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In recent years nonuniform dipoles with bending-radius variation have been studied for reducing

storage ring emittance. According to a new minimum-emittance theory, the effects of an arbitrary dipole

can be characterized with two parameters determined by the dipole. To have a better idea of the potentials

of nonuniform dipoles, here we numerically explore the possible values of these two parameters and

associated bending profiles for optimal emittance reduction. Such optimization results provide a useful

reference for lattice designs involving nonuniform bending. Simple bending-radius profiles (a short

segment of constant radius with linear ramps on the sides) were found to be close to the optimal. Basic

beam and lattice properties such as emittance, energy spread, and phase advances are presented based on

the optimal dipole solutions.
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I. INTRODUCTION

Minimizing beam emittance in storage rings is desired
due to ever-increasing demands for higher beam quality for
both modern synchrotron light sources and damping rings
in high-energy linear colliders. In recent years, there have
been efforts to reduce the emittance below the well-known
theoretical minimum by using dipoles with bending-radius
variation [1–5]. The new theoretical minimum emittance
with arbitrary dipoles was established [5] as

� ¼ Cq�
2

Jx
F min; (1)

where Cq ¼ 3:84� 10�13 m; � is the Lorentz factor; and

Jx is the horizontal damping partition number, which we
will not consider here. The lattice-dependent factor F is a
function of bending profile as well as lattice type. Three
commonly interested lattice types have been studied:
(1) lattices with achromatic arcs, which are useful in
providing dispersion-free straight sections for light
sources, rf cavities, injection/ejection, and so on; (2) latti-
ces without any constraints except for minimizing the
natural betatron emittance, which is the figure of merit
for damping rings of linear colliders; and (3) lattices with-
out any constraints but minimizing the effective emittance
at the straight sections, which is often the figure of merit
for light sources because it takes into account the effects of

dispersion and beam energy spread [6]. We label these
three lattice types with AME (achromatic minimum emit-
tance), TME (theoretical minimum emittance), and EME
(effective minimum emittance), respectively. The minimal
F for these lattices reads

F min¼2
ffiffiffiffiffiffiffi
jAj

p
8>>><
>>>:
1 AMEffiffiffiffiffiffiffiffiffiffiffi
1�c

p
TMEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½1þðqþ3Þqc=2�f1þ½ð1þ�Þqþ3�qc=2g

1þqc

q
; EME;

(2)

where jAj and c are two parameters solely determined by
the dipole profile; � ¼ Jx=JE is the ratio of horizontal to
longitudinal damping partition numbers; and the q parame-
ter is determined by the cubic equation

ð1þ�Þq3þ2ð2þ�Þq2þ½3þð2þ�Þ=c�qþ2=c¼0: (3)

In this paper, we will use the nominal value � ¼ 1=2,
while the effect of changing � has been addressed in [5].
For conventional uniform dipoles of bending angle �,

2
ffiffiffiffiffiffiffijAjp ’ �3=4

ffiffiffiffiffiffi
15

p
and c ’ 8=9 under the usually good

small-angle approximation.
It has been shown that it is possible to reduce jAj and

increase c, thus reducing the minimum emittance, by opti-
mizing the bending-radius profile of dipole magnets. It also
becomes clear that the minimum emittance can approach
zero mathematically, except for practical limitations due to
magnetic field strength and so on. Thus, a natural question is
the potential gains in emittance reduction that nonuniform
dipoles may provide. A concise answer is practically impor-
tant in order for machine designers to decide if it is worth-
while to explore such a potential. The fact that an arbitrary
dipole canbe characterized byonly twovalues jAj andc (thus
a single point in jAj-c parameter space instead of a detailed
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bending-radius profile) provides an effective way to
investigate and present a clear picture of the potentials of
nonuniform dipoles for emittance reduction. In other words,
the answer to the question lies in the distribution of dipoles in
the jAj-c parameter space, especially the distribution of
optimized dipole-field profiles and corresponding emittan-
ces. This paper reports an optimization study of dipole-field
profiles using genetic-algorithm (GA)-based optimizers.

Genetic-algorithm optimization methods [7] have long
been used in the accelerator field [8] and recently attracted
attention following a successful application in multiobjec-
tive optimization of a photoinjector design [9] and increased
availability of parallel computing resources. Since there are
two objective parameters to optimize, we choose to compute
the Pareto-optimal solutions in the jAj-c parameter space
using a multiobjective GA optimizer based on the genetic
algorithm with nondominated sorting (NSGA-II) [10]. For
convenience, we adopted a MATHEMATICA

TM implementa-
tion of this algorithm [11]. As an independent check and
further refinement, a single-objective parallel GA package
[12] is also used to optimize emittance directly. Good agree-
ment was found for comparable results. A few analytical
results for linear bending profiles are given in the Appendix
as illustrations and for comparison.

In the following sections, we will first briefly review the
minimum-emittance theory for better understanding of this
paper, then describe the methods used for this study, and
finally present our results in graphs that give a clear picture
of the potential to reduce beam emittance with nonuniform
dipoles, as well as the optimal bending profiles and basic
properties of the lattices for minimum emittance. We will
show that the optimal bending profiles consist of a short
segment of constant radius with almost linear ramps on the
sides, a pleasantly simple profile resulting from optimiza-
tion of arbitrary profiles. Note that linear profiles have been
studied for specific machines [1,2] and in a more general
approach [3]. However, there was no proof it is close to
optimal. In fact, a pure linear profile is not optimal (see
Appendix) due to the lack of an optimized constant-field
segment at peak field. Our study provides a proof by
numerically deriving the optimal profile.

II. BRIEF REVIEW OF THEORY

Here we briefly outline the basic theory developed in [5].
The natural betatron emittance of Eq. (1) is given by

F ¼ hH =j�j3i
h1=�2i � hhH ii; (4)

where hh� � �ii stands for the bending-radius (�) weighted
average and the well-known dispersion action H reads

H ¼ ��2 þ 2���0 þ ��02

¼ Trfð�0�
T
0 þ �0�̂

T þ �̂�T
0 þ �̂�̂TÞ	þ

0 g: (5)

Hereafter, �, �, and � are the usual Courant-Snyder pa-
rameters; �0 ¼ ½�0; �

0
0�T is the initial dispersion vector;

�̂ ¼ ½
̂; 
̂0�T is the dispersion generated in the dipole and
projected back to the dipole entrance, which relates to the
dispersion vector � via the linear transfer matrix M as

�ðsÞ ¼ MðsÞ½�0 þ �̂ðsÞ�; and 	þ
0 is the symplectic con-

jugate of the initial normalized beam matrix 	0. More
explicitly,

	þ��J	TJ¼ � �

� �

" #
; 	¼ � ��

�� �

" #
;

J¼ 0 1

�1 0

" #
: (6)

Equations (4) and (5) yield

F ¼ TrðG0	
þ
0 Þ; (7)

where

G0 ¼ ���0�
T
0 þ �0hh�̂iiT þ hh�̂ii�T

0 þ hh�̂�̂Tii; (8)

and �� � hh1ii ¼ h1=j�j3i=h1=�2i ¼ I2, a well-known ra-
diation integral.
For a given dipole and initial dispersion, G0 is deter-

mined and F is minimized to 2
ffiffiffiffiffiffiffiffiffijG0j

p
with the optimal

lattice parameters given by 	0 ¼ G0=
ffiffiffiffiffiffiffiffiffijG0j

p
at the dipole

entrance. From Eq. (8) it is easy to see that jG0j (thus F )
can be further minimized by choosing the initial dispersion

vector along the average of the projected dispersion hh�̂ii.
Let �0 ¼ qhh�̂ii= ��, then G0 reduces to

G0 ¼ Aþ ðq2 þ 2qÞB; (9)

where the matrices

A ¼ hh�̂�̂Tii and B ¼ hh�̂iihh�̂iiT= ��: (10)

The determinant of Eq. (9) can be reduced to

jG0j ¼ jAj½1þ ðq2 þ 2qÞc�;

where c ¼ �TrðJAJBÞ
jAj :

(11)

Therefore, F min is given by q ¼ 0 for AME and q ¼ �1
for the TME lattice, as shown in Eq. (2).
It is clear that the jAj and c parameters are character-

istics of a dipole magnet.
ffiffiffiffiffiffiffijAjp

is proportional to the
magnitude of emittance due to quantum excitation in
the dipole, and c reflects the degree of correlation among
the excitations, while correlated excitations can be sup-
pressed with proper choice of the initial dispersion.
For light sources the figure of merit is the effective

emittance �eff at the straight sections that takes energy
deviation � into account. In terms of phase-space average,

�eff �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðxþ��Þ2ihðx0 þ�0�Þ2i�hðxþ��Þðx0 þ�0�Þi2

q

¼�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH ID	

2
�=�x

q
; (12)
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where x and x0 are the position and angle of the transverse
betatron motions; �x is the natural betatron emittance.
Minimization of this effective emittance is more involved,
which yields the F min for EME lattice in Eq. (2) and the
optimal q given by Eq. (3). Note that this effective emit-
tance assumes no significant collective effects on beam-
energy spread.

This theory solved the minimum emittance for a given
dipole bending profile. The optimal bending profile is yet
to be determined from an infinite number of possibility,
which is carried out by this paper.

III. METHODS

Before getting into optimization techniques, we address
the rationale of our optimization strategy. Although mini-
mizing emittance is the goal, we choose not to minimizeF
directly (we did this as an alternative confirmation) be-
cause it will depend on lattices in addition to bending
profiles. For example, the EME emittance has nontrivial
dependence on lattice damping partition. Direct optimiza-
tion at one damping partition may be of limited use for
different partition settings. On the other hand, knowing the
possible jAj and c values, it is easy to compute the mini-
mum emittance for any lattices, and thus to optimize
emittance over various lattices as well as parameters such
as the damping partition numbers [5]. Therefore we choose
to simultaneously optimize jAj and c, which is solely
determined by bending profiles, while smaller jAj and
larger c yield smaller emittance. Another reason we choose
to optimize jAj and c is that they better reveal the depen-
dence of emittance on the dipole profiles and provide
valuable information on potential trade-offs. Based on
these, we consider the distribution of optimal jAj and c a
more basic and desirable solution of this dipole optimiza-
tion problem. However, this requires a multiobjective opti-
mization to simultaneously optimize jAj and c.

To numerically evaluate the efficacy of nonuniform di-
poles for emittance reduction as well as lattice feasibility,
we use a uniform dipole 1 m long with 10-meter bending
radius as the reference, and compare it with nonuniform
dipoles having the same length and bending angle. The
resulting emittance reduction factor and the ratio of initial
lattice functions should apply to other dipole parameters,
as long as the small-angle approximation is valid, thanks to
the scale-invariant property of the theory. This helps to
reduce the complexity of the problem dramatically and
makes our optimization results valid for general reference
(because they depend on only the shape of the bending
profile instead of dipole length, field strength, and bending
angle).

To evaluate a bending profile, we use a large number
of equal-length dipole slices to approximate an arbitrary
dipole and use the bending curvature hðsÞ ¼ 1=�ðsÞ
to represent a dipole-field profile, where �ðsÞ is the bend-
ing radius. In this study we explore dipoles without field

polarity inversions, considering that field inversions might
be too complicated to build. Our computation starts from
the basic quantity in the minimum-emittance theory, i.e.,

the projected dispersion vector �̂ ¼ ½
̂; 
̂0�T . To numeri-

cally solve for the projected dispersion 
̂ and 
̂p � 
̂0, we
directly solve the first-order differential equations �̂0 ¼
M�1½0; h�T using the transfer matrix M and initial condi-

tion �̂0 ¼ 0, i.e.,


̂ 0 ¼�hM12; 
̂0
p¼hM11; 
̂ð0Þ¼ 
̂pð0Þ¼0: (13)

From �̂ we can compute the matrices A, B, and the pa-
rameter c as defined in Eqs. (10) and (11), where averaging
over the dipole is done by numerical integration.
The optimization is carried out with GA optimizers. A

population of 100 or so individual bending profiles are
initialized randomly with each individual having a chromo-
some length equal to the number of dipole slices. The
population is then evolved using the elitist multiobjective
optimizer based on the genetic algorithm with nondomi-
nated sorting (NSGA-II). After sufficient generations, the
Pareto-optimal front is obtained. The emittance and optimal
lattice parameters are computed for each individual on the
optimal front, and results are summarized in graphs. As an
independent check and for better converging efficiency, a
single-objective parallel GA package (PGApack) is used to
optimize the AME, TME, and EME emittances directly,
which should reproduce the corresponding extreme points
of emittance curves obtained from the optimal-front
population.
To look into the lattice feasibility of an optimized result,

we compute some basic lattice properties such as betatron
phase advances, the ratio of initial lattice parameters of the
optimized profile to the reference uniform dipole. Such
information should hint at the difficulty of realizing an
optimal solution, although designing a feasible lattice is
much more involved. The lattice-parameter distribution on
the Pareto-optimal front provides a useful way to make a
trade-off between emittance reduction and lattice diffi-
culty. Our goal is to obtain a clear picture of the landscape
for emittance reduction using nonuniform dipoles.
In addition to numerical optimization, we analytically

worked out expressions for a few simple profiles studied in
the literature. Although not essential for this paper, such
exercises help to illuminate the framework and provide
connections to existing works. Performance of these pro-
files is presented for comparison. This nonessential mate-
rial is given in the Appendix.

IV. OPTIMIZATION RESULTS

A. Pareto-optimal solutions

Pareto-optimal solutions in the objective space consist of
solutions that are optimum in any objective such that it is
impossible to improve one objective without worsening
others. Such a set of solutions is often referred to as a
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Pareto front, which reveals compromises among multiple
objectives to be optimized. In our case, we need to mini-
mize jAj and maximize c for minimal emittance. In fact, we

choose to minimize both 2
ffiffiffiffiffiffiffijAjp

and
ffiffiffiffiffiffiffiffiffiffiffiffi
1� c

p
, normalized by

the values of the reference uniform dipole, i.e., minimize

F̂ A ¼ 2
ffiffiffiffiffiffiffijAjp

=ð�3=4 ffiffiffiffiffiffi
15

p Þ and F̂ c ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffi
1� c

p
. The result-

ing Pareto-optimal solutions under several maximum field
strengths are plotted in Fig. 1. It contains multiobjective
optimizations based on 33-slice dipoles (colored dots) and a
simplified linear-ramp model (cyan circles), as well as
single-objective optimizations of 33-slice (pink squares)
and 65-slice (pink þ and �) dipoles. Each point in Fig. 1
represents a specific profile. We considered three peak-field
values, which yield three families of Pareto-optimal profiles
represented by the blue, red, and black colors. Three opti-
mization methods are used to ensure convergence to the
optimal solutions. At low peak field, all three optimizations
(blue dots, cyan circles, and pink markers) converged. At
higher peak field, 33-slice optimizations (red dots and pick
square) converged but fall behind the optimal, while the
65-slice optimization yielded the optimal solutions. At even
higher peak field, the multiobjective optimization (black
dots) falls behind the single-objective optimization (pink
square) using the same 33 slices, and further behind the
optimal solution. Multiobjective optimization of the linear-
ramp model (see Sec. V) converged to the optimal solutions
because the model is very close to the optimal, does not
suffer from multislice approximation, and involves only a
few parameters.

From the optimal solutions in Fig. 1 and the emittance
formula, it is easy to see the potential emittance reduction

using nonuniform dipoles. To be more explicit, we com-
puted the emittance reduction factor for AME, TME, and
EME lattices using the optimal solutions and summarized
the results in Fig. 2. In this and several other plots, we use

the ‘‘normalized c-factor’’ F̂ c as a tag to differentiate the
solutions in Fig. 1. The behaviors of AME and EME are

similar, and both are dominated by the 2
ffiffiffiffiffiffiffijAjp

factor. This is
good since both AME and EME are of interest to light
sources, and the similarity may allow some flexibility in
switching lattices. On the other hand, the TME reduction is

much larger and dominated by the
ffiffiffiffiffiffiffiffiffiffiffiffi
1� c

p
factor. Note that

dipoles optimized for TME are not effective at all for AME
and EME. This plot suggests that nonuniform dipoles will
be more effective for damping rings since they favor TME
lattices [13]. However, such considerations are based on
double-bend lattices. For multibend lattices, the inner
bends can take advantage of the large emittance reduction
factor of symmetric TME bends, which makes nonuniform
dipoles more attractive to light sources.

B. Optimal field profiles

The optimal bending curvatures (field profiles) for some
special cases are shown in Figs. 3 and 4. Figure 3 plots the
optimal profiles for minimal TME, corresponding to the
solutions marked by the pink ‘‘þ’’ in Fig. 1. It shows
increasingly stronger and shorter constant field at the cen-
ter (providing most of the bending) and symmetric tails
with much weaker fields to preserve the total bending
angle. From the profile symmetry we can gauge the quality
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FIG. 1. Pareto-optimal solutions in the objective space. The
colored dots are multiobjective optimizations of 33-slice dipoles
whose maximum field is higher than the reference dipole by a
factor of 2 (blue), 4 (red), and 6 (black). The markers (pink)
represent results of single-objective PGA optimization of AME
(�, 65 slices), TME (þ , 65 slices), and EME (h, 33 slices). The
blue star marks the uniform dipole. The cyan circles are opti-
mizations based on simplified field profiles (linear-ramp model
discussed later). Longer tails continuing off the lower-right
corner are not shown.
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FIG. 2. Emittance reduction factors for AME, TME, and EME
lattices based on the optimal solutions (cyan circles) in Fig. 1.
Again, the maximum field strength is a factor of 2 (blue), 4 (red),
and 6 (black). The pink markers on the curves indicate PGA
results and the lattice types of the associated curves as AME (�),
TME (þ), and EME (h). The differences in EME at high peak
fields are due to using 33 instead of 65 or more slices. Note that
there are three emittance reduction factors for each dipole profile
(a cyan circle in Fig. 1) corresponding to the AME, TME, and
EME lattice conditions, respectively.

CHUN-XI WANG, YUSONG WANG, AND YUEMEI PENG Phys. Rev. ST Accel. Beams 14, 034001 (2011)

034001-4



of the optimization. Asymmetry due to the finite slice
number is apparent in the blue and black curves, whose
effect on the emittance is small. For comparison, a multi-
objective optimization result is indicated by the green
curve. Note that emittance reduction is not very sensitive
to field errors. Figure 4 plots the optimal profiles for
minimal AME, TME, and EME at 4 times higher maxi-
mum field. It clearly shows that the optimal profiles are
different for different types of lattices, although the AME
and EME are similar, with the constant-field segment close
to the front of the dipole. Note that the optimal dipole for
EME is effectively shorter by about 12%.

V. LINEAR-RAMP MODEL OF
OPTIMAL PROFILES

Examination of the optimal bending-radius profiles re-
veals that the optimal profiles consist of a shorter and
stronger constant-field segment with mostly linear ramps
in bending radius, as shown in Fig. 5. The length and
position of the constant-field segment vary for different
types of lattices. Such a picture simplifies the optimal
bending profiles and allows a simple model with at most
four parameters. A small number of parameters can be
important when optimizing nonuniform dipoles together
with many other parameters in a lattice design. It also
reduces the uncertainty/noises in optimizations.
Furthermore, the simplified model does not suffer from
multislice approximation (e.g., the lower performance at
4-times and 6-times peak field in Figs. 1 and 2; the asym-
metry in Fig. 3). This simple linear-ramp model also opens
up the possibility for analytical solutions, which are not
pursued here.
To test this linear-ramp model, we rerun the optimiza-

tion with it and plot the results (cyan circles) in Fig. 1 to
compare with the results of general multislice optimiza-
tions. We see that the linear-ramp model performs just as
well at 2-times peak field, better than the 33-slice optimi-
zations at higher peak fields, and consistent with 65-slice
PGA optimizations. Optimization using this simplified
model is much more efficient due to the small number of
control parameters. For the results in Fig. 1, we used
50 000 generations for the multislice model versus 5000
generations for the linear-ramp model, using similar opti-
mization parameters such as the mutation and crossover
rates. (We made no effort to improve the optimization
efficiency in either case.) Because of its performance,
most of the multiobjective optimization results presented
in this paper (except for those in Figs. 1 and 3) are based on
the linear-ramp model.
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FIG. 3. Optimal bending field profiles (from PGA optimiza-
tions) for minimal TME at maximum field strength 2 (blue), 4
(red), and 6 (black) times higher than the reference dipole (dash).
The green curve is a multiobjective optimization, which is not
fully optimized, with a few percent lower performance. The cyan
dashed line is the reference uniform dipole. Note that, in this and
the next two graphs, the curves do not represent the field but
simply provide a guidance for the actual piecewise constant field
represented by the dots.
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FIG. 4. Optimal bending field profiles for minimal AME
(blue), TME (red), and EME (green) at maximum field strength
4 times higher than the reference dipole (dash).
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FIG. 5. Optimal bending-radius profiles corresponding to the
curvature profiles in Fig. 4 for AME (blue), TME (red), and
EME (green) lattices. The ramps are fairly close to linear. The
glitch in the green curve is a minor imperfection in optimization.
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VI. LATTICE PROPERTIES FOR
OPTIMAL EMITTANCE

In this section, we present some basic lattice properties
associated with the optimal dipole solutions, such as beam
energy spread, horizontal betatron phase advances, beta
function, and dispersion. Such information may give some
idea of the difficulty in implementing lattices of the
optimal solutions and can be useful when considering
trade-offs between emittance and lattice properties. In
this section, we have used the optimized linear-ramp pro-
files, which tend to have less noise due to the much smaller
parameter space.

A. Dispersion action H inside dipoles

To better appreciate the emittance reduction mechanism
in nonuniform dipoles, Fig. 6 plots the dispersion action
H inside the dipoles shown in Figs. 4 and 5 for the optimal
AME, TME, and EME at 4-times peak field. For compari-
son, the dispersion actions in a uniform dipole are shown as
dashed lines. Clearly, the dispersion action is reduced in
high-field regions by tailing the field profiles and corre-
sponding dispersion actions, thus reducing the weighted
average hH jhj3i, which is the radiation integral I5.
Furthermore, nonuniform bending increases the radiation
integral I2 ¼ hh2i by a factor 2.47 (AME), 2.16 (TME), and
2.56 (EME). Thus, the emittance (proportional to I5=I2) is
reduced. The gain from the I5 reduction is significant for
TME, but not so much for AME and EME.

Because of the increase in I2, radiation loss will increase
proportionally, which will result in higher demand on rf
power and stronger radiation damping.

B. Energy spread

Beside emittance reduction, bending field variation will
increase the radiation integral I3 ¼ hjhj3i more than I2,

thus increasing beam energy spread proportional to
ffiffiffiffiffiffiffiffiffiffiffi
I3=I2

p
.

The effect of energy spread on synchrotron light sources
has been taken into account by minimizing the effective
emittance. (Note that the effective emittance assumes no
energy-spread increase from collective effects.) However,
large energy spread may worsen chromatic effects and
challenge momentum aperture. To see the relative increase
in beam energy spread, Fig. 7 plots the AME, TME, and
EME emittance reduction factor versus the energy spread
for the Pareto-optimal solutions in Fig. 1. The increase in
energy spread might limit the usefulness of nonuniform
dipoles in some machines.

C. Phase advances in optimal lattices

To obtain the minimum emittance of an optimal
dipole profile as shown in Fig. 2, lattice parameters such
as beta function, phase advance, and dispersion must match
the optimal values. The phase advances in the inner dis-
persion matching sections and the straight section are
determined by the dispersion matching (except for a
dispersion-free straight section). These phase advances
will indicate required focusing. Larger phase advances
result in stronger focusing and associated increase in natu-
ral chromaticity.
For each Pareto-optimal solution in Fig. 1, we computed

the phase advance in the dipole under AME, TME, and
EME lattice conditions; the results are shown in Fig. 8. On
the right-hand side, where AME- and EME-favored dipole
profiles are located, we see negligible increases over the
150� of a uniform dipole. TME-favored profiles result in
larger phase advances, which fall off sharply on the left
edges (similar to the TME emittance curve in Fig. 2).
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FIG. 6. Dispersion action inside the optimal dipoles shown in
Figs. 4 and 5 for AME (blue), TME (red), and EME (green).
Dashed curves are corresponding dispersion actions in the ref-
erence uniform dipole.
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FIG. 7. Relative increases in beam energy spread for the
optimal solutions in Fig. 1, using the same color scheme for
the maximum field strength 2 (blue), 4 (red), and 6 (black). For
each solution, three dots are plotted corresponding to the emit-
tance reduction factors for AME, TME, and EME. (We choose
not to use different markers for different lattices to avoid over-
lapping. However, from Fig. 2, it is clear that the upper branch is
from TME lattice.)
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Figure 9 plots the minimum phase advances in the inner
section of a symmetric double-bend cell based on the
Pareto-profiles under AME, TME, and EME conditions.
There are significant increases in phase advances from the
conventional uniform double-bend cell except for the left
edge (where the TME emittance reduction is compromised
but still appreciable).

Figure 10 plots the minimum phase advances in the
straight section (for insertion devices), assuming the
same dipole at both ends. Note that for the AME lattice,
there is no constraint on the phase advance from dispersion
matching. For EME lattices, there is little change in this
phase advance compared with the uniform dipole lattice.
However, there are large increases for TME lattices.

So far we have considered phase advances inside and
between the same dipoles in symmetric double-bend cells.

For multibend cells, one may want to match AME or EME
dipoles at the cell ends to TME dipoles inside. For this
purpose, Fig. 11 plots the minimum phase advances re-
quired to match a dipole from the Pareto solutions to the
ideal TME dipole of the same peak field. The results are
similar to the phase advances of double-bend dispersion
matching sections in Fig. 9.
One complication in dispersion matching for multibend

lattices is to maintain the same dispersion action H at the
dipole ends. Otherwise, it is impossible to match the
dispersion [14], since dispersion action is conserved in
any dipole-free sections. To examine this mismatch for
the Pareto solutions, Fig. 12 plots the ratio of dispersion
actions at the exit of the optimal dipole solutions in Fig. 1
to the dispersion action at the entrance of the ideal
TME dipole as shown in Fig. 3. The large values on the
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FIG. 8. Phase advances within an optimal dipole for AME (�),
TME (þ), and EME (�) under 2 (blue), 4 (red), and 6 (black) times
higher peak field. The corresponding phase advances for the
reference uniform dipole are 157�, 151�, and 150�, respectively.
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FIG. 9. Phase advances in the dispersion matching section in
symmetric double-bend cells for AME (�), TME (þ), and EME
(�) under three different peak fields 2 (blue), 4 (red), and 6
(black). Phase advances for uniform dipoles are 122�, 133�, and
133�, respectively.
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FIG. 10. Phase advances in the straight section for TME (þ),
and EME (�) under different peak fields 2 (blue), 4 (red), and 6
(black). Phase advances for uniform dipoles are 133� and 115�,
respectively.
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FIG. 11. Phase advances needed for dispersion matching
from AME (�), TME (þ), and EME (�) dipoles to the TME
dipole under different peak fields 2 (blue), 4 (red), and 6 (black).
Phase advances for uniform dipoles are 128�, 133�, and 133�,
respectively.
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right-hand side reflect the efficacy of TME-optimized di-
poles in reducing dispersion action. This indicates that the
central TME dipoles need to be much stronger/longer than
the end dipoles, which can be beneficial to multibend light-
source lattices.

D. Initial beta function

Figure 13 plots the emittances versus the relative change
in initial beta function at the dipole entrance. It shows that
TME reduction requires larger initial beta, while AME and
EME favor smaller initial beta. It is encouraging to see that
significant emittance reduction (not far from the optimum)
can be achieved without large changes in the initial beta
function. Furthermore, Fig. 14 plots the relative change in
initial beta functions versus the initial alpha functions. It
shows that, for solutions close to the optimal for TME, the

changes in beta and alpha functions are more or less
proportional, which indicates that the TME emittance re-
duction may be tolerable to deviations in initial Twiss
parameters (see Fig. 1 in [5]). On the other hand, for
AME and EME, the reduction in initial beta tends to be
much larger than the variation in initial alpha, which might
be harder to accommodate. Note that, even with uniform
dipoles, beta and alpha functions are often different from
the optimum values in order to lower chromaticity. In both
Figs. 13 and 14, there are solutions with larger beta and
alpha continuing off the plot, which correspond to the
falling edges on the left in Fig. 2. They are excluded to
make the plots less clustered at the low end.

E. Dispersion and dispersion action

Since effective emittance has already taken into account
dispersion effects on light sources, our concern for disper-
sion here is mainly for chromaticity correction, because
dispersion has direct impact on the required sextupole
strength for chromaticity correction and associated non-
linearity. Although the dispersions at the dipole ends are
determined for the optimal solutions, the dispersions at
sextupoles can be very different and depend on more de-
tails in the lattice design. Thus, we will not show the
dispersions here; instead we look for something more
relevant.
For simplicity and clarity, we limit our discussion to

symmetric double-bend cells, in which the dispersion
reaches its maximum at the center where chromatic
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FIG. 13. Relative changes in initial � functions at the dipole
entrance for the optimal solutions. Lattices are marked by AME
(�), TME (þ), and EME (�). Peak-field strength factors are 2
(blue), 4 (red), and 6 (black).
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are 2 (blue), 4 (red), and 6 (black).

0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

6

8

10

3 1 c

R
at

io
of

di
sp

er
si

on
ac

tio
ns

FIG. 12. Ratio of dispersion action of AME (�), TME (þ ),
and EME (�) dipoles to the TME dipole at different peak-field
factor of 2 (blue), 4 (red), and 6 (black). The corresponding
ratios for uniform dipoles are 3, 1, and 1.4, respectively.
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sextupoles are usually located. To the first order, a sextu-
pole contribution to chromaticity is proportional to both
dispersion and beta function, thus we examine �� at the
double-bend center. At this symmetric point, �0 ¼ � ¼ 0
and the dispersion action reduces to H ¼ ð�= ffiffiffiffi

�
p Þ2; thus

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�3H

q
. Since the dispersion action is conserved, it

can be computed at the dipole end facing the sextupoles.
Without further detail on lattice design, the beta function
cannot be determined. Nonetheless, it is still informative to
examine the change in the dispersion action relative to the

uniform dipole. Figure 15 plots the normalized
ffiffiffiffiffiffiffi
H

p
. It

gives the relative change in sextupole strength (weaker for

larger
ffiffiffiffiffiffiffi
H

p
), assuming the same beta function. It shows

beneficial gains for AME and EME lattices (on the right)
and small loss for the TME lattice (on the left). This
indicates that the effects on sextupole strength and chro-
matic correction are probably manageable.

VII. CONCLUDING REMARKS

Using genetic-algorithm-based multiobjective as well as
single-objective optimizations of arbitrary bending profiles
without field reversion, we established the optimal profiles
for emittance minimization and the corresponding theo-
retical minimum emittances for AME, TME, and EME
lattices. We showed that the optimal bending-radius pro-
files consist of a short constant segment at the smallest
bending radius and almost linear ramps on both sides.
Compared to uniform dipoles, optimal nonuniform dipoles
can yield significantly smaller theoretical minimum emit-
tance, especially for TME lattices. We further examined
the increase in energy spread due to bending-radius varia-
tion and other basic lattice properties. Despite an energy-
spread increase, effective emittance for light sources can
still be reduced. Nonetheless, larger energy spread might

be a limiting factor in lattice design. The phase advances
become larger than those of uniform dipoles. Although
they seem not to be prohibitively large, the larger phase
advances make the lattice harder to realize. Even though it
may be hard to achieve the theoretical minimum emittance
of a nonuniform dipole (true for uniform dipoles as well),
nonuniform dipoles are worthwhile to explore for reducing
emittance, given the significant reduction in the theoretical
minimum emittance.
For light-source applications, nonuniform dipoles seem

to benefit multibend lattices most because the inner dipoles
can take advantage of the larger emittance reduction
from a symmetric TME dipole. The shorter but stronger
constant-field segment in an optimal nonuniform dipole
can generate harder x rays and provide more localized
sources. Such stronger ‘‘superbends’’ have been used in
low- and medium-energy light sources such as ALS [15]
and SLS, although not for emittance reduction. Thus, it is
natural to optimize such superbends for lower emittance.
In addition to storage rings, there are other accelerators

that can take advantage of such minimum-emittance arcs to
better preserve beam emittance during beam transport
through a long arc or even a few turns of a ring without
constraints for storing the beam. For example, future light
sources based on either energy-recovery linac or recircu-
lating linac can potentially benefit from reduced emittance
growth in the arcs with nonuniform bends.
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APPENDIX A: ANALYTICALLY SOLVED
BENDING PROFILES

Ignoring the weak focusing effect in a dipole, the trans-
verse transport reduces to a drift whose matrix elements
from the entrance s0 to location s are given by M11 ¼ 1
and M12 ¼ s� s0. Thus, the projected dispersion vector

can be computed by the integrals �̂ ¼ f�R
s
s0
hðsÞ�

ðs� s0Þds;
R
s
s0
hðsÞdsgT . Inserting this into Eq. (10) leads

to jAj and c. Closed-form expressions can be obtained for
simple profiles such as linearly or exponentially increasing
bending radius [3].

1. Linearly increasing profile

For a linearly increasing bending radius, the normalized
(to bending angle L=�0) bending-radius profile reads
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FIG. 15. Relative changes in the square root of dispersion
action in the inner matching section of symmetric double-bend
cells for the optimal solutions. Lattices are marked by AME (�),
TME (þ), and EME (�). Peak-field strength factors are 2 (blue),
4 (red), and 6 (black).

OPTIMAL DIPOLE-FIELD PROFILES FOR EMITTANCE . . . Phys. Rev. ST Accel. Beams 14, 034001 (2011)

034001-9



�ðsÞ ¼ �0

logð1þ �Þ
�

�
1þ �

s

L

�
; (A1)

with 0 � s � L. The peak-field ratio is �0=�min ¼
�0=�ð0Þ ¼ �= logð1þ �Þ. This profile yields the projected
dispersion vector as

�̂ðsÞ ¼ � L2

�0

�ðs=LÞ�log½1þ�ðs=LÞ�
� logð1þ�Þ

L
�0

log½1þ�ðs=LÞ�
logð1þ�Þ

2
4

3
5: (A2)

Inserting this into Eq. (10) and working out the integrals,
we obtain the closed-form expressions

F̂ A � 2
ffiffiffiffiffiffiffijAjp

�3=4
ffiffiffiffiffiffi
15

p ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
15f�

p
�ð1þ �Þ logð1þ �Þ3 ; (A3)

F̂ c �
ffiffiffiffiffiffiffiffiffiffiffiffi
1� c

p
1=3

¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ �Þ2g�
�ð2þ �Þf�

s
; (A4)

where f�¼4ð1þ�Þlogð1þ�Þf�½6þ�ð9þ�Þ��ð1þ�Þ�
logð1þ�Þ½3þ2logð1þ�Þ�g��2ð2þ3�Þð6þ5�Þ and g� ¼
�2ð12þ 12�þ�2Þ logð1þ�Þ� 4�3ð2þ�Þ� 4ð1þ�Þ2�
logð1þ�Þ3. Using these expressions, a few examples are
computed and shown in Table I for comparison. The results
forBmax=B0 ¼ 3:3 agreewith Table 1 of [3]. Comparison of
the other results with the optimal solutions in Figs. 1 and 2
shows inferior performance of this oversimplified profile.

2. Symmetric linearly increasing profile

Similarly, for a bending radius that increases linearly
and symmetrically from the dipole center, the normalized
profile is given by

�ðsÞ ¼ �0

logð1þ �Þ
�

�
1þ 2�

jsj
L

�
; (A5)

with �L=2 � s � L=2. The projected dispersion vector
works out as

�̂ðsÞ ¼
� L2

4�0

�ð1þ2jsj=LÞþlog½ð1þ2�jsj=LÞ=ð1þ�Þ�
� logð1þ�Þ

L
2�0

�
1þ sgnðsÞ logð1þ2�jsj=LÞ

logð1þ�Þ

�
2
64

3
75: (A6)

Calculating the integrals in Eq. (10), we obtain the closed-
form expressions

F̂ A ¼
ffiffiffiffiffiffiffiffiffiffiffi
15f�

p
4�ð1þ �Þ logð1þ �Þ3 ; (A7)

F̂ c¼3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�2þ2��2logð1þ�Þ�2logð1þ�Þ2�g�

2�ð2þ�Þf�

s
; (A8)

where f� ¼ �2ð2þ�Þ2ð2�2 � 2�� 3Þ þ logð1þ�Þ�
f2�ð12þ 18�� 7�3 � 2�4Þ þ logð1þ�Þ½�12� 5�3ð8þ
5�Þ þ 8ð1þ�Þ2½�2þ 5�þ�2 � logð1þ�Þ� logð1þ�Þ�g
and g�¼4ð1þ�Þ2½2�2þ8�� logð1þ�Þ�logð1þ�Þ�
�2ð23�2þ52�þ28Þ. For comparison, a few examples are
shown in Table II. Again, the results for Bmax=B0 ¼ 3:3
agreewith Table 1 of [3], and the performance of this profile
is inferior to the optimal solutions in Fig. 1.
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