) accelerators have
equivalent �0 values of 0.673 and 0.51, respectively.
Therefore, in the rest of the discussion we focus on the
fit given by Eq. (31), using the coefficients from Tables II
and III, valid for �0 < 1.

B. APPLICATION TO INDUS-2 AND ILC
CAVITY HOMS

In the earlier subsection we have derived a method of
predicting the HOM frequencies for an ideal oblate sphe-
roidal rf cavity. As an example, we applied our analytic
treatment to the case of the INDUS-2 cavity [16] which is a
part of the synchrotron light source located at the Raja
Ramanna Centre for Advanced Technology, Indore [18].
The INDUS-2 cavity is an elliptically shaped cavity and
can be compared with an oblate spheroidal shape. The
illustration of the equivalent ellipse drawn on the cavity
profile is shown in Fig. 1; it differs slightly from the
INDUS-2 cavity in terms of the geometry, as well as the
lack of ports that break the axisymmetry. The axisymmet-
ric (p ¼ 0) TM modes of this equivalent cavity profile
of INDUS-2 were then determined using the zeros of
Eq. (26). For comparison, we also performed detailed

three-dimensional FEM electromagnetic simulations of
the equivalent INDUS-2 shape, as well as the actual
INDUS-2 cavity (with ports). We also have experimental
values of some of the modes (up to 2 GHz), based on
measurements we have made on the INDUS-2 cavity.
Table IV compares the TM mode frequencies obtained

from the analytical calculations (column 2), the FEM
calculation of the same equivalent oblate shape (column 3),
FEM of INDUS-2 cavity full model with all major ports
[16] (column 4), and the experimentally measured results
of the actual INDUS-2 cavity (column 5). The analytical
and FEM calculations for the fundamental mode match
very well (within 0.04%) whereas the deviation between
analytical and FEM full model (including all ports) or
experimental values is�14 MHz (2.76%), which is essen-
tially due to the eight port openings in the actual cavity
which are not taken into account in the analytical or FEM
solution. The analytically obtained higher-order TM mode
frequencies show the same trend of excellent agreement
with the FEM calculations of the oblate shape and an
agreement within 5% with the full model finite element
analysis and with experimental data. The FEM full model
agrees very well with experiment, which validates the
accuracy of our FEM model, and shows that the difference
between the analytical and experimental values is only due
to the port openings which are difficult to consider in any
analytical approach. The TE axisymmetric modes simi-
larly show a good agreement with FEM and experimental
data.
We further applied our semianalytic calculation to a

single-cell Tesla cavity (considering midcell dimensions
for single cell) [17]. This cavity resonates at 1.3 GHz. The
equivalent oblate shape for this cavity has �o ¼ 0:673 and
b ¼ 0:1154 m. As in the case of the INDUS-2 cavity,
here too, the equivalent oblate shape is close to the actual
cavity shape, and the main difference is in the absence of
various ports. Table V shows a comparison of the
TM mode frequencies from our calculation and from a

TABLE III. Coefficients of TE modes for �0 ¼ 0:1 to 1. All the modes have p ¼ 0.

m n p a6 a5 a4 a3 a2 a1 a0

1 1 0 16.150 �47:080 53.393 �30:888 9.471 0.800 1.629

1 2 0 0.000 �0:019 0.230 �0:594 �0:025 2.090 4.706

1 3 0 0.000 �0:016 0.200 �0:508 �0:111 2.075 7.849

2 1 0 �6:944 22.917 �28:980 17.249 �5:341 2.856 3.093

2 2 0 4.167 �15:673 23.606 �18:140 6.794 0.821 6.356

2 3 0 �2:083 7.901 �11:579 8.081 �3:231 2.562 9.399

3 1 0 11.806 �41:522 59.458 �45:202 17.664 1.594 1.704

3 2 0 �9:028 22.099 �14:661 �3:782 6.842 1.792 4.957

3 3 0 17.361 �58:574 77.257 �50:692 16.225 1.667 7.975

4 1 0 �3:965 15.477 �22:146 13.498 �4:168 4.892 3.091

4 2 0 �0:774 4.440 �7:761 5.419 �2:542 4.686 6.232

4 3 0 1.679 �4:571 4.796 �2:877 0.131 4.201 9.401
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three-dimensional FEM analysis of the equivalent oblate
geometry. It can be seen that, again, the agreement is
excellent—within 0.15% for the fundamental, and 0.25%
in the worst case. Further, the comparison with the single-
cell cavity model of the ILC (Tesla) cavity, with the beam
aperture opening, gives fundamental frequency within
�1% and HOM to within 2% in the worst case.

IV. CALCULATION OF THE CHARACTERISTIC
PARAMETERS OF AN OBLATE CAVITY

In the previous section, we have derived a simple curve-
fitted formula for calculating the TM and TE mode

frequencies as a function of the eccentricity (i.e. value of
�0) of the oblate spheroidal shape. Here we extend the
treatment to the calculation of the rf properties of an
accelerating cavity.
The main parameters required to study characteristic rf

cavity modes are the quality factor, shunt impedance,
transit time factor and maximum surface electric, and
magnetic fields [19,20]. These parameters can be deter-
mined for each TM and TE mode from the electric and
magnetic field distribution for that mode in the rf cavity.
For an oblate shape, the electromagnetic field distribution
is related to the radial and angular functions which
have different spatial behavior for each mode and can be

TABLE V. TM mode frequency comparison for Tesla (ILC) rf cavity (1.3 GHz); analytical
results of the axisymmetric oblate shape (column 2), FEM analysis of the same oblate shape
(column 3), and FEM analysis of single-cell cavity model with beam aperture opening
(column 4).

Tesla (ILC) rf cavity frequency (GHz)

TM modes (oblate

shape indices)

Analytic

calculation

FEM analysis

of equivalent

oblate model

FEM analysis of

single-cell

cavity model

1,1,0 1.279 1.281 1.297

2,1,0 2.321 2.325 2.380

3,1,0 2.651 2.650 2.687

4,1,0 3.479 3.474 3.451

3,2,0 3.643 3.648 3.653

2,2,0 3.970 3.976 3.940

5,1,0 4.672 4.683 4.669

4,2,0 4.816 4.809 4.899

6,1,0 4.925 4.932 4.999

1,2,0 5.239 5.247 5.283

TABLE IV. TM mode frequency comparison for INDUS-2 rf cavity; analytical results of the
axisymmetric oblate shape (column 2), FEM analysis of the same axisymmetric shape (col-
umn 3), FEM analysis of cavity shape with all major ports (column 4), and experimental results
from INDUS-2 (column 5).

Longitudinal frequency of INDUS-2 rf cavity (GHz)

TM modes (oblate

shape indices)

Analytic

calculation FEM analysis

FEM of INDUS-2

cavity (full model

with all major

ports) [16]

Experimental

results

1,1,0 0.519 0.520 0.5058 0.5059

2,1,0 1.049 1.048 0.9513 0.9506

3,1,0 1.070 1.071 1.069 1.070

4,1,0 1.505 1.504 1.432 1.430

3,2,0 1.613 1.619 1.517 1.515

2,2,0 1.694 1.691 1.636 1.634

5,1,0 1.989 1.989 1.961 1.923

4,2,0 2.131 2.134 2.114 Not measured

6,1,0 2.160 2.160 2.127 Not measured

1,2,0 2.332 2.330 2.297 Not measured
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calculated using Eqs. (10) and (12). Calculating these
functions analytically is very difficult, but it can be done
numerically. However, in this manner it is not possible to
get field components as a function of �, �, etc. Therefore,
we have taken the following approach. We evaluate R and
S for each � and � and plot the results. We then fit a
polynomial expression (2nd order to 6th order depending
on the data) to these plots. This now gives us an analytic
expression for the field components, although admittedly
the coefficients have to be evaluated numerically for each
mode. However, note that these coefficients are now fixed
for all �0, i.e., for all cavity shapes. The methodology used
for calculations of the parameters for a typical TM mode is
as follows: (1) Evaluate the frequency (fmn0) of the mode
using geometric parameters such as a, b, and �0, and the
values of the coefficients in Eq. (31) from Table II.
(2) Calculate c using c ¼ �dfmn0

ffiffiffiffiffiffiffi
�"

p
for that mode.

(3) For the particular c value (as calculated above) evaluate
the angular function (Smn) from � ¼ 0 to 1 (in steps of at
least 0.05), and the radial function (Rmn) from � ¼ 0 to �0

(in steps of at least 0.05). (4) Plot the angular and radial
functions, and fit polynomial curves in terms of � for the
angular function and in terms of � for the radial function.
These fitted curve equations of the angular and radial
functions need to be calculated for the particular values
ofm and n. Figures 10 and 11 show the plotted data and the
fit for three modes (m ¼ 1, n ¼ 1; m ¼ 2, n ¼ 1, and
m ¼ 3, n ¼ 1), for the radial and angular functions, re-
spectively (for �0 ¼ 0:5). It can be seen that the polyno-
mial fit is excellent. (5) Substitute these fitted equations for
radial and angular functions into Eqs. (23)–(25), to obtain
expressions for the magnetic and electric fields. As an
example, the expressions for the magnetic and electric
fields for the TM110 mode are

H� ¼ An

h�
ð�0:1783�2 þ 0:144�þ 0:5Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 þ 1Þ

q
ð�1:4359�2 þ 0:5954�þ 0:949Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2Þ

q
(33)

E�¼Anð�0:1783�2þ0:144�þ0:5Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�2þ1Þp
j!h�h�

@

@�

�½ð�1:4359�2þ0:5954�þ0:949Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1��2Þ

q
� (34)

E�¼Anð�1:4359�2þ0:5954�þ0:949Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1��2Þp
j!h�h�

� @

@�
½ð�0:1783�2þ0:144�þ0:5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2þ1Þ

q
�: (35)

(6) Now, these field expressions can be used to obtain
the characteristic parameters. The constant An from
Eqs. (33)–(35) gets canceled while calculating the
characteristic parameters as these parameters are functions
of the ratio of the fields. The following three integrals
are needed for calculating the different characteristic
constants (quality factor, transit time factor, and shunt
impedance which are important from the HOM point of
view): (a) Voltage gain in cavity gap for any frequency
(line integral),

Vacc ¼ 2
Z �0

0
aE�ð�2 þ 1Þd�; (36)

(b) heat dissipated in the cavity (area integral)
FIG. 10. Oblate spheroidal radial functions and their curve-
fitting equations for �0 ¼ 0:5.

FIG. 11. Oblate spheroidal angular functions and their curve-
fitting equations.
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Pd ¼ Rs

2
2�a2

Z �

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 þ 1Þ

q
ð�2 þ �2ÞH2

�d�; (37)

where Rs is surface resistance; (c) energy stored in the
cavity (volume integral)

Es ¼ �

2
2�a3

Z �

0

Z �

0
ð�2 þ �2ÞH2

�d�d�: (38)

From the definition, the quality factor is determined
using Eqs. (37) and (38), the transit time factor using the
ratio of another line integral of the electric field along the
cavity gap having sine or cosine variation (cosine for
odd modes and sine for even modes), and Eq. (36).
Similarly the shunt impedance can be calculated using
Eqs. (36) and (37). The characteristic parameters of the
cavity for TE modes can also be evaluated using a similar
methodology.

Using the above methodology, the shunt impedance
(Rsh=Q0) for the INDUS-2 oblate shape was calculated,
and compared with three-dimensional FEM simulations of
the equivalent oblate cavity. This was done for the funda-
mental mode and three TM HOMs. The data is shown in
Table VI. It can be seen that the agreement is quite good for
all the modes.

Thus, the semianalytical model we have developed
provides a ready method to obtain frequencies and
characteristic parameters of rf cavities within a good
approximation by just knowing the ellipse dimensions.
For example, the geometric constant G of the Tesla
(ILC) cavity for fundamental frequency shows a variation
of around 10% between the analytical (254 �) and
actual finite element model of single cavity (279 �). The
reason for variation in characteristic parameters is
due to the aperture openings, for which corrections
can be made.

V. EFFECT OF GEOMETRY VARIATION
ON HOM CHARACTERISTICS

The advantage of the semianalytical formalism we have
developed is that we can now systematically investigate
the rf properties of cavities as a function of the cavity
geometry, and try to understand the effect of geometry

on the rf properties of the cavity, and therefore to predict
new and better cavity shapes.

A. Effect of geometry variation on HOMs spectrum

For any oblate shape, the main geometric parameters
that affect the electromagnetic properties of the modes are
the ellipse major and minor axes a and b. Since � is
evaluated using a and b, various combinations of geomet-
ric changes in the oblate shape can be worked out using
these three values. First, a is kept constant and the � is
varied in Eq. (31) by varying b which is the accelerating
gap of the cavity. The effect of change in �ð��Þ on the TM
and TE modes is elaborated for constant a in Figs. 12 and
13, respectively. A change in � of around 0.01 changes the
frequencies of the TM and TE modes by about �10 MHz
for the INDUS-2 cavity. Further, for changing the cavity
fundamental frequency by 1 MHz, it is required to change
� by 0.0013 only. The effect of unit (1 MHz) change in the
fundamental frequency on the TM and TE modes is illus-
trated in Fig. 14. This information can be utilized for the
tuning of HOMs.

FIG. 13. TE mode frequencies versus change in �.

FIG. 12. TM mode frequencies versus change in �.

TABLE VI. Comparison of shunt impedance for the INDUS-2
cavity, calculated using our model, and an FEM analysis of the
oblate model.

TM mode RSH=Q0 (Ohms)

analytic model

RSH=Q0 (Ohms)

FEM of oblate shape

110 40.23 46.7

210 25.43 28.1

310 0 0

410 0.97 1.2
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B. Effect of geometric variation on HOM
mode indices

The effect of increasing �0 changes the order of the
modes as it depends on the geometry of the cavity wall.
It is observed that at large �0 the TMmode indices come in
regular ascending order (i.e. 110, 120, 130, etc.) whereas at
�0 ¼ 0:1 the indices are not in such a regular order (i.e.
110, 130, 120, etc.). For TM modes the value of �0 � 0:75
corresponds to regular ordering of the mode indices.
Similar behavior is observed in case of TE modes also;
here regular ordering of mode indices occurs for �0 � 0:8.

C. Optimal � range for reducing HOMs

The main characteristic parameters of HOMs are quality
factor (Q0) and shunt impedance. Using the methodology
given in Sec. III, these parameters are calculated for oblate
shapes for different values of �. These results are compared
with the corresponding parameters for spherical cavities
given in [21]. Following are the important observations:
(1) The quality factor (Q0) of the fundamental mode and
the HOMs of an rf cavity increases by increasing the � of
the oblate shape towards that of a sphere. The values of Q0

for higher order TM modes of oblate shapes are always
more than or equal to the Q0 of the fundamental mode
unlike in case of a sphere, where theQ0 of a few TMmodes
are less than that of the fundamental mode. (2) The shunt
impedance of the fundamental mode increases by increas-
ing �. As far as the shunt impedance of the TM HOMs is
concerned, at higher values of � (� > 0:8), the ratio of the
shunt impedance of a few of the HOMs to that of the
fundamental mode is � 1. For lower � values (� < 0:5),
this ratio is nearly equal to one for a few of the cases. For a
narrow range of moderate � values (0.5 to 0.8), this shunt
impedance ratio has very low values for most of the modes
and very few modes have a ratio close to 1.

To investigate this further, Fig. 15 plots the characteristic
parameter ratio ðRsh=Q0ÞHOM=ðRsh=Q0Þf0 of all HOMs up

to the TM420 mode (which is generally above the beam

cutoff frequency), over the range 0:1< �< 1. A higher
value of this characteristic parameter ratio (above 0.1) is
considered to represent a significant HOMwhich can affect
the beam. It is observed from the figure that there are only
two significant TM HOMs in the range � ¼ 0:69 to 0.77.
For the ranges � < 0:69 and � > 0:77, there are at least
three or more significant TM HOMs. In this range of
optimal �, other parameters such as quality factor, shunt
impedance, transit time factor, and peak magnetic and
electric field ratios are found suitable as far as the accel-
erating properties are concerned. Thus, we predict that
cavities with � in the range 0.69–0.77 will perform better.
This is consistent with the experimental evidence that
typical rf cavities are indeed in this range—for example,
� ¼ 0:673 for the 1.3 GHz ILC cavity. Of course, these
values have been arrived at empirically, over many years of
experimental investigations. Our treatment shows that
there is a sound theoretical reason for these choices.

VI. SUMMARYAND CONCLUSIONS

Elliptically shaped rf cavities have been modeled as
oblate spheroids, to obtain the analytical solutions of
HOMs and related parameters in order to study the effect
of the cavity geometry on HOMs. The present semianalyt-
ical study provides a handy tool for calculating the HOM
spectrum and its characteristic parameters for an elliptical
cavity. The verification of the results with the INDUS-2
and ILC cavity shapes confirms the accuracy of the ana-
lytical formulation. This analytical formulation of oblate
shapes can now serve as a benchmark for all numerical
(FEM/FIT) calculations.
We find that decreasing the � value of the oblate cavity

decreases the value of TM and TE mode frequencies in the
spectrum, hence smaller � values have narrow frequency
spacing in the spectrum. The behavior of the characteristic
parameter ratio shows that, from the point of view of fewer
HOMs, a cavity geometry with � in the range 0.69 to 0.77 is
preferred. This conclusion is consistent with the empiri-
cally derived geometries of various operating elliptic
cavity shapes, ranging from normal conducting cavities

FIG. 15. Effect of � on ½ðRsh=Q0ÞHOM=ðRsh=Q0Þf0� for HOMs.FIG. 14. Effect of changing the fundamental frequency by
1 MHz on the TM and TE HOMs of INDUS-2 equivalent oblate
shape cavity.
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in synchrotrons (for example, � ¼ 0:51 for ELETTRA), to
superconducting cavities for linacs (for example,
� ¼ 0:673 for TESLA and ILC). Our analysis provides a
theoretical understanding for why this is the case, and
suggests that even higher � may be desirable—at least
from the HOM point of view.
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