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In this paper the influence of betatron coupling on the transverse beam emittances is described using the

resonance driving terms formalism. Betatron coupling and vertical dispersion generated by magnetic and

installation errors are major sources of vertical emittance. A new scheme for minimizing the latter is

presented here, together with results from measurements carried out in 2010 at the ESRF electron storage

ring, which provided vertical emittance of about 4.4 pm, a record low for this machine. Two schemes for

the automatic compensation of coupling introduced by insertion devices are also presented with results

from the first implementation tests. This paper is also an attempt to clarify the various definitions and

meanings of vertical emittance in the presence of coupling.
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I. INTRODUCTION

Third-generation light sources and modern lepton col-
liders are characterized by low transverse beam emittances
(below 10 nm and 20 pm for the horizontal and the vertical
plane, respectively). Lepton colliders benefit from low
vertical emittance, as their luminosity scales with the
inverse of its square root. The interest of coupling correc-
tion for third-generation light sources is threefold. First,
smaller vertical beam sizes allow the installation of vac-
uum chambers of ever smaller vertical aperture in straight
sections housing insertion devices (IDs), making it pos-
sible to reach higher magnetic fields, and hence photon
flux, by further reducing the gap between the two ID poles.
Second, any reduction of the vertical emittance induces
higher photon brilliance, provided that this is not yet
limited by energy spread. Third, large horizontal oscilla-
tions during top-up injection experienced by the incoming
off-axis beamlet would have limited impact on the vertical
clearance. It is however worthwhile noticing that the
achievement of ultralow vertical emittances generally
lead to an important reduction of the Touscheck lifetime
because of the reduced bunch volume. Ultralow vertical
emittances were already obtained and directly measured in
Ref. [1] (3.2 pm) and in Ref. [2] (1.7 pm). Values of 1.3 pm
have been recently reported in Ref. [3].

Because of radiation damping and diffusion, accelerator
lattices define specific equilibrium (or eigen)emittances
(Eu, Ev) that are constant in time and along the ring. In

the absence of magnet errors, the two planes are decoupled
and vertical dispersion Dy is everywhere zero. This in turn

leads to zero ideal vertical eigenemittance, Ev ¼ 0. The
impact of scattering effects, with residual gas as well as
intrabeam collisions, is not taken into account here. Beam
profile monitors provide root-mean-square (RMS) beam
sizes, �2

r ¼ hr2i � ð�DrÞ2, where r stands for either x or y,
Dr is the dispersion function, and � is the relative RMS
beam energy spread. Throughout the paper, all RMS quan-
tities denoted with � refer to the betatronic part, hence
assuming that dispersion terms have been already sub-
tracted. In the ideal uncoupled lattice, the eigenemittance
E is equivalent to the RMS beam emittance �, defined as

�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r�p � �2

rp

q
¼ const, where �p and �rp are the

RMS beam divergence and cross-term moment, respec-
tively. The stored beam being matched to the focusing
lattice, the measured profile is sufficient to characterize
the RMS emittance, since

�r ¼ �2
r

�r

¼ hr2i � ð�DrÞ2
�r

; (1)

where �r is the Twiss parameter.
Betatron coupling between the two transverse planes has

in this context four main effects: (i) The vertical equilib-
rium emittance is no longer zero, Ev � 0; (ii) RMS emit-
tance and eigenemittance are no longer equivalent,
�r � Er; (iii) Eq. (1) is no longer valid, �r � �2

r=�r; (iv)
the RMS emittance varies along the ring, i.e., depends on
the coordinate s, �r ¼ �rðsÞ. The literature related to this
topic is already vast, both in terms of mathematical mod-
eling and practical cures aimed at minimizing coupling
effects. Regarding mathematical modeling of the beam
equilibrium distribution, the first analytical formulas for
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the ideal uncoupled case date back to 1970 [4]. A numeri-
cal algorithm for the general coupled case was then pro-
posed in 1979 [5]. In 1994 another general coupled
analysis was carried out in Ref. [6], predicting the depen-
dence of �r on s. In 1996 a pioneering work on the coupling
resonance driving terms (RDTs) close to the difference
resonance [7] indicated that the single-particle emittances
(i.e. the horizontal and vertical actions) would oscillate
along the ring instead of being constant. However, no
conclusion was drawn on the RMS emittances. In 2006
even more general formulas for the equilibrium beam
distribution were derived and applied to coupling (both
betatron and synchrobetatron) and intrabeam scattering
[8–10]: This formalism is used in the present paper to
connect the RDTs to the equilibrium eigenemittances.
Formulas for the numerical evaluation of the equilibrium
beam distribution parameters of Refs. [5,6] were already
implemented in optics code such as Accelerator Toolbox
(AT) [11] and MADX [12].

Works on coupling correction and vertical emittance
minimization [13–15] are based on beam size measure-
ments at one or few locations. In Ref. [15] it is acknowl-
edged that measurements of �2

y=�y are only an

approximation of �y and both differ from the vertical eige-

nemittance Ev obtained from the model. Nevertheless, no
direct estimation of such an approximation is made.

In this paper analytical and handy formulas will be
derived relating the three quantities �2

r=�r, �r, and Er. It
will be described how to evaluate �r and Er from beam
profile and RDT measurements. It will also explain why
vertical emittance inferred from beam profile measure-
ments at one or few locations around the ring may largely
underestimate or overestimate �y in relative terms, induc-

ing an uncertainty much larger than the typical experi-
mental errors. Results for the damping and diffusion
coefficients (and hence equilibrium emittances) already
derived in Ref. [8] are here rewritten in the RDT
formalism.

The RDT formalism of Refs. [16–19] provides a quanti-
tative description of coupling effects in terms of the ideal
lattice parameters (Twiss parameters and dispersion func-
tions) and the magnet errors (modeled as localized skew
quadrupole integrated strengths). This is done through the
two coupling RDTs f1001 and f1010 of Refs. [17,20]. Both
are measurable and their knowledge provides a direct
evaluation of both the real RMS and the equilibrium
emittance (in absence of synchrobetatron coupling). RDT
correction results in the minimization of the vertical emit-
tance. In Ref. [20] the focus was given to hadron beams
near the difference resonance, where the emittance evolu-
tion is defined by both the coupling RDT f1001 and the
initial emittances �r0. In lepton machines with radiation
damping and diffusion, the role of initial emittance is
somehow replaced by the equilibrium emittances, that
depend on the RDTs too.

At the ESRF storage ring coupling RDTs are inferred
from orbit response matrix (ORM) measurement. A single-
value-decomposition (SVD) scheme was recently devel-
oped to power 32 independent skew quadrupoles to
minimize both vertical dispersion and coupling RDTs
around the ring. The corrector setting so found, once
implemented in the machine, yielded the lowest vertical
emittance ever observed in this machine. In light sources
this baseline correction may not last during beam delivery
because of continuous changes in the ID vertical apertures
performed by users. Magnetic imperfections, including
skew quadrupole terms, are enhanced whenever the ID
vertical aperture is reduced to its minimum (6 mm in the
case of in-vacuum undulators at the ESRF). Two schemes
have been recently tested and implemented to automati-
cally compensate for these errors.
The paper is structured as follows. In Sec. II the main

explicit formulas relating the emittances to the lattice
parameters and the coupling RDTs are presented and dis-
cussed, leaving all mathematical derivations in separate
appendices. The RDT modeling based on orbit response
matrix measurements is discussed in Sec. III, whereas the
proposed scheme for coupling correction is examined in
Sec. IV. Results from measurements and corrections car-
ried out at the ESRF storage ring at constant ID vertical
apertures in the first half of 2010 are presented in Sec. V.
Principles and experimental results of the emittance pres-
ervation against variations of the ID vertical gaps are
eventually reported in Sec. VI.

II. COUPLING RDTS AND
TRANSVERSE EMITTANCES

With coupling the usual notion of emittance is replaced
by three separate quantities. For the sake of clarity, it is
worthwhile distinguishing the emittance nomenclature be-
fore analyzing their dependence of the RDTs. (i) The RMS
apparent emittance is the observable quantity, derived
from beam profile measurements

E rðsÞ ¼ �2
rðsÞ

�rðsÞ ¼
hr2ðsÞi � ð�DrðsÞÞ2

�rðsÞ : (2)

(ii) The RMS projected emittance is the second-order
statistical moment representing the surface of the beam
phase space ðr; prÞ,

�rðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rðsÞ�pðsÞ � �2

rpðsÞ
q

: (3)

(iii) The eigenemittance or equilibrium emittance E is the
true invariant (i.e. independent of s) and an intrinsic prop-
erty of the accelerator lattice. In Appendix A the RDT
formalism is applied to the single-particle betatron motion
in the presence of coupling. The results of major interest in
the context of this paper are here summarized.
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A. RMS apparent emittances

As far as the apparent emittances of Eq. (2) are con-
cerned, the following relations apply (a dependence on s
has to be assumed in all quantities, bar the two eigenemit-
tances Eu;v):

Ex ¼ C2Eu þ ½S2� þ S2þ � 2S�Sþ cosðqþ þ q�Þ�Ev; (4)

Ey ¼ C2Ev þ ½S2� þ S2þ � 2S�Sþ cosðqþ � q�Þ�Eu; (5)

The following definitions (all s dependent) apply:

C ¼ coshð2P Þ; (6)

S � ¼ sinhð2P Þ
P

jf1001j; (7)

S þ ¼ sinhð2P Þ
P

jf1010j; (8)

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jf1001j2 þ jf1010j2

q
; (9)

f1001
1010

¼
P

W
w Jw;1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�w

x �
w
y

p
eið��w;x���w;yÞ

4ð1� e2�iðQu�QvÞÞ ; (10)

q� ¼ argff1001g; qþ ¼ argff1010g: (11)

Jw, w ¼ 1; 2; 3 . . . , W are the skew quadrupole integrated
strengths present in the ring and originated by quadrupole
tilts, sextupole misalignments, insertion devices, and cor-
rector skew quadrupoles already powered. Qu;v are the

eigentunes, which are equal to the measured tunes up to
the first order in strengths, Qu;v ¼ Qx;y þOðJ2w;1Þ. �w

r

denotes the Twiss parameter corresponding to the location
of the skew quadrupole kick, whereas ��w;r is its phase

advance with respect to the position where the RDTs f1001
and f1010 are either measured or computed. Both�r and�r

refer to the ideal, uncoupled lattice. Even though all quan-
tities in Eqs. (6)–(10) are complex numbers, the following
relations hold:

1 ¼ C2 þ S2� � S2þ; C2;S2�;S2þ;SþS� 2 <; (12)

hence guaranteeing that both apparent emittances of
Eqs. (4) and (5) are always real numbers.

B. RMS projected emittances

Different relations apply for the RMS projected emit-
tances of Eq. (3), namely,

�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2Eu þ ½S2� þ S2þ�EvÞ2 � ð2SþS�EvÞ2

q
; (13)

�y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2Ev þ ½S2� þ S2þ�EuÞ2 � ð2SþS�EuÞ2

q
: (14)

In the absence of coupling f1001 ¼ f1010 ¼ 0, C ¼ 1 and
S� ¼ Sþ ¼ 0. Only in this case the three emittances

coincide, �r ¼ Er ¼ Er ¼ �2
rðsÞ=�rðsÞ. The negative

terms in Eqs. (13) and (14) shall not be of concern, as
they are canceled out after expanding the first parenthesis.
Before analyzing the dependence of the eigenemittances

on the RDT, it is worthwhile examining the main differ-
ences between the apparent and the projected emittances
along the ring in the presence of coupling. As proved in
Refs. [18,19], the amplitudes of coupling RDTs remain
constant in regions free of coupling sources, while their
phases q� oscillate with the betatron phases ð�x ��yÞ.
When a skew quadrupole kick is met, both the amplitude
and phase execute abrupt jumps. This behavior is trans-
mitted to the RMS emittances: As shown in Fig. 1, the
apparent emittances oscillate around the ring, because of
the terms S�Sþ cosðqþ � q�Þ. This oscillation is of
course more important for the vertical apparent emittance,
as it is proportional to the larger horizontal eigenemittance
Eu. The plots refer to the ideal ESRF storage ring with no
errors but three localized skew quadrupole kicks. The
projected emittance stays constant in the region between
the two coupling sources, while the apparent emittance
keeps oscillating. When a skew quadrupole kick is met,
the projected emittance jumps, while the apparent emit-
tance changes in oscillation amplitude and baseline
(because both S� and Sþ change abruptly). In the bottom
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FIG. 1. Example of RMS apparent and projected emittances
plotted along the ESRF storage ring. Betatron coupling is driven
by three skew quadrupoles whose location is indicated by the
vertical dashed lines. In the top and center plots, the horizontal
and vertical emittances are evaluated via Eqs. (4), (5), (13), and
(14). The bottom plot shows the results for the vertical plane as
computed by AT. The corresponding equilibrium emittances are
Eu ¼ 4:0 nm and Ev ¼ 18:4 pm.
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plot of Fig. 1, the two vertical emittances as computed by
the AT code (implementing the formulas of Ref. [6]) are
shown: The agreement between the above formulas and the
results of AT is within 0.1%.

Whenever the difference RDT is much larger than the
sum term (jf1010j � jf1001j) then jS�j � jSþj and the
two emittances coincide, namely, �y ’ Ey ’ C2Ev þ
S2�Eu. This is the typical case of hadron circular accelera-
tors with the two betatron tunes having the same integer
part, already treated in Ref. [20].

Another interesting feature of the apparent emittance is
that the larger the coupling is (i.e. the product S�Sþ), the
larger is the oscillation amplitude. This has an operational
impact. In fact, the RMS projected vertical emittance is not
directly measurable from beam profiles, without a detailed
knowledge of coupling sources. Nevertheless its mean
value (average over the entire ring)

�� y ¼ 1

C

I
�yðsÞds (15)

with C the ring circumference, can be directly estimated
from the apparent emittances measured with beam profile
monitors, provided that their number and positions are
sufficient to cover the full oscillation pattern. Ideally,
averaging the measured apparent emittances over a large
number of profile monitors (N � 1) shall provide a good
estimation of ��y, the oscillating term S�Sþ cosðqþ � q�Þ
averaging to zero. After merging Eqs. (5) and (14) the
following approximation can be made:

�� y ’ hEyi ¼ 1

N

Xn¼N

n¼1

Ey;n; with N � 1; (16)

��y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn¼N

n¼1

ðEy;n � hEyiÞ2
vuut

/ 1ffiffiffiffi
N

p hS�Sþ cosðqþ � q�Þi
ffiffiffiffiffiffiffiffiffiffiffi
EuEv

p
; (17)

where ��y may be considered as the standard deviation

among the measured apparent emittances. On the other
hand, if a very limited number of monitors is available
(N ¼ 1 or 2, for instance), the averaging of the measured
apparent emittance values may underestimate or overesti-
mate the actual mean projected emittance. These two
extreme cases are depicted in Fig. 2. There Ey (red) from

Eq. (5) and �y (green) from Eq. (14) are plotted along the

ESRF storage ring. The upper plot refers to a well cor-
rected machine with Ev ¼ 3:93 pm (Eu ¼ 4:2 nm),
whereas larger coupling and vertical dispersion are intro-
duced in the lower plot, with Ev ¼ 9:25 pm. As suggested
by Eqs. (16) and (17), the ideal average of Ey along the ring
approximates well ��y: the smaller the coupling, the better

the approximation. In order to emphasize the error induced

in evaluating the projected emittance by a single measure-
ment of the apparent emittance, a few peculiar observation
points have been highlighted. The black triangles indicate
the positions where Ey would overestimate the average

projected emittance ��y (of about 40% with low coupling,

and 100% with larger coupling). Measurements at the blue
circles would instead underestimate ��y (16% and 50% in

the two cases, respectively).
It is however of general validity the following statement:

the larger the coupling is, the larger is the spread among the
measured apparent emittances, ��y (provided that moni-

tors are evenly distributed along the ring). ��y, rather

than the mean projected emittance ��y, may be used as a

qualitative measure of coupling. Imagine measuring the
apparent vertical emittance at ten different monitors. A
hypothetical first measurement providing ��y � ��y ¼ 7�
2 pm may indicate a well corrected coupling. A later
measurement yielding ��y � ��y ¼ 25� 2 pm should not

imply larger coupling, because the spread has not changed
(2 pm), whereas coupling would have increased simulta-
neously both ��y and ��y, through S� and Ev in Eq. (17).

The origin of the larger emittance in the last example
should instead be related to other issues, such as vacuum,
vertical feedback failures, or instabilities. This is an usual
case at the ESRF when an electron beam with uniform
filling pattern (992 bunches) is put in operation. Typically,
after coupling correction is performed at 20 mA with 330
bunches only, ��y � ��y ¼ 6� 1:5 pm is achieved, where

the spread ��y is evaluated from Eq. (17) and the apparent

emittances measured at 11 monitors. When all 992 bunches
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FIG. 2. Ey (red) from Eq. (5) and �y (green) from
Eq. (14) plotted along the ESRF storage ring, for two different
amounts of coupling inferred from ORM measurements. The
black triangles indicate the positions where Ey would overesti-

mate the average projected emittance ��y, that on the other hand

would be instead underestimated by measurements at the blue
circles.
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are stored a the nominal current of 200 mA ��y � ��y ¼
25� 1:5 pm, because of instabilities induced by ion
trapping. After switching on the vertical bunch-by-bunch
feedback, the value usually reduces to ��y � ��y ¼
9� 1:5 pm. Three different mean projected emittances
(6, 20, and 9 pm) are the result of three different sources,
whereas ��y remains unchanged, as unchanged is the

amount of coupling in the machine. Similarly, when only
4 or 16 bunches are stored (each of 10 and 5.6 mA,
respectively), the vertical shaker used for tune measure-
ment is fed with a white noise generator in order to blow up
vertically the beam and to augment the Touscheck lifetime.
The result is a larger mean apparent vertical emittance
(i.e. larger beam size), but almost unchanged spread ��y.

C. Equilibrium emittances

Both the s-dependent apparent and projected emittances
depend on the two invariant equilibrium emittances Eu

(horizontal mode) and Ev (vertical mode). They are intrin-
sic properties of the accelerator lattice. The same analytical
formulas of Refs. [8,9] are used here. For consistency with
Eqs. (4), (5), (13), and (14), they have been translated into
the RDT notation in Appendix B. In the absence of cou-
pling, the two read (details may be found in Ref. [8])

E u ¼ 1

2

HfH 2
xðsÞdðsÞgdsHfbrfðsÞ �DxðsÞb�xðsÞgds ; (18)

E v ¼ 1

2

HfH 2
yðsÞdðsÞgdsHfbrfðsÞ �DyðsÞb�yðsÞgds : (19)

Ev ¼ 0 if DyðsÞ � 0 anywhere in the ring. The diffusion

coefficient reads

d ðsÞ ¼ 55

48
ffiffiffi
3

p �0

�5

j	ðsÞj3
�
@

mc

�
2
; (20)

with �0 the fine structure constant, � the relativistic energy
factor, 	ðsÞ the bending radius, @ the reduced Planck
constant, and m the electron rest mass. dðsÞ and hence
diffusion are nonzero only inside bending magnets. H r

is the dispersion invariant, defined as

H r ¼ �rD
2
r þ 2�rDrD

0
r þ �rD

0
r; (21)

with �r, �r, and �r the Twiss parameters. The transverse
damping coefficient generated by rf cavities reads

b rfðsÞ ¼ 1

cP0

X
i

U0;i�ðs� si;cavÞ; (22)

where E0 ¼ cP0 is the reference energy of the particle,U0;i

is the energy loss between two rf cavities (
P

iU0;i ¼ U0 is

the net energy loss), and the Dirac function is inserted to
localize the damping terms to the corresponding rf cavities.
The horizontal damping coefficient due to the bending
magnets generating a vertical magnetic field By reads

b �xðsÞ ¼
P�

2cE0

�
1

	ðsÞ þ
2

ByðsÞ
@ByðsÞ
@x

�
; (23)

where P� is the instantaneous radiated power given by

P� ¼ e2c3C�

2�
E2
0B

2
y; (24)

and is nonzero in the bending magnets only. C� ¼
ð4�reÞ=½3ðmc2Þ3� ¼ 8:85� 10�5 m=ðGeV3Þ, with re the
electron classical radius. The first term in Eq. (23) accounts
for larger damping experienced by particles passing
through the bending magnets are larger x, whereas the
second term defines the larger radiated power whenever
By contains a quadrupole component. Whenever bending

magnets provide vertical focusing too, the vertical damp-
ing coefficient shall be included:

b �yðsÞ ¼
P�

cE0

1

BxðsÞ
@BxðsÞ
@y

: (25)

In Appendix B expressions for the equilibrium emittan-
ces in the presence of coupling (and hence of vertical
dispersion) using the RDT formalism are derived from
Ref. [8], yielding

Eu¼1

2

H
dðsÞfC2H 2

xðsÞþ½S2�þS2þ�H 2
yðsÞgdsHfbrfðsÞ�C2DxðsÞb�xðsÞ�½S2��S2þ�DyðsÞb�yðsÞgds

;

(26)

Ev¼1

2

H
dðsÞfC2H 2

yðsÞþ½S2�þS2þ�H 2
xðsÞgdsHfbrfðsÞ�C2DyðsÞb�yðsÞ�½S2��S2þ�DxðsÞb�xðsÞgds

:

(27)

In the above integrands, terms oscillating with qþ and
q� have been ignored, as their integrals are usually negli-
gible. C, S�, and Sþ are the same of Eqs. (6)–(8) and are s
dependent as well as all other quantities in the integrands.
In the same appendix comparisons between the eigene-

mittances predicted by Eqs. (26) and (27) and by MADX are
reported for two cases, one (using the ESRF storage ring
lattice) with equal transverse partition numbers, and
another one with combined-function magnets and lower
horizontal partition number.

D. From skew quadrupole lattice model
to emittances: Application manual

With all basic formulas introduced in the previous sec-
tions it is now possible to define a procedure for the
evaluation of the transverse emittances (equilibrium, pro-
jected, and apparent) starting from the accelerator model.
(i) Compute the Twiss parameters from the ideal,

uncoupled lattice, �r, �r and �r (r stands for either
x or y) from any accelerator optics code, such as MADX,
AT, and the like.
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(ii) Include a lattice error model. This may be inferred
from beam-based measurements [such as turn-by-turn
beam-position-monitor (BPM) data [19,20] or orbit mea-
surements discussed in Sec. III], from measured skew
quadrupole magnetic errors, misalignments and tilts, or
from their estimation (during design phases). Localized
skew quadrupole integrated strengths along the ring, Jw;1,
are then defined.

(iii) Jw;1 are used together with the uncoupled Twiss

parameter of step (i) to compute the coupling RDTs f1001
and f1010 from Eq. (10), and hence to evaluate C, S�, and
Sþ from Eqs. (6)–(8), and q� from Eq. (11).

(iv) Before computing the equilibrium emittances, it is
necessary to evaluate the dispersion invariantsH r. Notice
that vertical dispersion has a double source, one from
uncoupled lattice with installation or orbit errors (such as
tilted bending magnets, vertical offsets in quadrupoles, and
the like), and another from coupling with horizontal dis-
persion. Even though measuring dispersion in both planes
is straightforward, this is not the case for their derivative
D0

r, and hence for their invariants. The most realistic lattice
model with errors is then necessary in order to evaluate
H rðsÞ along the ring by means of optics codes capable to
handle coupled linear optics.

(v) After computing all damping and diffusion coeffi-
cients of Eqs. (20), (22), and (23), the equilibrium emit-
tances Eu;v are obtained from Eqs. (26) and (27).

(vi) From Eu;v and C, S� and Sþ the projected emittan-

ces along the ring �rðsÞ are deduced via Eqs. (13) and (14).
(vii) The apparent emittances ErðsÞ are eventually

determined from Eqs. (4) and (5). The RMS beam sizes
hx2i and hy2i may be eventually inferred after inverting
Eq. (2) and may be compared with measurements.

An alternative approach is the derivation of all different
emittances from the error model [i.e. the RDT functions of
step (iii)], from the measured dispersion Dr, and from the
measured RMS beam sizes hx2i, hy2i. Indeed, after remov-
ing the dispersive terms, ErðsÞ may be evaluated from
Eq. (2). Equations (4) and (5) form a linear system with
all quantities known, save the equilibrium emittances, Eu;v,

that may be hence inferred after inverting the system.
Equations (13) and (14) may eventually be used to derive
the projected emittances. This approach has the advantage
that only the dispersion functions Dr (straightforward to
measure) are necessary, without need of evaluating the
dispersion invariants H r.

III. MODELING COUPLING VIA ORBIT
RESPONSE MATRIX MEASUREMENTS

IN THE ESRF STORAGE RING

In Refs. [17–20] a method to use turn-by-turn beam-
position-monitor (TBT-BPM) data to measure RDTs and
correct coupling has been already discussed, both theoreti-
cally and experimentally. This approach has the advantage
of being faster than traditional methods, such as the

minimization of �Qmin [21]. The success of BPM mea-
surements is bound to (i) the possibility of acquiring a large
number of TBT data with small or no decoherence (typi-
cally 512 turns), in order to enhance their spectral resolu-
tion, and (ii) to an easy (as well as rapid) BPM electronic
switch from orbit mode to TBTmode. The first condition is
hardly met in electron storage rings like the one of the
ESRF. Operational settings require indeed strong chro-
matic sextupoles and nonzero detuning with amplitude in
order to guarantee sufficient longitudinal acceptance.
Detuning being responsible for decoherence, it is already
challenging to achieve 100 turns with exploitable TBT-
BPM data. Moreover, the ESRF storage ring, like other
European third-generation light sources, is equipped with
the LIBERA BPM system [22], whose TBT mode was not
fully operational until the second half of 2010.
This led to the development of a lattice error model

obtained from ORM measurements similar to the one of
Ref. [23], which in the case of the ESRF storage ring
requires about 20 minutes. The accelerator consists of 32
focusing cells, each comprising eight main quadrupoles. In
order to provide straight sections for insertion devices of
both low and high�x, each downstream cell is the mirrored
copy of the one upstream, hence leaving a 16-fold period-
icity. More details on the lattice and its recent upgrade can
be found in Ref. [24]. Each cell is equipped with seven
dual-plane BPMs (224 over the entire ring). The ORM is
measured after powering 32 horizontal and 32 vertical
steerers and recording the orbit distortion at all 224
BPMs. The resulting ORM is then a ð32 	 2Þ � ð224 	 2Þ
matrix:

ORM ¼ Oxx Oxy

Oyx Oyy

 !
: (28)

Normal quadrupole errors in the 8 	 32 ¼ 256 main
quadrupoles are inferred from the diagonal blocks Oxx

and Oyy via SVD. The off-diagonal blocks Oxy and Oyx

result from coupling generated by tilts in the main quadru-
poles and sextupoles, and by vertical off-axis orbit and/or
misalignments in sextupoles. In each cell, however, the
three chromatic sextupoles with the strongest fields are
placed next to quadrupoles. In practice, then, only quadru-
pole tilts are fit via SVD in order to best match the off-
diagonal blocks, assuming that those next to the chromatic
sextupoles play the role of effective tilts accounting for
both magnets.
The difference between the measured vertical dispersion

and the one obtained including coupling errors is eventu-
ally attributed to tilts in the main bending magnets.
Normal quadrupole errors �K1, quadrupole tilts 
, and

bending magnet rotations! provide the lattice error model
that best matches the ORM and vertical dispersion. As a
check of the model effectiveness, this is included in the AT

optics model and the predicted vertical apparent emittan-
ces are compared with the ones measured at different
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devices: two x-ray pinhole cameras (D09, D25), plus 11
in-air x-ray detectors (C03, C05, . . ., C31) placed along the
ring. Details on these diagnostic tools can be found in
Ref. [25]. A typical result before coupling correction is
shown in Fig. 3.

The distribution of skew quadrupole strengths along the
machine is derived as follows:

Jw;1 ¼ �½Kw;1 þ �Kw;1� sinð2
wÞ; (29)

where the index w ¼ 1; 2; . . . ; 256 corresponds to the po-
sition of the 256 main quadrupoles, where the skew quad-
rupole integrated strengths are inserted. Following the
procedure described in Sec. II D, the projected emittances
may be evaluated together with all other optics parameters.

IV. SCHEME FOR COUPLING CORRECTION AND
VERTICAL EMITTANCE MINIMIZATION

The ESRF storage ring is equipped with 32 independent
corrector normal quadrupoles to compensate focusing er-
rors induced by �Kw;1. Coupling (and vertical dispersion)

correction is performed by means of 32 independent skew
quadrupoles, distributed rather uniformly around the ring.

Until the end of 2009 coupling correction was performed
by minimizing along the ring either the vertical eigenemit-
tance or the apparent one (as computed by AT) via the
Matlab function FMINSEARCH. The dependence of the ver-
tical emittances on the corrector strengths being quadratic,
this resulted in a nonlinear multidimensional minimization
over 32 parameters. The main drawbacks of this approach
are CPU time (about 10 min for 500 iterations) and the risk
of limited improvements whenever a local minimum (not
necessarily the lowest) is found.

Equations (5) and (14) suggest an intuitive considera-
tion: the lower the RDTs (i.e. the coupling), the lower
the vertical emittance, as the contribution from the large
horizontal equilibrium emittance Eu is minimized. A set-
ting for the 32 skew quadrupole correctors may be then

found to minimize as uniformly as possible both coupling
RDTs along the ring. The system to invert via SVD reads

~f1001
~f1010

 !
meas ¼ �M ~Jc; (30)

where ~Jc ¼ ðJð1Þ1 ; . . . ; JðcÞ1 ; . . . ; Jð32Þ1 Þ are the integrated
strengths of the 32 corrector skew quadrupoles to be

determined, ~fT ¼ ðfð1Þ; . . . ; fðwÞ; . . . ; fð224ÞÞ is a 224 (com-
plex) vector containing the measured or computed RDT at
all BPMs, and M is the (complex) RDT ð224 	 2Þ � 32
response matrix, whose generic element according to
Eq. (10) reads

mw;c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðcÞ

x �ðcÞ
y

q
eið��

ðcÞ
w;x���ðcÞ

w;yÞ

4ð1� e2�iðQu�QvÞÞ for w 
 224; (31)

mw;c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðcÞ

x �ðcÞ
y

q
eið��

ðcÞ
w;xþ��ðcÞ

w;yÞ

4ð1� e2�iðQuþQvÞÞ for w> 224; (32)

where �ðcÞ is the beta function at the location of the skew

corrector c, and ��ðcÞ
w is the phase advance between the

same corrector and the BPM w. By inverting via SVD the
linear system of Eq. (30) the strengths for the corrector
magnets that best reduce the coupling RDTs are derived.
By itself coupling correction implies thatC2 ’ 1,S2� ’ 0,

and hence that �y ’ Ey ’ Ev. This, however, is not suffi-

cient, as the eigenemittance Ev is minimized only after a
further correction of vertical dispersion, i.e., after minimiz-
ingH y, see Eq. (27). Skewquadrupolesmay still be used to

this end. Indeed, Eq. (30) may be generalized as follows:

a1 ~f1001

a1 ~f1010

a2 ~Dy

0
BBB@

1
CCCA

meas

¼ �M ~Jc; (33)

whereM is now a ð224 	 2þ 224Þ � 32matrix. The generic
element of the additional 224� 32 block reads

mw;c ¼ �DðwÞ
y

�JðcÞ1

; (34)

where�DðwÞ
y is the vertical dispersion distortion at the BPM

number w induced by the skew corrector strength �JðcÞ1 .
These terms need to be computed by means of optics codes,
as they depend on the error lattice model. The weights
a2 ¼ 1� a1 are introduced in order to determine the best
compromise between correction of dispersion and deterio-
ration of coupling. Their determination is empirical and in
the case of the ESRF storage ring the best correction is
found for a2 ¼ 0:7. Note that the system of Eq. (33) is
analogous to the one already proposed and successfully
implemented in Ref. [14], with the difference of having
the RDTs instead of the vertical orbit distortion to be
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FIG. 3. Example of comparison between the apparent emittan-
ces Ey (before coupling correction) measured at ten available in-

air x-ray detectors (blue) and the predictions of AT (red) after
creating the lattice error model from the ORM measurement of
January 16, 2010.
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minimized. The system being linear in the corrector
strengths, it is rapid (a few CPU seconds only) and does
not require any iteration, as it determines directly the lowest
minimum for the RDTs along the ring. Attempts to perform
the nonlinear minimization on top of the RDT correction
did not provide significant improvements.

A coupling correction would be of limited help if focus-
ing errors are not previously compensated. In analogy with
their skew peers, normal quadrupole errors excite two
RDTs, f2000 and f0020, in the horizontal and vertical planes,
respectively [26]. They are so defined

f2000 ¼
P

W
w �Kw;1�

w
x e

2i��w;x

8ð1� e4�iQxÞ ; (35)

f0020 ¼
P

W
w �Kw;1�

w
y e

2i��w;y

8ð1� e4�iQyÞ ; (36)

where �Kw;1 are the focusing errors inferred from the

ORM and the strengths of the corrector quadrupoles al-
ready powered. Focusing errors may then be corrected by
solving via SVD the following system:

~f2000
~f0020

 !
meas ¼ �N ~Kc; (37)

where ~Kc ¼ ðKð1Þ
1 ; . . . ; KðcÞ

1 ; . . . ; Kð32Þ
1 Þ are the integrated

strengths of the 32 corrector normal quadrupoles to be
determined, and N is the (complex) RDT ð224 	 2Þ � 32
response matrix, whose generic element according to
Eqs. (35) and (36) reads

mw;c ¼ �ðcÞ
x eið��

ðcÞ
w;xÞ

8ð1� e4�iQxÞ for w 
 224; (38)

mw;c ¼ �ðcÞ
y eið��

ðcÞ
w;yÞ

8ð1� e4�iQyÞ for w> 224: (39)

V. RESULTS FROM THE 2010 CAMPAIGN
AT THE ESRF ELECTRON STORAGE RING

The correction scheme of Sec. IV for both focusing
errors and coupling was tested for the first time during
the machine startup of January 2010 after the winter shut-
down. First, an ORMmeasurement with the latest corrector
setting of 2009 was launched in order to verify the error
model, by comparing the vertical apparent emittances from
the AT model and the ones measured at the in-air x-ray
monitors. Results have been already shown in Fig. 3. All
measurements and correction discussed in this sections
were carried out with open ID gaps, hence referring to
the bare machine.

In order to test the effectiveness of the new proposed
scheme, all correctors (both 32 normal and 32 skew quad-
rupoles) were switched off. Despite the large errors (beta
beating of about 50% and vertical apparent emittances of

the order of hundreds of pm) stable beam could be stored.
The vertical apparent emittance measured along the ring
before the first correction is shown in the upper left plot of
Fig. 4, providing an average emittance, as defined in
Eqs. (16) and (17), ð ��y � ��yÞ ¼ 237� 122 pm. Error

bars on individual monitors are derived from the inferred
beta beating. After a first focusing correction, beta beating
went down to about 8%, and ð ��y � ��yÞ ¼ 23:6� 6:3 pm,

see center left plot of Fig. 4. A second ORM measurement
and correction was then applied providing a further reduc-
tion of coupling, yielding ð ��y � ��yÞ ¼ 11:5� 4:3 pm, as

shown in the bottom left plot of Fig. 4, while no further
improvement was observed in the beta beating. The am-
plitudes of the coupling RDTs corresponding to the three
cases are displayed in the right graphs.
A further ORM measurement and correction did not

reduce significantly the latest results. On the contrary, a
slow vertical emittance increase was observed without any
further change in the corrector magnets. This was sus-
pected to be related to a slow vacuum instability due to
the limited time of conditioning (three days after shut-
down). The absence of such a slow increase after a few
weeks of operations supported this conjecture. In Table I
the main observables measured during the experiment of
January 16th are summarized.
In further optimization tests it was possible to bring all

vertical apparent emittances measured at the in-air x-ray
monitors well below 10 pm, whereas the values reported by
the two pinhole cameras would stay constantly well above.
It was suspected that at very low vertical emittance, the
installed vertical pinhole of 25 �m might define a lower
limit to the measurable beam size. To confirm this con-
jecture, a test was carried out on the D25 pinhole camera in
February 10th. With the 25 �m pinhole a stable value of
EyðD25Þ ¼ 17 pm was reported. After switching to a

10 �m aperture, the read value dropped to EyðD25Þ ¼
9:5 pm. With this confirmation it was however decided to
remove both cameras in the computation of the average
emittance for very low values around 5 pm, in order to
avoid further systematic errors induced by the finite
pinhole size.
The lowest vertical emittance ever measured at the

ESRF was obtained during the machine studies of
July 22, 2010, after minimizing coupling RDTs and verti-
cal dispersion, again at open ID gaps. Results are shown in
Fig. 5 (note that the C05 monitor of January 16th was out
of order and replaced by C03). In the plot it is still possible
to observe how the apparent emittance measured at the two
pinhole cameras equipped with a 10 �m aperture are still
about a factor 2 larger than the values reported by the x-ray
monitors. The monitor in cell 25 reported EyðC25Þ ¼
4:6� 0:5 pm, while the neighbor camera provided
EyðD25Þ ¼ 9:5� 0:5 pm. By computing the mean vertical

emittance from the available ten x-ray monitors the follow-
ing value was derived:
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� y � ��y ¼ ð4:4� 0:7Þ pm:

Being the horizontal emittance measured at both pinhole
cameras �x ¼ ð4:2� 0:2Þ nm, this corresponds to an emit-
tance ratio of about 0:1%.
It is worthwhile noticing that in general at the ESRF

storage ring jf1010j � jf1001j (see right column of Fig. 4),
i.e., that it is not possible to neglect the contribution of the
coupling sum resonance. This is a general feature of this
accelerator, as of any machine with tunes having a large
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FIG. 4. Left column: Vertical apparent emittances Ey measured along the ESRF storage ring with all correctors off (upper plot), after
first correction with minimization of coupling RDTs and vertical dispersion (center plot), and after a second measurement and
correction (bottom plot). The names in the abscissa refer to the used monitors: ten (out of 11) in-air x-ray monitors (from C05 to C31)
and two pinhole cameras (D09 and D25). Right column: Amplitude of the corresponding coupling RDTs.

TABLE I. Summary table of the first correction with RDTs of
January 16, 2010. The corresponding horizontal emittance is
�x ’ Ex ’ Eu ’ 4 nm. Beta beat refers to the peak value.

Condition ��y � ��y [pm] � beat [%]

With 2009 correction 46� 18 5

All correctors OFF 237� 122 50

After 1st correction 23:6� 6:3 8

After 2nd correction 11:5� 4:3 5
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difference between the integer parts of the tunes (Qx ¼
36:44 and Qy ¼ 13:39 in the case of the ESRF). Even in

the best case of Fig. 5 the coupling resonance strengths, as
defined in Ref. [21], are jCþj ¼ 3� 10�3 and jC�j ¼
0:9� 10�3. By using the same procedure of Ref. [3] to
evaluate the vertical emittance from the �x and jC�j only,
the result would be a factor 2 lower than the real one.

VI. PRESERVING LOW VERTICAL EMITTANCE
AGAINST ID GAP MOVEMENTS

As already mentioned in the Introduction, coupling cor-
rection at open ID gaps may not last during beam delivery,
because of the continuous changes of the vertical apertures.
The residual magnetic imperfections in some IDs may

include gap-dependent skew quadrupoles terms. This con-
cerns mainly high-field wigglers installed more than ten
years ago or small-gap devices such as in-vacuum undu-
lators. An example of the impact of ID gap movements on
the apparent vertical emittance recorded at 12 monitors on
January 20th during normal beam delivery is shown in
Fig. 6. The sudden closure of the ID13 gap from 18 to
6 mm augments coupling and both ��y and ��y increase of

about a factor two. The further closure of ID6 about 1 h
later compensates partly the impact of ID13, by reducing
both ��y and ��y of about 20%.

For the time being, ORM may not be measured during
beam delivery. Hence, any automatic correction should be
based on the knowledge of the amount of coupling intro-
duced by IDs against the values of their gaps. Correction
look-up tables may then be used to compensate for them.
Alternatively, the strengths of corrector skew quadrupoles
may be dynamically trimmed to minimize ��y. The first

(feed-forward) approach is discussed hereafter, while the
practical implementation of the second (feedback) is pre-
sented in the second part of this section.
In the ESRF storage rings dual-plane iron-free corrector

steerers are installed at both ends of each straight section
(see Fig. 7). They are however used in nine regions only,
where IDs induce important gap-dependent integrated di-
pole errors. In this case, dipole correctors are controlled in
a feed-forward process using look-up tables created from
beam-based measurements. The structure of these correc-
tors is such that they can be configured as skew quadrupole
correctors by modifying the electrical wiring between the
coils. The integrated skew quadrupole gradient generated
in this way is 3:5 mT=A (from magnetic measurements).
Thanks to the excellent coupling correction of the bare
machine, any additional coupling induced by an individual
IDmay be easily quantified and corrected. By repeating the
same procedure separately with other IDs, low vertical
emittance may be preserved even during beam delivery,
betatron coupling being linear.
It is worthwhile mentioning that in principle four skew

correctors would be needed in order to compensate the two
(complex) RDTs, as two are necessary to compensate each
excited resonance. Nevertheless, the vertical phase ad-
vance between the two ID ends is usually rather small,
hence ensuring that by correcting to contribution to either
resonance, the other is automatically compensated.
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FIG. 7. Drawings of an ESRF straight section housing two
undulators. Corrector steerers (blue ellipse) are placed at both
ends.

A. FRANCHI et al. Phys. Rev. ST Accel. Beams 14, 034002 (2011)

034002-10



A proof-of-principle test was carried out on May 5,
2010. The in-vacuum undulator ID6 was chosen as it was
known to be one of the most important coupling sources at
low gap values. The influence of this ID gap movement on
the vertical emittance is reported in Table II and plotted in
Fig. 8: At its minimum aperture value, the vertical mean
emittance ��y and spread ��y were both augmented of about

50%. At each step reported in the table, the setting of the
two skew correctors that would bring back the vertical
emittance to its initial value was empirically determined
and stored in a look-up table. Intermediate values are
determined via linear interpolation of the two neighbor
measured points. In the most right column of Table II, as
well as in Fig. 8, it is shown how effective such a scheme
may be. After the successful test, the correction was left in
operation during beam delivery and a program for its
extension to other IDs has been launched.

A coupling feedback loop recently tested and put in
operation consists in dynamically adjusting the 32 skew
quadrupole correctors to preserve the lowest average ver-
tical emittance ��y. Coupling may be described by two

complex numbers (vectors) Cþ and C� [21], for the
sum and difference resonances, respectively, defined as
follows:

C� ¼ XW
w

Jw;1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�w

x �
w
y

q
ei�w;� ;

�w;� ¼ �w;x ��w;y � ðQx �Qy � N�Þ2�sw=C; (40)

where � and � are the Twiss parameters, Jw;1 are the

integrated skew quadrupole strengths (in units of m�1),
sw denotes the curvilinear abscissa around the ring of the
coupling source, Qx;y are the tunes, and N� are integer

numbers. In the case of the ESRF storage ringQx ¼ 36:44,
Qy ¼ 13:39, Nþ ¼ 50, and N� ¼ 23. The two vectors

may be decomposed in

C� ¼ C�;b:m: þ C�;static
corr þ C�;IDsðtÞ þ C�;tr

corrðtÞ:

C�;b:m: represents the (static) coupling generated by the

bare machine and ID at fixed gap apertures and is corrected
via RDT and vertical dispersion minimization by
C�;static

corr, as discussed in Sec. IV. Coupling variations

induced by ID gap movements induce an additional time-
dependent C�;IDsðtÞ. On top of the static correction, the 32

corrector skew quadrupoles may be trimmed to introduce a
time-dependent compensation, C�;tr

corrðtÞ that cancels

C�;IDsðtÞ. The correctors’ strengths would then be com-

posed by

Jw;1
corr ¼ Jw;1;static

corr þ Jw;1;tr
corrðtÞ; w ¼ 1; . . . ; 32:

The time-dependent correction may be then written as

C�;tr
corrðtÞ ¼ X32

w¼1

Jw;1;tr
corrðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�w

x �
w
y

q
ei�w;� ¼ A�ðtÞei��ðtÞ:

(41)

The four parameters A� and �� may be varied via a
software application (depicted in Fig. 9). The figure of
merit for the definition of the best setting is the mean value
of the vertical apparent emittances measured at the 11 in-
air x-ray monitors, ��y, which is automatically evaluated at

the frequency of 1 Hz. Until November 2010, operators
would trim A� and �� by trials and errors. Recently, a
coupling feedback loop was installed to periodically vary
A� and �� to minimize ��y (the further correction of the

sum resonance was found to be of minimal benefit).
Figure 10 shows a comparison between the vertical emit-
tance evolution during one week of beam delivery with and
without the coupling feedback. In the later case, uncom-
pensated ID gap movements during the first day caused ��y
to reach 30 pm (from the initial 6 pm). Low emittance is
retrieved only after a manual regulation of A� and ��.
When the automatic loop was activated a few weeks later,
��y remained stable between 6 and 7 pm.

TABLE II. Mean vertical emittance ��y and spread ��y mea-
sured against the vertical aperture of the ID6 in-vacuum undu-
lator. The first column refers to the existing uncorrected setting,
while the second was obtained after implementing correction
look-up tables.

ID6 undulator

gap [mm]

��y � ��y [pm] without

correction

��y � ��y [pm] with

look-up table

30 5:1� 1:1 4:9� 1:1
15 5:1� 1:1 4:9� 1:1
10 5:6� 1:2 4:8� 1:1
8 6:0� 1:2 4:8� 1:1
7 6:3� 1:3 4:8� 1:1
6.5 6:6� 1:4 4:9� 1:1
6 7:7� 1:6 4:9� 1:1

6 9 12 15 18 21 24 27 30
ID6 undulator vertical aperture [mm]
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FIG. 8. Mean vertical emittance ��y measured against the ver-
tical aperture of the ID6 in-vacuum undulator without any
correction (red circles) and with automatic coupling compensa-
tion (blue diamonds). Error bars corresponds to the spread ��y of

Table II.
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VII. CONCLUSION

The resonance driving terms formalism was applied to
betatron coupling in electron storage rings. Analytical
formulas have been derived establishing a clear correlation
between the different definitions of vertical emittance. On
the wake of this, a correction scheme was conceived for
coupling correction and vertical emittance minimization.
The application of this scheme to the ESRF storage ring
resulted in a record low vertical emittance of ð4:4�
0:7Þ pm, corresponding to an emittance ratio between the
two transverse planes of about 0.1%. Two procedures for

the automatic compensation of coupling introduced by
insertion devices were devised and successfully tested,
providing a stable vertical emittance within 6 and 7 pm
during beam delivery.
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APPENDIX A: RMS TRANSVERSE EMITTANCES
AND TWISS PARAMETERS IN PRESENCE OF

COUPLING, DESCRIPTION IN THE RDT
FORMALISM

In this Appendix the single particle turn-by-turn motion,
represented by the complex Courant-Snyder coordinate
hrðNÞ ¼ ~rðNÞ � i~prðNÞ, where r stands for either x or y,
with N the number of turns, is described in terms of
coupling RDTs and normal form coordinates [16,27]:

��r ðNÞ ¼ ffiffiffiffiffiffiffi
2Ir

p
e�ið2�NQrþc rÞ; (A1)

where 2Ir and c r are action-and-phase coordinates. In the
linear case 2Ir reduce to the linear Courant-Snyder single-
particle invariants. With coupling they correspond to the
two eigenmode invariants, while in the presence of non-
linearities, they provide the nonlinear invariants.
Electron beams experiencing radiation damping lose

memory of their initial parameters to reach, after a tran-
sient phase, and equilibrium state between radiation damp-
ing and diffusion. It can be argued that the use of the Lie
algebra and RDT formalism of Refs. [18–20] is not legiti-
mate, these two processes not being Hamiltonian (the
betatron phase space volume is not preserved). The use
of the normal form single-particle invariants

ffiffiffiffiffiffiffi
2Ir

p
may be

in contradiction with the fact that under radiation damping
and diffusion, such invariants are not well defined, even
though their RMS values are in equilibrium, hence invari-
ant. A practical way out may be found with the following
consideration: even though

ffiffiffiffiffiffiffi
2Ir

p
may not be considered as

integrals of motion, they can be considered so within a
temporal window of several turns, both the effects of
radiation and diffusion being slow compared to the beta-
tron motion (damping time at the ESRF storage ring is
7 ms, corresponding to about 2500 turns, and each turn the
beam executes tens of betatron oscillations, the tunes being
Qx ¼ 36:44 and Qy ¼ 13:39). Therefore the RMS equilib-

rium emittances Eu;v may be computed assuming an arbi-

trary stationary distribution.
The scope of this Appendix is the derivation of the RMS

apparent and projected emittances as functions of the
equilibrium emittances and the coupling RDTs. The evalu-
ation of all second-order moments allow the derivation of
analytical expressions relating the eigen-Twiss parameters

FIG. 9. Snapshot of the software application driving the trim
values for the 32 skew quadrupole correctors. Amplitude A
(already normalized in terms of magnet current) and phase �
for both resonances may be varied either by hand or by a
coupling feedback software loop.

FIG. 10. Comparison between the mean vertical apparent emit-
tance ��y measured during beam delivery without (top) and with

(bottom) the coupling feedback. Data acquired during injections
are not displayed.
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�ij, �ij, and �ij to the uncoupled Twiss parameters and the

RDTs.
The starting point is the betatron single particle turn-by-

turn motion derived in Ref. [20]:

hxðNÞ ¼ coshð2P Þ��x ðNÞ
� i sinhð2P Þ

�
f1001
P

��y ðNÞ þ f1010
P

�þy ðNÞ
�

hyðNÞ ¼ coshð2P Þ��y ðNÞ
� i sinhð2P Þ

�
f�1001
P

��x ðNÞ þ f1010
P

�þx ðNÞ
�
; (A2)

where P , f1001, and f1010 have been already introduced in
Eqs. (9) and (10). As stated in the Introduction, dispersion
contributions are assumed to be already subtracted, leaving
pure betatron coordinates. By inserting the definitions of C
and S� of Eqs. (6)–(8), the above equations may be
rewritten as

hxðNÞ¼~xðNÞ�i~pxðNÞ
¼C��x ðNÞ�iS�eiq���y ðNÞ�iSþeiqþ�þy ðNÞ

hyðNÞ¼~yðNÞ�i~pyðNÞ
¼C��y ðNÞ�iS�e�iq���x ðNÞ�iSþeiqþ�þx ðNÞ: (A3)

The above system needs to be rewritten in terms of the real
Cartesian coordinates. The following relations and defini-
tions are used:

��r ¼ ffiffiffiffiffiffiffi
2Ir

p
e�ið2�NQrþc rÞ ¼ ffiffiffiffiffiffiffi

2Ir
p ½cosðrÞ � i sinðrÞ�;

r ¼ 2�NQr þ c r: (A4)

r stands as usual for either x or y. The real Courant-Snyder
coordinates then read

~x ¼ C
ffiffiffiffiffiffiffi
2Ix

p
cosðxÞ þ

ffiffiffiffiffiffiffi
2Iy

q
½S� sinðy þ q�Þ

� Sþ sinðy � qþÞ�
~px ¼ �C

ffiffiffiffiffiffiffi
2Ix

p
sinðxÞ þ

ffiffiffiffiffiffiffi
2Iy

q
½S� cosðy þ q�Þ

þ Sþ cosðy � qþÞ�; (A5)

~y ¼ C
ffiffiffiffiffiffiffi
2Iy

q
cosðyÞ þ

ffiffiffiffiffiffiffi
2Ix

p ½S� sinðx � q�Þ
� Sþ sinðx � qþÞ�

~py ¼ �C
ffiffiffiffiffiffiffi
2Iy

q
sinðyÞ þ

ffiffiffiffiffiffiffi
2Ix

p ½S� cosðx � q�Þ
þ Sþ cosðx � qþÞ�: (A6)

Being the Courant-Snyder transformation symplectic, ap-
parent and projected emittances can be evaluated in this
coordinate system, being

�2r ¼ �r�p � �2
rp ¼ ~�r ~�p � ~�2

rp; (A7)

E r ¼ ~�2
r : (A8)

The mean value of a generic function FðIx; Iy; c x; c yÞ is
computed by integrating its product with the particle dis-
tribution function, 	ðIx; I; y; c x; c yÞ. By making use of the

physical constraints imposed by the equilibrium state, and
hence by the matching condition, 	 may not depend on the
phases (i.e. all phases are equally probable). Being the two
normal form variables representatives of eigenmodes,
	 may be decomposed as the product of two independent
distribution, 	ðIx; IyÞ ¼ 	xðIxÞ � 	yðIyÞ. This pro-

perty makes it possible to ignore all integrands /ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ix2Iy

p
ei�ðc x�c yÞ, i.e.,

hgðc x; c yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2IxÞð2IyÞ

q
ei�ðc x�c yÞi ¼ 0; (A9)

where g is an arbitrary function.
In computing the products of the Courant-Snyder coor-

dinates, several trigonometric terms appear. However, only
few contribute to the RMS values when averaging over the
phases c r, i.e., over r, the 2�NQr being only a constant
term, that is transparent to the integral. The following
relations apply and are used in the next computations
(even if not made explicit, all integrals are defined over a
limited range: c r 2 ½0; 2�� and Ir 2 ½0; Ir;max�):

hFi¼ 1

ð2�Þ2AuAv

�
Z
FðIx;Iy;c x;c yÞ	xðIxÞ	yðIyÞdc xdc ydIxdIy; (A10)

2Eu;v¼ 1

Au;v

Z
ð2Ix;yÞ	x;ydIx;y; Au;v¼

Z
	x;ydIx;y; (A11)

0¼
Z
sinðMrÞdr¼

Z
cosðMrÞdr; M2Z�0 (A12)

� ¼
Z

sin2ðrÞdr ¼
Z

cos2ðrÞdr; (A13)

where Eu;v are the equilibrium emittances. Other trigono-

metric terms whose mean values differ from zero are

hsinðr þ q�Þ sinðr þ q�Þi ¼ � cosðq� � q�Þ; (A14)

hcosðr þ q�Þ cosðr þ q�Þi ¼ � cosðq� � q�Þ; (A15)

hsinðr þ q�Þ cosðr þ q�Þi ¼ � sinðq� � q�Þ: (A16)

By making use of the above definitions and properties, the
second-order moments of Eqs. (A5) and (A6) can be
computed. The final result is
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~�2
x ¼ C2Eu þ ½S2� þ S2þ � 2S�Sþ cosðqþ þ q�Þ�Ev;

~�2
y ¼ ½S2� þ S2þ � 2S�Sþ cosðqþ � q�Þ�Eu þ C2Ev;

~�2
px

¼ C2Eu þ ½S2� þ S2þ þ 2S�Sþ cosðqþ þ q�Þ�Ev;

~�2
py

¼ ½S2� þ S2þ þ 2S�Sþ cosðqþ � q�Þ�Eu þ C2Ev;

~�xpx
¼ ½2SþS� sinðqþ þ q�Þ�Ev;

~�ypy
¼ ½2SþS� sinðqþ � q�Þ�Eu (A17)

It is worthwhile noticing that unless either S� or Sþ is
negligible as compared to the other, the equilibrium
Courant-Snyder phase space is not a circle anymore,
being ~�r � ~�p, ~�rp � 0. This is equivalent to the fact

that Er � �r.
The projected emittances of Eq. (A7) eventually read

�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2Eu þ ½S2� þ S2þ�EvÞ2 � ð2SþS�EvÞ2

q
; (A18)

�y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2Ev þ ½S2� þ S2þ�EuÞ2 � ð2SþS�EuÞ2

q
; (A19)

proving Eqs. (13) and (14). The apparent emittances of
Eqs. (4) and (5) instead are

Ex¼ ~�2
x

¼C2Euþ½S2�þS2þ�2S�Sþcosðqþþq�Þ�Ev; (A20)

Ey¼ ~�2
y

¼C2Evþ½S2�þS2þ�2S�Sþcosðqþ�q�Þ�Eu: (A21)

Formulas in Eq. (A17) may be expressed in Cartesian
coordinates after the inverse Courant-Snyder transforma-
tion

~r ¼ W�1
r

~~r;! r

p

 !
¼ ð�rÞ1=2 0

��rð�rÞ�1=2 ð�rÞ�1=2

 !
~r

~p

 !
;

(A22)

where the Twiss parameters are the one computed from the
linear uncoupled lattice. The following relation between
the second-order moments applies:

�2
r ¼ �r ~�

2
r ; (A23)

�2
p ¼ 1

�r

½�2
r ~�

2
r þ ~�2

p � 2�r ~�pr�; (A24)

�pr ¼ ��r ~�
2
r þ ~�pr: (A25)

After some algebra the same RMS moments may be re-
written as

�2
x¼�11Euþ�12Ev; �2

y¼�21Euþ�22Ev;

�2
px
¼�11Euþ�12Ev; �2

py
¼�21Euþ�22Ev;

�xpx
¼��11Euþ��12Ev; �ypy

¼��21Euþ��22Ev;

(A26)

where the generalized coupled Twiss parameters read

�11 ¼ �xC2

�12 ¼ �x½S2� þ S2þ � 2S�Sþ cosðqþ þ q�Þ�
�21 ¼ �y½S2� þ S2þ � 2S�Sþ cosðqþ � q�Þ�
�22 ¼ �yC2;

(A27)

�11 ¼ �xC2

�12 ¼ �x½S2� þ S2þ � 2S�Sþ cosðqþ þ q�Þ�
� 2S�Sþ sinðqþ þ q�Þ

�21 ¼ �y½S2� þ S2þ � 2S�Sþ cosðqþ � q�Þ�
� 2S�Sþ sinðqþ � q�Þ

�22 ¼ �yC2;

(A28)
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FIG. 11. Comparison between the coupled Twiss parameters as computed by MADX-PTC (Twiss module) and the ones from
Eqs. (A27)–(A29) (zoom of the entire ring length of 844 m). Parameters refer to the ESRF storage ring lattice with the same
coupling of Fig. 1. The uncoupled Twiss parameters, �, �, and �, are obtained from the MADX by using the ideal uncoupled lattice.
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�11 ¼ �xC2

�12 ¼ �x

�
S2� þ S2þ þ 1� �2

x

1þ �2
x

2S�Sþ cosðqþ þ q�Þ

� 4�x

1þ �2
x

S�Sþ sinðqþ þ q�Þ
�

�21 ¼ �y

�
S2� þ S2þ þ 1� �2

y

1þ �2
y

2S�Sþ cosðqþ � q�Þ

� 4�y

1þ �2
y

S�Sþ sinðqþ � q�Þ
�

�22 ¼ �yC2: (A29)

In a decoupled lattice (C ¼ 1, S� ¼ 0) all 12—and 21—
parameters are zero, while those labeled with 11 and 22
correspond to the horizontal and vertical ones, respectively.
Codes such as MADX-PTC are capable to compute the
generalized Twiss parameters. A comparison between the
latter and the ones computed via Eqs. (A27)–(A29) is
shown in Fig. 11 (the ESRF storage ring lattice is used
with the same coupling of Fig. 1). The agreement is
remarkable.

APPENDIX B: EQUILIBRIUM TRANSVERSE
EMITTANCES IN PRESENCE OF COUPLING:
DESCRIPTION IN THE RDT FORMALISM

Introduction and basic definitions.—In Eq. (A11) the
equilibrium emittances Eu;v have been left only implicitly

defined. The scope of this Appendix is the derivation of
explicit analytic formulas for their evaluation in terms of
the damping and diffusion terms, the dispersion invariants,
and the coupling RDTs. To this end RDT formalism is
merged to the one developed in Ref. [8], whose main
definitions and results are here summarized for the sake
of consistency.

The turn-by-turn evolution of a single particle is de-
scribed by a 4D vector ~z ¼ ðx; px; y; pyÞ (longitudinal mo-

tion is here assumed to be decoupled and ignored) and the
one-turn map MðsÞ according to

~z sþC ¼ MðsÞ~zs; (B1)

where C is the circumference, and s is the generic location
at which the dynamics is observed.MðsÞ is symplectic and
its eigenvectors ~v�1;�2, properly normalized (details can

be found in Ref. [8]), may be used to define a symplectic
matrix U, such that

M ¼ Ue�U�1;

e� ¼

eiQu 0 0 0

0 e�iQu 0 0

0 0 eiQv 0

0 0 0 e�iQv

0
BBBBB@

1
CCCCCA: (B2)

Two invariant matrices defined as follows:

Gi ¼ �Jð ~v�
i ~v

T
i þ ~vi ~v

y
i ÞJ; i ¼ 1; 2; (B3)

J ¼

0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0

0
BBBBB@

1
CCCCCA; (B4)

determine the covariance matrix (i.e. the second-order
moments) �ij ¼ hzizji, according to

� ¼ �uEu þ�vEv; �u ¼ �JG1J;

�v ¼ �JG2J: (B5)

The diffusion integrals �di read

�di¼
I
Tr½GiD��ds; i¼1;2; D�¼BDsBT; (B6)

where the diffusion and dispersion matrices, Ds and B,
respectively, are so defined:

Ds ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 dðsÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (B7)

B ¼

1 0 0 0 0 �Dx

0 1 0 0 0 �D0
x

0 0 1 0 0 �Dy

0 0 0 1 0 �D0
y

�Dx �D0
x �Dy �D0

y 1 0

0 0 0 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: (B8)

Even though D� needs to be a 6� 6 matrix including

longitudinal dispersive terms, only the upper left 4� 4
block enters in the product GiD� of Eq. (B6). dðsÞ is the
same of Eq. (20).
The two damping integrals can be expressed in terms of

U and of the damping matrix B, according to

�1 ¼
I
½A11 þ A22�ds; �2 ¼

I
½A33 þ A44�ds; (B9)

where

A ¼ U�1B�U; B� ¼ BBB�1; (B10)
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B ¼

0 0 0 0 0 0
0 bRF 0 0 0 0
0 0 0 0 0 0
0 0 0 bRF 0 0
0 0 0 0 0 0
b�x 0 b�y 0 0 bz

0
BBBBBBBB@

1
CCCCCCCCA
: (B11)

The damping coefficients brf and b�r are the same of
Eqs. (22) and (23), while bz ¼ P�cP0. As for diffusion,

only the first 4� 4 block of B� will be used in the

computation of A. The transverse equilibrium emittances
are eventually given by

Eu ¼ 1

2

�d1
�1

; and Ev ¼ 1

2

�d2
�2

: (B12)

U matrix and RDTs.—The connection between cou-
pling RDTs and the above relations is carried out by mak-
ing explicit the matrix U of Eq. (B2). To this end the
system of Eq. (A3), evaluated at N ¼ 1, can be written as

~h ¼ F�1ei� ~�0; (B13)

where ~h ¼ ðhx; h�x; hy; h�yÞ, ~�0 ¼ ð�þx0; ��x0; �þy0; ��y0Þ, with

��r0 ¼
ffiffiffiffiffiffiffi
2Ir

p
e�ic r0 (r stands for either x or y). The (complex)

matrix F�1 instead reads

F�1¼

C 0 �iS�eiq� �iSþeiqþ

0 C� iS�þe�iqþ þiS��e�iq�

�iS�e�iq� �iSþeiqþ C 0

iS�þe�iqþ iS��eiq� 0 C�

0
BBBBB@

1
CCCCCA:

(B14)

~�0 can be expressed in terms of ~h0 by inverting the same
system of Eq. (B13) at N ¼ 0, yielding to

~z 0 ¼ F ~h0: (B15)

The complex Courant-Snyder coordinates ~h are obtained
from the Cartesian ones of ~z via the following (nonsym-
plectic) transformation:

~h¼PW~z; P¼ Pc 0

0 Pc

 !
; W¼ Wx 0

0 Wy

 !
: (B16)

Wr are the same 2� 2 matrix of Eq. (A22), whereas the
4� 4 matrix P transforms the real Courant-Snyder coor-
dinates ð~r; ~pÞ in the complex set ðhr; h�rÞ, the 2� 2 blockPc

reading

Pc ¼
1 �i

1 i

 !
: (B17)

By inserting Eqs. (B16) and (B15) in Eq. (B13), the system
reads

~z ¼ ðFPWÞ�1ei�ðFPWÞ ~z0;) U ¼ ðFPWÞ�1; (B18)

where the last equation follows the definition ofU given in
Eq. (B2). It is however more convenient to perform all
calculations in the Courant-Snyder coordinates (with
Twiss parameters from the ideal, uncoupled lattice)

~~z ¼ ðFPÞ�1ei�ðFPÞ~~z0;) ~U ¼ ðFPÞ�1: (B19)

The reason is twofold. First, both the diffusion and damping
integrals of Eqs. (B6) and (B9) apply on matrix traces, that
are invariant under symplectic transformations, such as the
Courant-Snyder. Second, the evaluation of the covariance
matrices �u;v of Eq. (B5) in these coordinates will provide

directly another analytical derivation of the generalized
Twiss parameters. The matrix ~U reads

~U ¼ 1

2i

iC iC� U3 �iU�
3

�C C� iU4 iU�
4

U1 �U�
1 iC iC�

iU2 iU�
2 �C C�

0
BBBBB@

1
CCCCCA; (B20)

where

U1 ¼ S�e�iq� � S�þe�iqþ

U2 ¼ S�e�iq� þ S�þe�iqþ

U3 ¼ S�eþiq� � S�þe�iqþ

U4 ¼ S�eþiq� þ S�þe�iqþ :

(B21)

It can be shown that ð ~Uei� ~U�1Þ is a 4� 4 real symplectic
matrix. The definition of ~U given in Eq. (B20) requires
however a further transformation. Indeed, in Ref. [8] it is
requested that the matrix is built from four 4D column
eigenvectors of M, ~v�1;�2, properly normalized, in the

form

U ¼ ð ~v1 ~v�1 ~v2 ~v�2Þ; where ~v�i ¼ i ~v�
i : (B22)

In order to satisfy the above structure and the requested
normalization, the following matrix is obtained:

~U ¼ 1ffiffiffi
2

p

iC C� U3 iU�
3

�C �iC� iU4 U�
4

U1 iU�
1 iC C�

iU2 U�
2 �C �iC�

0
BBBBB@

1
CCCCCA: (B23)

It can be shown that ~U is symplectic and that is derived
from ~U after the following transformation:

~U ¼ ~UA; A ¼ ffiffiffi
2

p
i 0 0 0

0 1 0 0

0 0 i 0

0 0 0 1

0
BBBBB@

1
CCCCCA: (B24)

It is straightforward to prove that ð ~Uei� ~U�1Þ ¼
ð ~Uei� ~U�1Þ and hence that

~~z ¼ ~Uei� ~U�1~~z0; (B25)
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where ~~z ¼ ð~x; ~px; ~y; ~pyÞ is the 4D coordinate vector in

Courant-Snyder.

Generalized coupled Twiss parameters.—The matrix ~U
of Eq. (B23) and its two eigenvectors ~v1 ¼
1=

ffiffiffi
2

p ðiC;�C; U1; iU2Þ and ~v2 ¼ 1=
ffiffiffi
2

p ðU3; iU4; iC;�CÞ
may now be used to derive the two (real and symmetric)
invariant matrices in Courant-Snyder from Eq. (B3),
yielding

~G1¼

C2 0 �C<fiU2g C<fU1g
0 C2 �C<fU2g �C<fiU1g

�C<fiU2g �C<fU2g jU2j2 �<fiU�
1U2g

C<fU1g �C<fiU1g �<fiU�
1U2g jU1j2

0
BBBBB@

1
CCCCCA

(B26)

~G2¼

jU4j2 �<fiU�
3U4g C<fiU�

4g �C<fU4g
�<fiU�

3U4g jU3j2 C<fU3g C<fiU�
3g

C<fiU�
4g C<fU3g C2 0

�C<fU4g C<fiU�
3g 0 C2

0
BBBBB@

1
CCCCCA;

(B27)

where <f	g denotes the real part. The covariant matrices

are inferred from ~G1;2 according Eq. (B5) and from the

inverse Courant-Snyder transformation [~~zT ~��1~~z ¼
~zTðWT ~��1WÞ~z ) ��1 ¼ WT ~��1W ) � ¼
W�1 ~�ðW�1ÞT]

~� u;v¼�J ~G1;2J)�u;v¼�W�1J ~G1;2JðW�1ÞT; (B28)

where W�1 is the inverse matrix of Eq. (B16) and ðW�1ÞT
denotes its transpose. The evaluation of �u;v in Eq. (B28)

provides the same generalized coupled Twiss parameters of
Eqs. (A27)–(A29), after noting that

�u ¼

�11 ��11

��11 �11

�uv

�uv

�21 ��21

��21 �21

0
BBBBB@

1
CCCCCA; (B29)

�v ¼

�12 ��12

��12 �12

�vu

�vu

�22 ��22

��22 �22

0
BBBBB@

1
CCCCCA; (B30)

where �uv and �vu are 2� 2 blocks.
Diffusion integrals.—The diffusion integrals are ob-

tained from Eq. (B6) after evaluating

Tr½GiD��¼Tr½ ~Gi
~D��¼;i¼1;2; ~D�¼ ~BDs

~BT: (B31)

Since ~z� ¼ B~z and ~~z ¼ W~z, ~B ¼ WB, i.e.,

~B ¼

1=
ffiffiffiffiffiffi
�x

p
0 0 0 0 � ~Dx

�x=
ffiffiffiffiffiffi
�x

p ffiffiffiffiffiffi
�x

p
0 0 0 � ~D0

x

0 0 1=
ffiffiffiffiffiffi
�y

p
0 0 � ~Dy

0 0 �y=
ffiffiffiffiffiffi
�y

p ffiffiffiffiffiffi
�y

p
0 � ~D0

y

� ~Dx � ~D0
x � ~Dy � ~D0

y 1 0

0 0 0 0 0 1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;

(B32)

where ~Dr and ~D0
r are the dispersion functions in Courant-

Snyder and H r ¼ ~D2
r þ ~D02

r . The evaluation of Eq. (B31)
yields

Tr½G1D�� ¼ �dðsÞfC2H 2
x þ ½S2� þ S2þ�H 2

y þ R1g
Tr½G2D�� ¼ �dðsÞfC2H 2

y þ ½S2� þ S2þ�H 2
x þ R2g;

where the terms R1;2 oscillate with q� and are assumed to

have a negligible contribute to the diffusion integrals,
which eventually read

�d1 ¼
I

dðsÞfC2H 2
x þ ½S2� þ S2þ�H 2

ygds

�d2 ¼
I

dðsÞfC2H 2
y þ ½S2� þ S2þ�H 2

xgds; (B33)

where dðsÞ has been already introduced in Eq. (20). It is
worthwhile noticing that the sum rules for the diffusion
integrals are easily retrieved from Eqs. (B33) and (12) in
two extreme cases:

�d1þ �d2¼ const forS2þ�S2�ðdiff resonanceÞ;
�d1� �d2¼ const forS2��S2þðsum resonanceÞ:

(B34)

Damping integrals.—The damping integrals are derived
from Eqs. (B8)–(B11). In Eq. (B10) U needs to be re-

placed by ~U to account for the Courant-Snyder transfor-
mation. Equation (B10) then reads

A ¼ ~U�1B�
~U; (B35)

where ~U has been derived in Eq. (B23). Only the upper left
4� 4 block of the 6� 6 matrix B� is considered in the

products with the 4� 4 matrix ~U, synchrobetatron cou-
pling not being included here. Only the four diagonal
elements of A are of interest for the damping integrals.
Their sums read

A11 þ A22 ¼ C2bRF þ ½S2� � S2þ�bRF � C2Dxb�x

� ½S2� � S2þ�Dyb�y þ R3

A22 þ A33 ¼ C2bRF þ ½S2� � S2þ�bRF � C2Dyb�y

� ½S2� � S2þ�Dxb�x þ R4; (B36)

where the terms R3;4 oscillate with q� and are assumed to

have a negligible contribute to the diffusion integrals.
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Since 1 ¼ C2 þ S2� � S2þ, see Eq. (12), the damping
integrals eventually read

�1 ¼
I
fbRF � C2Dxb�x � ½S2� � S2þ�Dyb�ygds

�2 ¼
I
fbRF � ½S2� � S2þ�Dxb�x � C2Dyb�ygds: (B37)

Equations (26) and (27) are obtained from the diffusion
and damping integrals through Eq. (B12).

Two limit cases are of interest. First, consider the case
with a tune working point close to the sum resonance (1,1)
and betatron coupling such that jf1001j � jf1010j anywhere
in the ring. In this case P ! jf1010j, S2� � S2þ, and 1 ¼
C2 � S2þ. The two diffusion coefficients then simplify to

�1 ¼ C2�x � S2þ�y �2 ¼ �S2þ�x þ C2�y; (B38)

where the uncoupled damping coefficients are defined as

�x ¼
I
½brf �Dxb�x�ds; (B39)

�y ¼
I
½brf �Dyb�y�ds: (B40)

After expanding the RDT functions

C 2 ¼ coshð2jf1010jÞ; (B41)

S 2þ ¼ sinhð2jf1010jÞ; (B42)

the damping coefficients may be written as

�1 ¼ coshð2jf1010jÞ�x � sinhð2jf1010jÞ�y; (B43)

�2 ¼ � sinhð2jf1010jÞ�x þ coshð2jf1010jÞ�y: (B44)

Second, consider the case with a tune working point close
to the difference resonance (1, �1) and betatron coupling
such that jf1010j � jf1001j. In this case P ! ijf1001j,
S2þ � S2�, and 1 ¼ C2 þ S2�. The two diffusion coeffi-
cients in this case read

�1 ¼ C2�x þ S2��y �2 ¼ S2��x þ C2�y: (B45)

The RDT function instead becomes

C 2 ¼ cosð2jf1001jÞ; (B46)

S 2� ¼ sinð2jf1001jÞ; (B47)

and the diffusion coefficients satisfy the following rela-
tions:

�1 ¼ cosð2jf1001jÞ�x þ sinð2jf1001jÞ�y; (B48)

�2 ¼ sinð2jf1001jÞ�x þ cosð2jf1001jÞ�y: (B49)

Equations (B34), (B43), (B44), (B48), and (B49) have
been already derived in Ref. [8].
Equations (26) and (27) have been tested against MADX.

In the first example the ESRF storage ring lattice is used.
This has no focusing in the bending magnets (b�y ¼ 0) and

damping is by far dominated by the rf (b�x � brf), result-
ing in equal transverse partition numbers, J x ’ J y ¼ 1

and J z ’ 2. This test hence provides a verification of the
coupling between the diffusion integrals only, i.e., the
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FIG. 12. Comparison between the vertical eigenemittance Ev

computed by MADX (blue diamonds) and via Eqs. (26) and (27)
(red plus) of Table III.

TABLE III. Comparison between the eigenemittance Eu;v

computed by MADX and via Eqs. (26) and (27) for the ESRF
storage ring lattice (J x ’ J y ¼ 1 and J z ’ 2). Coupling is

introduced by 32 skew quadrupoles and is quantified in the
abscissas by the resonance stop bands jCþj and jC�j of
Ref. [21].

Eu Eu Ev Ev

jCþj jC�j MADX Eq. (26) MADX Eq. (27)

½%� ½%� [nm] [nm] [pm] [pm]

0.24 0.07 4.03 3.95 0.738 0.733

0.74 0.23 4.04 3.97 6.691 6.653

1.23 0.39 4.06 3.99 18.86 18.79

1.74 0.55 4.09 4.03 37.88 37.84

2.24 0.73 4.15 4.08 64.87 65.04

TABLE IV. Comparison between the eigenemittance Eu;v

computed by MADX and via Eqs. (26) and (27) for a lattice
with strong quadrupolar fields in the main bending magnets
(J x ’ 0:3, J y ¼ 1, and J z ’ 2:7). Coupling is introduced by

40 skew quadrupoles and is quantified in the abscissas by the
resonance stop bands jCþj and jC�j of Ref. [21].

Eu Eu Ev Ev

jCþj jC�j MADX Eq. (26) MADX Eq. (27)

½10�4� ½10�3� [nm] [nm] [pm] [pm]

0.8 9 1046 995 2.76 2.90

2.5 2.6 1046 994 24.9 26.1

4.1 4.3 1045 994 69.1 72.5

5.8 6.0 1045 993 135 141

7.4 7.7 1044 992 224 235

A. FRANCHI et al. Phys. Rev. ST Accel. Beams 14, 034002 (2011)

034002-18



numerators in Eqs. (26) and (27), both denominators being
equal to

H
brfðsÞds. Results agree within 2% for Eu and

within a fraction of percent for Ev, as shown in Table III
and plotted in Fig. 12.

The second test was performed by using a lattice with
combined-function bending magnets, and hence with
strong focusing inside the main dipoles. This results in
b�x  brf and in different partition numbers between the
three planes, being J x ’ 0:3, J y ¼ 1, and J z ’ 2:7. This

test hence provides a validation of coupling in both the
diffusion and damping integrals. Results are reported in
Table IV, with the values for the vertical emittance dis-
played in Fig. 13. The agreement is within 5% for both
emittances. The source of this larger discrepancy, as com-
pared with the previous case, was not further investigated.
The 5% difference in the evaluation of the (large) horizon-
tal eigenemittance may be transferred to the vertical one.
The contribution of the oscillating terms in the damping
and diffusion integrals, R1–R4, neglected in this derivation,
may also be a source of discrepancy.
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[20] A. Franchi, E. Métral, and R. Tomás Garcı́a, Phys. Rev. ST
Accel. Beams 10, 064003 (2007).

[21] M. Minty and F. Zimmermann, Measurement and Control
of Charged Particle Beams (Springer, Berlin, 2003).

[22] B. K. Scheidt and F. Epaud, in Proceedings of DIPAC09,
Basel, Switzerland, 2009, edited by J. Chrin, M. Marx,
V. R.W. Schaa, and V. Schlott, p. 50, http://accelconf
.web.cern.ch/AccelConf/d09/papers/proceed.pdf.

[23] J. Safranek, Nucl. Instrum. Methods Phys. Res., Sect. A
388, 27 (1997).

[24] A. Ropert and L. Farvacque, in Proceedings of the 11th
European Particle Accelerator Conference, Genoa, 2008
(EPS-AG, Genoa, Italy, 2008), p. 2106.

[25] B. K. Scheidt, in Proceedings of DIPAC07, edited by I.
Andrian and V. R.W. Schaa (Venice, Italy, 2008), p. 72,
http://accelconf.web.cern.ch/AccelConf/d07/papers/
tupb08.pdf.

[26] A. Franchi, R. Tomás Garcı́a, and F. Schmidt, Phys. Rev.
ST Accel. Beams 10, 074001 (2007).

[27] A. Bazzani, E. Todesco, G. Turchetti, and G. Servizi,
Report No. CERN 94-02, 1994.

0 0.02 0.04 0.06 0.08
|C  |   [%]

0

50

100

150

200

250

300
ve

rt
ic

al
 e

ig
en

-e
m

itt
an

ce
 [p

m
]

MADX

from Eq.(27)

0                  0.2                  0.4                 0.6                 0.8

|C  |   [%]_

+

FIG. 13. Comparison between the vertical eigenemittance Ev

computed by MADX (blue diamonds) and via Eqs. (26) and (27)
(red plus) of Table IV.
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