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Analysis and optimization of a free-electron laser with an irregular waveguide

V. A. Goryashko™

Institute for Radiophysics and Electronics of NAS of Ukraine, 12 Academician Proskura Street, Kharkiv 61085, Ukraine

(Received 2 April 2010; published 8 March 2011)

Using a time-dependent approach, the analysis and optimization of a planar free-electron laser (FEL)
amplifier with an axial magnetic field and an irregular waveguide is performed. By applying methods of
nonlinear dynamics, a self-consistent reduced model of the FEL is built in a special phase space. This
reduced model is the generalization of the Colson-Bonifacio model and takes into account the intricate
dynamics of electrons in the pump magnetic field and the intramode scattering in the irregular waveguide.
The reduced model and concepts of evolutionary computation are used to find optimal waveguide profiles.
The numerical simulation of the original nonsimplified model is performed to check the effectiveness of
found optimal profiles. To demonstrate advantages of the proposed FEL configuration, the parameters are
chosen to be close to the parameters of the experiment [S. Cheng et al., IEEE Trans. Plasma Sci. 24, 750
(1996)], in which a sheet electron beam with the moderate thickness interacts with the TE,;; mode of a
rectangular waveguide. The results strongly indicate that one can improve the efficiency by a factor of 5 or
6 if the FEL operates in the magnetoresonance regime and if the irregular waveguide with the optimized
profile is used. The FEL efficiency is maximal if the initial beam energy is slightly higher than the energy
that corresponds to a transition between negative- and positive-mass regimes so that the transition from the

negative-mass to positive-mass regimes occurs during the beam-wave interaction.
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L. INTRODUCTION

The progress in physics and technology of generation of
electron beams makes possible emission and transport of
superwide sheet beams with peak power up to several tens
of gigawatts. For example, in the paper [1] emission and
transport of a 140 cm-wide, 20 kA and 2 MeV sheet
electron beam for purported free-electron laser applications
was reported. Other promising results on generation of two
intense beams have been recently reported in [2]: 0.8 MeV
electron energy, current densities of up to 1.5 kA/cm?,
0.4 X 7.0 cm? beam cross sections. It is an attractive idea
to convert such huge beam power into radiation and this can
be done using free-electron lasers (FEL) in their planar
configuration. However, the efficiency of FELs is typically
small if there is no optimization. In this paper we will
consider possible ways to increase the FEL efficiency by
applying an axial magnetic field and using a waveguide
with an optimized profile. Recently, interest toward FELSs
for plasma fusion has been reinforced [3] and a high-power
planar FEL seems to be a promising source when multi-
megawatt millimeter radiation is required. In fact, gyrotrons
are used for plasma heating in some operating tokamaks
and stellarators, but these setups are quite small and a few
gyrotrons provide sufficient power. However, to obtain a
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positive energy output, larger setups are necessary and the
required quasi-CW microwave power for the ITER project
is about 100 MW so that the FEL with a sheet electron
beam might be a reasonable alternative.

It is worth noting that, in vacuum electronic sources of
coherent radiation, the electron beams are far from the sta-
tistical equilibrium and during their interaction with radiation
they remain sufficiently nonequilibrium [4,5]. Thus, the
efficiency of the transfer of the electrons’ kinetic energy
into radiation, basically, may be close to 100% (the klystron
or traveling wave tube are the examples of high-efficiency
devices) and the challenge is to optimize the beam-wave
interaction by controlling the most important parameters.
There are several ways to improve the FEL efficiency: opti-
mization of electron beam characteristics (for example, de-
velopment of beams with an optimal correlated energy
spread when the effect of the beam finite thickness is rele-
vant), tapering of the undulator or the axial magnetic field,
and profiling of waveguide/resonator walls. In particular, the
effectiveness and reliability of the undulator tapering were
demonstrated theoretically [6,7] and confirmed experimen-
tally [8] to a great advantage. A high effectiveness of the
undulator tapering was also demonstrated for a FEL with an
axial magnetic field [9]. At the same time there exist cases
where the convenient undulator profiling cannot be used or
ensure desired enhancement. In particular, if an electromag-
netic wave undulator is used, then, clearly, one has to opti-
mize characteristics of an electrodynamic structure. The
optimization of the electromagnetic structure also seems to
be more efficient than the undulator profiling if the effect of
the beam finite thickness is relevant.
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In the present paper, I demonstrate that one can effec-
tively suppress beam layering and the saturation efficiency
effect by using the optimized profiled waveguide. This
technique may be useful for the development of high-
power planar FELs with finite-thickness sheet beams.
This paper is structured as follows: in Sec. II the problem
statement for the planar FEL amplifier with the axial
magnetic field and the irregular waveguide is defined.
The nonlinear dynamics of a test electron in the pump
magnetic field is analyzed in Sec. III. A self-consistent
reduced model of the FEL is formulated in Sec. IV and its
features are discussed. In the following section, principles
of the beam-wave control are considered and a practical
example of the optimized FEL is given. The obtained
results are discussed in the Summary, and, finally, the
time-dependent excitation equation of the irregular wave-
guide and conditions of the internal nonlinear resonances
are derived in Appendices A and B, respectively.

II. THE THEORETICAL MODEL

Let a sheet relativistic electron beam be injected into an
irregular waveguide located in the external pump magnetic
field that consists of the magnetic field of a linearly polar-
ized (planar) undulator and a uniform axial magnetic field
(see Fig. 1). The pump magnetic field is given by the vector
potential:

AL(F) = (B, /k,) cosh(k,y) cos(k,z) + Byy. €))

Here B is the uniform axial guide field, B, is the magni-
tude of the planar undulator field [10], and k, = 27/A,
and A, are the wave number and the period of the undu-
lator, respectively. In simulations the first six periods of the
undulator are tapered to introduce the beam adiabatically
into the regular section of the undulator [11]. The unmodu-
lated electron beam enters the interaction region,
z € [0, L], with mean longitudinal velocity V. The irregu-
lar waveguide boundaries are set by expressions:
x==*a/2 and y = *w(z)/2 (a > w), where w(z) de-
scribes the varying distance between two wide walls of
the waveguide, and w/(0) = w/(L) = 0. Let the FEL am-
plifier be seeded by the TE;, mode, which is resonant
(synchronous) with the electron beam, the mode frequency,

FRRRRRRRRRRRRRNNREIENY Bu

waveguide undulator A\ / 0
seed A\\\ > S~ r’E
wave AY b W(Z) %
sheet z- B g
Ebeam {2=0 _— /\Z_L 3

waveguide undulator N -

FRRRRRRRRRRRRRRNRNNNY 3

FIG. 1. Sketch of the FEL in the x = O cross section.

and the amplitude at the input into the interaction region
(z = 0) equaling w and V), respectively. We consider that
the interaction region is ideally matched to the regular
output waveguide at the section z = L.

Since the wide walls are profiled, y = *w(z)/2, one can
apply the local Fourier-series expansion [12] over y to
derive a coupled set of equations governing the evolution
of the TE,,, and TM,,,, modes (subscripts n and m corre-
spond to field variations along the wide and narrow walls,
respectively). Modes with odd TE,, 44, TM,, oqq and even
TE,, even> TM,, even Variations are not coupled because of the
waveguide symmetry with respect to the xz plane. We will
hold that A > 2w(z)/3, and the TE,,, modes for m > 3 are
then evanescent so that the scattering of the seed TEg;
mode to those modes as well as the backward rescattering
from TE,,, to TEy; will be neglected. This implies that we
will ignore the intermode scattering, but take into account
the intramode one. We will also ignore the excitation of
parasitic modes like TE,; and TM,,; because their resonant
frequencies are different from the TE; mode resonant
frequency (see discussion of this point in Sec. V). Under
these assumptions the evolution of the signal TE; mode is
governed by the x component of vector potential Aj:

A3(F, 1) = Re{ V(z, 1) (Z)COS< 7y )e”""‘ )

w(z)

Here V(z, 1) is the slow-in-time amplitude satisfying the
equation (see Appendix A)

2
2
{aa LR ik, 0

}V(z, 1)

f [W(z)/2
Vw(z —a/2 w(2)/2

t+7r/cu ,
[ dr'j (F, t) cos( Y )e”‘”, (3)
t—m/w
where

(2)
2y =@ (LT (MY, LT
c0 -5 (im) -G 1+ 5]
is the wave number squared, v,,(z, @) = (dk,/dw)™" is

the group velocity, c is the speed of light, and S = a X b.
The boundary conditions read

aV 1 oV
(— +ik,V — — —) = 2ik,V,,
d Vgr at z=0 (4)
aV 1
( —ik,V + — ﬂ) =
0z V,, Of

gr

The microscopic current density is given by the follow-
ing sum over electron trajectories [11]:
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N I X, /2 Y,/2

J(?,t =—0/ ! dXO/b dyo
Sy —X,/2 —Y,/2
Xf’ dr, ﬁ(z;im t)

f_L/Vu pz(z; 10 te)

X 8[F —Fi(ziFiot)]0[t —t(z;7 1o, )] (5)

where [ is the beam current at the input into the interaction
region; S, = X, Y, is the cross sectional area of the
beam; p(z; 71, t,) and 7 (z; 710, 1,) are the mechanical
momentum and the transverse coordinate, respectively;
t(z; ¥, 1) is the arrival time of an electron at the position
7, t, and 7y = F(xg, yo) are the entrance time and the
transverse coordinates, which the electron has at the input
of the interaction region. The sheet electron beam is lying
from x, = —X,,/2 to x, = X,,/2 and from y, = —Y,/2 to
vyo = Y,/2 in the x and y directions, respectively. Since
the relativistic electron-wave interaction is being studied,
the nonradiated fields (space-charge fields) are supposed to
be negligible. The relativistic effects result in that the
defocusing influence of the potential electric field is par-
tially suppressed by the rotational nonradiated electric and
magnetic fields (see [13] for details).

The motion of a typical electron within the electron
beam can be described by the relativistic Hamiltonian:

H = \/m%c4 + (cP — eA? — eA)? = m,yc2.  (6)

Here ¢ and m, are the electron charge and rest mass,
respectively; the canonical momentum P is related to the
mechanical momentum p by P = p + (e/c)(A” + A°).
The initial conditions for the mechanical momentum and
coordinates read

Px|t=tg = pylt=t€ =0, pzlt=t( = SVll/Czr

x|t=t(, = Xo» y|t=te = Yo

(7)

Zl[:[e =0,

where £ is the initial energy of the electron entering the
interaction region at the time ¢,. The field representations
(1) and (2) and excitation equation (3) along with the
expression for the current density (5) as well as the equa-
tions of motion generated by the Hamiltonian (6) describe
the electron-wave interaction in the studied FEL in a self-
consistent way.

In order to find parameters and a waveguide profile that
provide the maximal efficiency, one has to apply an opti-
mization technique. However, a direct numerical optimi-
zation based on the nonaveraged FEL model formulated
above fails to work because a vast amount of computa-
tional resources is required. Typically, about several thou-
sand equations of motion and the partial differential
equation for the wave amplitude have to be simulated. In
this paper we propose another approach to the problem.
The investigation is divided into several stages: initially
equations of motion and the excitation equation are partly
integrated in an analytical way using methods of nonlinear

dynamics. As a result, a reduced FEL model is derived in a
special phase space. Then with this model and some prin-
ciples of evolutionary computations (genetic algorithms),
the numerical optimization of the waveguide profile is
performed. Finally, the simulation of the nonsimplified
original model using the found optimal waveguide profiles
is carried out.

For the subsequent analysis, it is advanced to rewrite
Eq. (6) as

HGBo)=H P+ WP (8

where H describes the dynamics of a typical electron in
the pump magnetic field,

H = [{cP, — e[(B,/k,) cosh(k,y) cos(k,z) + Bjy]}*
+ (cPy)? + (cP,)? + m2c*]/? = m,yoc?, 9)
and the ponderomotive perturbation reads
W = —2e(cP, — eAD)AS + (eAS). (10)

At the beginning of the interaction region W = 0 and W
increases slowly as electrons move through the waveguide
and lose their energy to the microwave radiation so that
electron trajectories also change. We start our analysis with
the integration of the equation of motion generated by the
unperturbed Hamiltonian (9) because the electron dynam-
ics in the pump field (1) is fundamental for understanding
the FEL operation. The integration of (9) is a nontrivial
problem because the nonlinear dynamical system (9) is not
globally integrable [14] and exhibits chaotic behavior if the
absolute value of the difference between the normal undu-
lator and normal cyclotron frequencies is less than the
betatron frequency [13]. The nonlinear dynamics of a test
electron in the pump magnetic field is the issue of the next
section.

III. DYNAMICS OF ELECTRONS IN
THE PUMP MAGNETIC FIELD

A. Magnetoresonance and negative-mass regime

In a special phase space called the action-angle space,
the electron motion described by the Hamiltonian (9) is
characterized by 2 degrees of freedom, namely, by undu-
lator (subscript u) and cyclotron (subscript c¢) degrees of
freedom. Oscillations corresponding to these degrees of
freedom can be viewed as normal modes of the nonlinear
system (9) and characterized by normal undulator (), and
normal cyclotron () frequencies. In the action-angle space,
the electron trajectories wind up two-dimensional invariant
tori if the dynamics is regular. Examples of such invariant
tori and weak disintegration in the case of the ideal pump
field can be found in [13]. The transverse inhomogeneous
of the realistic undulator field does not lead to appearance
of the additional betatron degree of freedom, but only
modifies the undulator and cyclotron motion. Note that in
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the pure undulator field (B = 0) the cyclotron degree of
freedom disappears, but the undulator and betatron degrees
of freedom become split and the dimension of the dynami-
cal system is also equal to two [15]. The normal undulator
and cyclotron oscillations are complicated nonlinear mix-
tures of simple partial oscillations in the pure undulator
field and pure axial field. These partial oscillations are
characterized by partial undulator w, = k,V) and cyclo-
tron ., = |e|cB) /& frequencies. The coupling, €, between
the undulator and the cyclotron oscillations depends on
the ratio of the betatron frequency to the undulator one ¢ =
\/zwﬁ/wu, where wg = |e|cBu/(\/§€) is the betatron fre-
quency. In what follows we assume that the coupling is
quite weak & << 1. Our approximation ¢ < 1 is equivalent
to K < y3— 1, where K = |e|B,A,/(27mm,c?) is the
traditional undulator parameter. Then the normal frequen-

cies are given by
Q, =xw, Q. =ow, 11

where auxiliary parameters » and o satisfy the set of
equations

o 2((2x2 — o?)cosh?[k,y,]
—=1+e
o 2(x* — 02)?
N cosh[2k, v ] N sinh?[k,y,]
402 %2 —40* ) (12)
| g2cosh?[k, v 1(3%* + o2)
x=1-— )
462 — )2

Here 0y = w./w, and y, is the initial transverse position
of the test electron. The most principal terms of the elec-
tron velocity components read

vy Q, |
v, =v(cosh, —cosb,) — 2 —0230 sinh[2k, o],

v, =v,(sinf, — (Q./Q,)sind,,),
v wg {cos[ﬁu A N cos[f,+6.] cos20u}
V2L Q,—Q. Q,+Q, 20, |
(13)

vzzv” +

where 6, . = Q, .(t — t,) are the undulator and cyclotron
phases, the magnitudes of the average axial velocity and
the velocity oscillations are

_ \/El_}”a)'gﬂu

a2 cosh[k,yo]  (14)

v =%V, v
Note that Egs. (12) are symmetric in V| as well as B and
yield trajectories, which are independent of the direction of
propagation of electrons or the orientation of the axial
field. Some details can be also found in [16], pp. 67-68.

As normal undulator frequency (), tends to normal
cyclotron frequency ()., a resonant enhancement in
the magnitudes of the velocities occurs. This well-known

situation is called the magnetoresonance and it was early
recognized [16,17] that such a resonance results in increase
of the FEL gain and efficiency. However, it was found later
on [13,15,18,19] that there is no beam-wave interaction if
), is too close to (). because the severe beam degradation
and divergence caused by the electron dynamics chaotiza-
tion occur. The details of chaotization will be discussed
below, and now let us pay attention to one more effect that
should be taken into account in experimental setups. From
Eq. (13) we see v, has the constant component that is
nothing but the éll X VB, drift velocity. Because of the
drift the distance between narrow waveguide walls has to
larger than X, + 2x(L/v)), where X, and L are the beam
width and the interaction length. We observe that the
magnitude of this drift is resonant at (), = (., but for
group II of regular orbits, ), > Q,, this effect is not so
strong near the magnetoresonance and does not lead to a
substantial increase in the waveguide width (see also the
discussion in Sec. V and Fig. 11). In the case of a wide
sheet beam, the waveguide width is mainly determined by
the beam width, but the drift also has to be taken into
account.

Let us find approximate solutions to the equation set (12)
and obtain explicit expressions for the frequencies and
average velocity. We assume that «x ~ 1 and o ~ oy.
Then, in the case of oy < 1 and oy > 1 we may take
» = 1 and o in the right-hand sides of Egs. (12) to obtain
the explicit solution. To consider the case oy~ 1, we
introduce new small magnitude pu =x%— o, u <K«
Neglecting w in expressions like (u + %), we derive the
formula defining « via € and u, k = 1 — (g£/2u)?, and get
the cubic equation with respect to wu:

wi e u?+ou+ o3 =0, (15)

where ¢, =09—1, ¢, =g&%0ycosh’[k,y,]/4, and
c3 = £*(2 + o)cosh?[k,y,]/8. The discriminant analysis
D(s, 00, y0) = p*/2T+ ¢*/4 (p=—c}/3+c. q=
2¢3/3% = ¢¢3/3 + c¢3) of cubic Eq. (15) shows that D(e,
a0, ¥o) < 0 in the region oy < o', and D(e, o, o) > 0
in the region oy > ofil. The quantity o!(e, y,) is a
solution to equation D(g, o, yy) = 0 and equals

peritl — | — 1(98 cosh[kuyo])2/3
B é(s cosh[kuy0]>4/3 N 7_82
6 18"

i (16)

In the region o) < 0'8“‘1, the solution to Eq. (15) has the
following form:

n=—0—0y)/3—24—p/3cos[(a +2m)/3], (17)

where cosa = —¢q/[24/—(p/3)’]. In the region oy =

o$i the solution to Eq. (15) reads
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=0y )4
3 3WD-q/2)'?

The case o) < € should be treated separately and we found
that the trajectories remain unchanged, but to calculate
the cyclotron frequency we have to use another formula
Q, ={w?+ w%coshz[kuyo]}'/z.

The dependence of normal frequencies (), and (). on
normalized partial cyclotron frequency w,./w, is demon-
strated in Fig. 2 using the analytical expressions (11), (17),
and (18) (solid lines) and the numerical simulation results
of the equations generated by (9) (dots). We see that the
normal frequencies substantially differ from their partial
analogies near the magnetoresonance (), ~ (). Note that
in our analytical study we ignore the adiabatic undulator
section and the interaction between different nonlinear
internal resonances (B6). Nevertheless, as we see from
Figs. 2-5 such an approximation gives a good agreement
between the analytical and numerical results. In fact, the
adiabatic undulator entrance ‘‘improves integrability” of
(9) and weakens the interaction between the internal reso-
nances (B6) so that we may treat different internal reso-
nances separately while simultaneously neglecting the
adiabatic undulator section.

It is well known that the electron dynamics is charac-
terized by a negative-mass regime near the magnetoreso-
nance [16]. The graphical illustration of this effect is
presented in Fig. 3, where we plot average axial velocity
) as a function of normalized energy &£/ m,c? using the
formulas (17) and (18) and the results of the numerical
simulations. It must be stressed that, in the self-consistent
simulations presented in Sec. V, the initial beam energy,
Yo, is slightly higher than the energy, y"", that corre-
sponds to a transition between positive- and negative-mass
regimes (™™ is a solution to the equation dv/dy, = 0).

+(D—q/2)'3  (18)

w=

s
W

Q. /o,

P
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Qy/wy REGION Qy/wy

oooooooooo;;% AROUND W
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FIG. 2. The normal undulator and cyclotron frequencies vs the
normalized partial cyclotron frequency. Solid lines are for
the analytical results, while dots correspond to the results of
the numerical simulation. In the numerical simulations the
adiabatic undulator entrance is taken into account.
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FIG. 3. Illustration of the negative-mass effect for a test elec-

tron in the pump field. The average axial velocity is a function of
the beam energy. The curves are obtained using analytical
formulas (17) and (18) while the dots represent the results of
the numerical simulation.
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FIG. 4. The average axial velocity is a function of the axial
magnetic field. The curves and the dots are for the analytical
formulas (17) and (18) and the simulation results, respectively.

Because of such a choice electrons remain longer in
synchronism with the wave because the beam energy
variation causes the variation of the average axial velocity
in the second order of smallness and the resonant condition
w = (k, + k,)v)('y) remains fulfilled for a wider range of
the beam energy variation. For a fixed initial beam energy,
the electron dynamics is also characterized by the positive-
and negative-mass regimes depending on the value of axial
magnetic field B. This is shown in Fig. 4.

B. Chaotic motion

The equation set (B5) has a lot of nonlinear resonances
(B6) (n, = m.) between the undulator and cyclotron
degrees of freedom, therefore one can expect appearance of
chaotic dynamics in the system behavior. It was demon-
strated in [15] that the main chaotic sea occupies a region of
phase space with positive and negative axial momentum.
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That is, the axial velocity of a chaotic orbit can become
negative even though the initial velocity is large and posi-
tive. Thus, the average axial velocity is equal to zero and
one expects no beam transport. Indeed, the experiments
[18,19] in the beam transport in combined undulator and
axial fields demonstrate that the beam transport vanishes if
the FEL parameters correspond to the magnetoresonance
regime. We found that the position and the boundaries of
this transport gap are in an excellent agreement with the
position and the boundaries of the chaotic regions. So, the
electron chaotization is a strong harmful effect and
the chaotic regions must be avoided in the experimental
setups so that below we derive simple analytical formulas
describing the chaotic region location and calculate the
Lyapunov exponent map. The motion becomes stochastic
if the difference between the undulator and cyclotron fre-
quencies becomes less than the betatron frequency:

1Q, — Q.| = V2w cosh[k,yo]

(I« = ol = ecosh[k,yo]). (19)

Such a criteria was initially proposed in [13] and proved
numerically. With the derived » and o, we get the expres-
sion describing the location of the chaotic region:

O.Britl <= o = O.(C)rit 2’
2 N 28 cosh[k,y,] N 5e2cosh’[k, o] 20)
3 27 18 )

It turns out that the chaotization condition is inconsistent
with the solution of equation set (12) for & less than the
minimal value of ™":

crit2 —

<
W

<
~
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Ratio of Cyclotron frequency to Undulator one @./®,

Ratio of Betatron frequency to Undulator one 2" @/ @,

FIG. 5. The major Lyapunov exponent map. Black solid lines
show the boundaries of the chaotic region according to the
analytical formulas (20).

™" cosh[k,v,] = 0.0786. Q1)

This implies that there is no chaotic region for ¢ < ™, In
Fig. 5 we have illustrated the results of the numerical
calculations for the major Lyapunov exponent. The solid
lines calculated using Eq. (20) show the boundaries of the
chaotic region. They are in good agreement with the results
of the numerical simulation.

In what follows we analyze the studied FEL within the
region of the regular dynamic.

IV. THE REDUCED MODEL OF THE FEL

Using methods of nonlinear dynamics, one can construct
a time-dependent reduced FEL model [20] that allows for
the intricate dynamics of electrons in the pump magnetic
field (1), the effect of the electron beam finite-thickness,
and the intramode scattering in the profiled waveguide
(the intramode scattering acts actually as a feedback).
The reduced FEL model reads

0%
0
oF . . U B & e
X +( ! 1) )

F_ v\ 0F _ F
—aag ik, — B)F_ — (1 + ﬂ) _ Ok Fy

= —Y()Z()Re{(F, + F_)e},

Vo) 0T a¢ 2k’
7 Y,/2 T , L
Je(, T) = ﬁ b dy()_/- dyh Y (yh)e Wm0,
7TYb —Y,/2 -
d {,w {,w
| = = 4 o e = 5 ( ) = _g - —_ g ’
Vg0 = ¥o I 1= Yo o(0)  7y(yo)
F+|£:0=F0, F—|§:L/€g :O (22)

Here { = z/€, and 7 = (vt — z)/{, are the dimension-
less longitudinal coordinate and “‘retarded time™ [21];

jecwf?: w s
F. = — g DBy i frohat (23)
* ~352 *
\/Evuyug Q,

is the normalized field amplitude; ¢ (z, ; yo, ) = k,z +
[5k(2)dz — wt — €;" [§6.(z')dz is the ponderomotive
phase; ¥ and y, are the initial entrance phase and the
initial transverse displacement of the electron position
from the undulator symmetry plane y = 0;

1 I 27me? o}
(P = P e o (24)
By ¥y Lo k2Sc*

where I, = m,c3/e = —17 KA is the Alfvén current (re-
call that e, Iy <0). The parameter ¢, is called the gain
length [21] (the spatial growth rate of the FEL without the
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axial magnetic field is equal to € g_l for zero detuning). The
explicit dependence of the reduced FEL model on the
transverse electron position and the axial position are given

by the relations
Kb
Z=4|l—
V. w(2)

The dimensionless longitudinal detuning parameter is

m) (25)

_ 05(vo) coshlk,yo] COS[ Yo ]
Q2 (vo) — Q2(vo) w(z)

5.(0) = eg(km k-

Our model (22) is exactly coincident with the Colson-
Bonifacio model [22,23] if a free-space case is employed,
the axial magnetic field equals zero, and the electron beam
is ideally thin and ultrarelativistic.

It turns out that the model (22) depends solely on the
average axial velocity via the detuning parameters, but it is
independent of the particular scalar components of the
initial velocity. This results in that the FEL efficiency is
only dictated by average axial velocity spread 8vy(z,) that
can be written as 89y « Sv, + edv, + &28v,, where
Sv;(t,) (i = x,y, 7) is the magnitude of the initial velocity
spread (6v;/0) < 1). Recall that & = \/iwﬁ/wu is a
small parameter so that one first needs to minimize the
initial axial velocity spread. The velocity spread changes
the efficiency insignificantly if the detuning caused by the
spread is much smaller than unity [21]. For the ideally thin
beam (Y, — 0) it yields the condition

(k9 + k)€, ﬂ« 1

2
y2/3 | (20

where w5, is the variance of 6v). It was shown in [24] (see
also the results of the numerical simulation in [13]) that
essential decreases in the sensitivity of the efficiency to the
initial beam spread can be obtained if the undulator fre-
quency is close to the cyclotron one (multiplier ¥~2/3
attains its minimal value).

In general, the ponderomotive potential enhances as the
undulator frequency tends to the cyclotron one [Y(y,)
increases]. This means a stronger coupling between the
wave and electrons. Such an effect referred to as the
magnetoresonance is well known in the literature [17]
and the recent detailed study [13] confirmed the usefulness
of such a regime for a planar FEL configuration. However,
the magnetoresonance effect is not so effective when the
beam has a finite thickness. Electrons with the different
initial transverse positions, y,, undergo the action of
the different magnitudes of the pump magnetic field
(1). Therefore, electron average velocity v) depends
on y, and this dependence particularly strong near the
magnetoresonance. At the same time v governs the initial

-
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FIG. 6. The relative efficiency (histogram) and the initial de-
tuning (red solid line) of electron beam layers vs the normalized
transverse displacement of layers from the symmetry plane
y=0.

“transverse”” detuning &, (y,) between the electron and the
wave. Hence, the value of §,(y,) changes across the beam,
and the contribution of different electrons to the total
efficiency might be rather different. To demonstrate this
effect we simulate Eqs. (22) for the parameters close to the
experiment [25] and assume there is additional axial mag-
netic field 20 kG as well. In the simulation we split the
beam into 21 layers in the transverse cross section. Each
layer is also uniformly distributed into 50 macroparticles
entering within one wave period. Recall that the physical
system under study is homogenous in the x direction. The
results are shown in Fig. 6. The internal layer operates in
the regime of optimal (with respect to efficiency) detuning
8.({)=5.,=(27/49"3 and §,=0, but the external
layers operate with the nonoptimal detuning because of
the variation in &, (illustrated in Fig. 6 as the solid line)
across the beam. Let us remind that according to the one-
dimensional Colson-Bonifacio model the efficiency
depends only on detuning parameter & and attains its
maximal value if § is slightly smaller than the critical
value 8., = (27/4)'/3 (see Fig. 2 in [21,26]).

Another important feature of the model (22) is that it
takes into account the effect of waveguide profiling. This
effect exhibits the coupling between the forward and back-
ward waves because of the intramode scattering. Wave
number k, depends on axial position z through varying
waveguide width w(z) and, as a result, “longitudinal”
detuning o, is also a function of z and its control can be
used to govern the beam-wave interaction.

V. CONTROL OF THE BEAM-WAVE
INTERACTION: FEL WITH THE
OPTIMIZED WAVEGUIDE PROFILE

Now I discuss the physical principle of the control of the
beam-wave interaction. For simplicity we consider the
steady-state regime and the thin beam. We also neglect
the backward wave generation assuming that w(z) is a slow
function of z. Rewriting the complex amplitudes of the
wave and ponderomotive current as F, = |F,|e'® and
J¢ = |J¢|le™ and using Egs. (22) we arrive at the system:
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2
% = —|F | cos(a + ¥),
diFil _ _
T |7¢| cos(a — u.),
da :
e = 6.(0) — |V sin(a — w.)/|F|. (27)

1 2 .
u. = rg( [ e vay,)
T Jo
1 2@
|7 = — If e dy
T 0

Here ¢, |F,|, and a are the unknown quantities gov-
erned by the differential equations, and u, and |J¢| are
given by definition. The phase of the current u.. defines the
position of the bunch center in the system of coordinates
moving with the velocity of the beam ([4], p. 160; see also
[27], p- 325). One can see that if the phase shift between the
current and the wave, ¢ = a — u,, belongs to the interval
from —/2 to /2, then the right-hand side of the equa-
tion governing wave amplitude |F | [second equation in
the upper line of (27)] has a positive sign and the amplitude
itself grows. The phase shift ¢ governs the energy transfer
from the beam to the wave because the local interaction
poweris dP/d{ « |J¢||F ;| cos¢. This implies that we can
increase the efficiency by controlling ¢ along the interac-
tion region by changing the detuning parameter §.(¢) in an
appropriate way. The idea of such an optimization was
originally proposed in TWT theory [28]. Here, for ex-
ample, we demonstrate the simple indirect optimization
method [28]. Now assume that the phase shift, ¢, satisfies
the relation:

_ = = — qin2 7 =
a— U, = q’)opt(g”) rsin 2Lpr, (=L, 08)
o — U, = ¢opt(§) =0, {> Lpr’

where L, is the start point of the region with the permanent
value of ¢». We have to find ¢ and |F, | using Egs. (27) and
(28) [in the right-hand sides of Eqs. (27) the expression
(a — u,) should be replaced by ®opt]- Then we can restore
the information about the waveguide profile using the
equation for the detuning parameter that follows from
27):

du, + d¢opt

a¢  d{

The simulation results of the amplitudes of the wave |F |
and the current |J¢| and the phase shift ¢ are shown in
Fig. 7. In this figure we also plotted the FEL characteristics
for the constant detuning. We can see that the wave ampli-
tude can be significantly enhanced (efficiency increased
several times). However, the demonstrated optimization
technique is useful only for a slightly improved efficiency
because the waveguide profiles are to be rather complicated

5z(§) =

+ (17°] Sin¢opt)/|F+|- (29)
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25
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FIG. 7. The simulation results for the FEL with and without
the phase shift optimization are demonstrated.

from the practical point of view in an effort to considerably
increase the efficiency. Then more elaborated mathematical
approaches, which simultaneously allow one to control the
practical realizability of optimal waveguide profiles, should
be used. In this paper we apply some type of a genetic
algorithm [29] to perform the FEL optimization. The prin-
ciple of evolutionary optimization is rather simple: we
generate a lot of waveguide profiles and then perform
numerical simulation of the reduced model (22) using these
profiles. Then we choose the best profiles, cross and modify
them, and perform the simulation again. As a result, one can
find a few best profiles. Finally, we must check that these
found optimal profiles are really useful. To this end we have
to simulate the nonsimplified original model (formulated in
Sec. II) using these profiles. The mathematical formulation
of the nonsimplified FEL model is very close to that of the
code MEDUSA [16], so similar numerical methods are used.
In particular, the fourth-order Adams-Moulton predictor-
corrector scheme is used in order to integrate the equations
of motion. The implicit and absolutely stable scheme no. 3
of Table 8.1 in [30] is used to solve the partial differential
diffusionlike equation for the wave amplitude. The accu-
racy of this simple scheme is O(Af) + O[(Az)?], where At
and Az are the steps in time and axial direction, respec-
tively. Typically, Az ~ A/10 ~ A, /20 and At ~ 277/ w. In
the right-hand side of Eq. (3) the integral with respect to the
initial phase is calculated by using the rectangle rule. Since
the integrand is a periodic function with respect to the initial
phase and the integration is performed over the period, this
elementary method provides an adequate accuracy. To per-
form integration with respect to the initial transverse posi-
tions of electrons, one employs the trapezoidal rule. The
accuracy of the self-consistent simulations is controlled by
checking the energy conservation law. Typical relative error
is around 107°-107°. The simulation code was verified by
comparing its results with the analytical ones [13] and
by comparing with the numerical data given in [11,31]
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FIG. 8. The FEL efficiency and the resonant frequency vs the
axial magnetic field. The results of the simulation are based on
the nonsimplified model.

and [11] (the pump magnetic field in this case was modified
in an appropriate way). The varying waveguide profile can
be represented as

w(z) = b(1 + A(z) sin[v(2) + ¢(2)]), (30)

where

N N
AG/Cr, v =Y v/
=1

n=1

Az) =

n

@(2) = @o(sin*[7z/2A,JU[A, — 2] + Ulz = A,

Here U[z] is the Heaviside function and A,,, v,, C, and ¢,
are the adjusting constants. Let us consider the results of the
optimization for a practical example.

The FEL parameters are chosen to be close to the
parameters of experiment [25]: 450-kV beam voltage,

]
W

(A)

20

non-optimized FEL

15
with axial field T~y

Total Efficiency 77 (%)

10
FEL withou

5 / axial field

0 \"\.,—a'/' N\'
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= i
% 15 3
m
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1S
g s
8
.§ 0
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Total Efficiency 7 (%)

Efficiency of Beam Layers 7, (%)

|Iy| = 16-A beam current, 1.0 mm X 2.0 cm sheet elec-
tron beam interacts with the TE,; mode (the field varying
along the narrow wall) of the 4.5 mm X 6.0 cm rectangu-
lar waveguide. The undulator magnitude increases
adiabatically within six periods and the undulator is char-
acterized by parameters B, = 3.5 kG and A, = 1.0 cm in
the regular region. A 1.5-kW input signal with the 4.2 mm
wavelength is injected. According to the linear FEL theory,
the spatial growth rate attains its maximal value in the zone
of regular beam dynamics slightly above the magnetore-
sonant value of the axial magnetic field. However, the
nonlinear analysis strongly indicates, see Fig. 3, 4, and 8,
the FEL efficiency is maximal if the axial magnetic field is
chosen in such a way that the transition from the negative-
mass to positive-mass regimes occurs during the beam-
wave interaction. In that case electrons remain longer in
synchronism with the wave at the nonlinear stage because
the beam energy variation causes small variations of the
average axial velocity, see Fig. 3, and the resonant condi-
tion remains fulfilled for a wider range of the beam energy
variation. The maximal efficiency, 19%, is achieved at
B); = 19 kG and the resonant frequency 48.4 GHz. Since
we are interested in the 75 GHz FEL amplifier, we will
choose in further simulations the axial field being equal to
20 kG.

In Fig. 9(a) the results for the FEL with the axial field but
without optimization are shown. Using the magnetoreso-
nance effect, we can significantly enhance the efficiency. It
was 4% efficiency without the axial field in the experiment
[25] and it is 12% efficiency with the axial magnetic field.
However, there is a weak interaction between the external
beam layers and the microwave because different layers of
the electron beam have different transverse detuning with

2 B optimized FEL 49 g
(B) with axial field )
20 o 148 <
=16 A A=42mm \';/
151 B,=3.5kG 4,=1cm 'H4.7§
10 B”:ZOkG X;,:2cm 463
E=450kV Y=1 mm 3
spTT ) . “a=6em {45 gﬂ
""" b=4.5mm 2
0 44 Z
30 optimized FEL
25 with axial field
20 ;
A
15 # internal
layers
10
5 external
layers
0 e Y
0 20 40 60 80 100 120 140

Axial Position z (cm)

FIG. 9. The total FEL efficiency, the efficiency of electron beam layers, and the waveguide width vs the interaction length. The
results of the simulation based on the nonsimplified model given in Sec. II are demonstrated.
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the wave due to the transverse inhomogeneity of the pump
magnetic field. Geometric positions of different beam
layers at the beginning of the interaction region are shown
inside the dotted ellipse. The black curve is for the central
layer. Other layers are displaced with respect to the sym-
metry plane y = 0.

In Fig. 9(b) the results for the optimized FEL with
the axial field are presented. The waveguide profile is
characterized by the parameters [see Eq. (30)]: N =3,
A; =0.223, A, = —0.894, A; = —0.964, v = —1.902,
v, = 0.293, v3 = 0.901, ¢, = 0.723, and C = 200. The
maximal relative deviation of the waveguide width is 8%
and the maximal and minimal widths are around 4.9 and
4.4 mm, respectively. The dimensionless slope of the
waveguide taper €, =k, 'd,lnw = 0.0002 is much
smaller than the normalized growth rate of the wave
Imék,/k, = 0.0029. Using the waveguide with the opti-
mized profile, one can double the efficiency so that the final
efficiency is around 22%. We also see that the external
layers interact with the wave much more effectively in the
optimized FEL. So, by changing the waveguide profile we
control beam-wave interaction thus increasing the FEL
efficiency.

The distribution of the microwave power along the
interaction region for different moments of time is pre-
sented in Fig. 10. We checked that the proposed FEL
amplifier reaches a steady-state regime and it takes around
8 ns. The field transition time ¢, = L/ + (17”‘1 —
vg_rl)lu Ty, Where 7, is the dimensionless transition time
and its value is typically 150-200, is comparable with the
electron transit time 7 = L /v = 6.52 ns.

It should be mentioned that the applied axial magnetic
field éll not only allows one to increase the FEL efficiency
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& 15
o
~ 0
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& 15
= 0
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o
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e 25 |t=120 =140
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& 15
o
(=W}

0
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Axial Position z (cm)  Axial Position z (cm)

FIG. 10. The normalized power vs the interaction length at
different moments of time.

substantially, but also causes a beam divergence due to the
electron drift EII X VEM (Eu is the undulator field) in the
x direction. However, ponderomotive potential W is inde-
pendent of x coordinates of electrons because the micro-
wave and pump magnetic field are homogeneous in the
x direction. As a result, the beam-wave interaction is not
drift dependent unless electrons fall down on the wave-
guide walls. It is checked that electrons do no touch the
walls in the situations of interest (see Fig. 11). Since the
drift velocity depends on y, as sinh[2k,y,], the central
layer y, = 0 does not undergo the drift effect, whereas
the beam layers displaced with respect to the symmetry
plane y = 0 drift toward walls with different velocities.
Depending on specific parameters, a number of parasitic
modes, including a mixture of the TE,; and TM,; modes,
may be excited by the beam. However, for the given above
FEL configuration parasitic modes affect weakly the inter-
action of the beam with the dominant TE,;; mode due to
several reasons. Coupling between the wave and the beam
strongly depends on the electric field distribution in the
transverse plane and the beam location. From Fig. 12 we
see that the beam position coincides with the field maxi-
mum for the TE;; mode and the field distribution is homo-
geneous in the x direction, therefore the beam-wave
coupling is high. But the contributions of different parts
of the beam annihilate each other for TE;; and TMj,
because the electric field E, (E,) has different signs

regular waveguide walls x =+ a/2 —__

2.0
10 electron beam layer yp = 0.05 cm
g
3 00 \
=
- 1.0 P electron beam layer yg = -0.05 cm
-2.0
regular waveguide walls x = + a/2 —__
2.0
E
Q

1.0 electron beam layer yy = 0.03 cm
L2 0.0 R
=10 electron beam layer yg = -0.03 cm
2.0 \

profiled waveguide walls y = + w(z)/2 —_

several electrons’ trajectories 5

0.1 m‘“\
B
=-0.1 il

0.2 | for layers y;=0.05 cm and y,=-0.05 cm B

0 20 40 60 80 100 120 140
axial distance (cm)
FIG. 11. Some electrons’ trajectories in the x-z and y-z planes
are shown.
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FIG. 12. The field distributions of TE,;, TE,, and TE,;; modes
and the beam initial position are demonstrated.

for x >0 (y>0) and x <0 (y <0). As for the TE,; and
TM,; modes, these modes are quite effectively matched to
the beam via E,, but their resonant frequency is 68.5 GHz
whereas the FEL is seed at the frequency 71.4 GHz and the
bunching occurs at a higher frequency than it is necessary
for the excitation of TE,; and TM,; modes. In the experi-
ment [8] the output power from the tapered wiggler was
nearly all ( ~90%) in the fundamental mode whereas the
resonant frequencies for the TE,; and TE,; modes were
34.6 and 32.5 GHz, respectively. Moreover, it was not
reported about the parasitic modes excitation in experiment
[25]. Besides, the beam drift leads to suppression of the
TE,;-TM,, modes excitation because, as we see from
Figs. 11 and 12, at the end of the interaction region
the phase shift between the external beam layers
yo = *£0.05 mm and the central layer y, = 0 is around
7. Therefore, the contribution of the different layers is
partly annihilated and we may ignore parasitic modes.

VI. SUMMARY AND DISCUSSION

The operation of a planar FEL amplifier with an axial
magnetic field and an irregular waveguide is studied. The
self-consistent model, which includes the excitation equa-
tion and the equations of motion along with the expressions
for the radiated field and the microscopic current density, is
formulated. In order to find the parameters and the wave-
guide profile that provide the maximal efficiency, one has
to apply an optimization technique. However, the direct
numerical optimization based on the nonaveraged FEL
model fails to work because a vast amount of computa-
tional resources is required. In this paper, I propose another
approach to the problem. The investigation is divided into
several stages: initially the equations of motion and the

excitation equation are partly integrated in an analytical
way using methods of nonlinear dynamics. As a result, the
reduced FEL model is derived in a special phase space.
Then with this model and some principles of evolutionary
computations (genetic algorithms) the numerical optimi-
zation of the waveguide profile is performed. Finally, the
simulation of the nonsimplified original model using
the found optimal waveguide profiles is carried out. So,
one can come closer to understanding what increase in the
efficiency can be achieved in practice.

There is no reversed-guide-field regime for a planar FEL
configuration so that in the paper the magnetoresonance
effect is employed to enhance the beam-wave interaction.
According to the linear theory [13,16,17], the spatial
growth rate attains its maximal value in the zone of regular
beam dynamics slightly above the magnetoresonant value
of the guide magnetic field. However, the nonlinear analy-
sis strongly indicates that the FEL efficiency is maximal if
the axial magnetic field is about 20%—-30% higher than its
magnetoresonance value so that the transition from the
negative-mass to positive-mass regimes occurs during the
beam-wave interaction, see Figs. 3, 4, and 8. In that case
electrons remain longer in synchronism with the wave at
the nonlinear stage because the beam energy variation
causes the variation of the average axial velocity only in
the second order of smallness (at the transition point
dv)/dy = 0) and the resonant condition remains fulfilled
for a wider range of the beam energy variation. Typically,
the magnetoresonance allows one to increase the FEL
efficiency by a factor of 5 or 6 if the beam is very thin
and by a factor of 3 or 4 if the beam thickness is relevant.
At the same time the magnetoresonance effect appears not
only as an advantage, but the beam degradation and diver-
gence caused by the electron dynamics chaotization occur
[15,18,19] if ), is too close to {).. The simple analytical
formulas describing the chaotic region location are derived
in the paper so that our formulas (20) allow one to easily
estimate the parameter region that has to be avoided in
experimental setups. The applied axial magnetic field also
causes the electron drift §|| X VEM in the x direction.
Because of the drift the distance between narrow wave-
guide walls has to be larger than X, + 2x(L/v)), where X,
and L are the beam width and the interaction length, and
the electron position x(z) is given by (13). In the case of a
wide sheet beam the waveguide width is mainly deter-
mined by the beam width, but the drift also has to be taken
into account, see Fig. 11.

There are two types of detuning in the reduce model (22):
“axial” detuning parameter that changes along the interac-
tion region via the profiled waveguide width and the trans-
verse detuning parameter that changes across the beam
because the pump magnetic field is inhomogeneous
and the average velocity of the electron depends on its
initial transverse position. The transverse detuning causes
layering of the thick beam and the degradation of the
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external layers’ contribution into the total efficiency.
The present paper demonstrates that the beam layering
and the saturation effect can be overcome by the control
of the beam-wave interaction. The physical mechanism of
such a control is that by changing the waveguide profile one
controls the axial detuning and thus regulates the phase shift
between the ponderomotive wave and current. This phase
shift defines the transfer of the energy between the beam and
the wave and its regulation allows one to optimize the
interaction.

The practical example of optimization of the FEL,
whose parameters are close to those of the experiment
[25], is demonstrated. The simulation results based on
the nonsimplified model (see Sec. II) strongly indicate
that combining the magnetoresonance effect with the opti-
mized profile waveguide one can enhance the FEL effi-
ciency by a factor of 5 or 6. The efficiency in the
experiment [25] was around 4%. Applying the axial mag-
netic field, the efficiency has been increased up to nearly
12%, but about 30% of electrons do not interact with the
wave because of the initial transverse detuning. Following
the waveguide optimization the efficiency has reached
22%, in particular, due to a much more effective interaction
between the external beam layers and the wave.
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APPENDIX A: TIME-DEPENDENT EXCITATION
OF AN IRREGULAR WAVEGUIDE

The evolution of the resonant (synchronous) TE(; mode
is governed by the x component of the vector-potential A},
which satisfies the wave equation

1 92 4
(v2 - )Ax = - 777 Ji

2372 (A1)

We seek a solution to the equation of the form

2 — ® 5 ! L 7T_y —iw't !
A (7 1) Re[0 V(z, ') W(Z)cos(w(z))e do'. (A2)

Substituting (A2) into (Al) we derive the excitation equa-
tion for the Fourier amplitude V(z, »'):

02 _
{8_12 + k2(z, w’)}V(z, ')

87 | b a/2 w/2 _
= _—1/— dx/ dyj . (F,
Sc W(Z)]—a/Z —w/2 y]( )
my
X cos| ——),
<W(Z))

where  k2(z) = (w/c)? = (/w)* — (W'/2w)*(1 + 72/3)
and j (7, ') = 7! [© j (7 e’ dt. Here j.(7, ') is
the Fourier amplitude of the current density. We will con-
sider that at the section z = 0 the FEL amplifier is seeded
by the TE; mode with a frequency of w and amplitude V/,,
and the interaction region is ideally matched to a regular
output waveguide at the section z = L:

(A3)

Vv -
(— + isz>

a9z

oV _
(_ - ikZV)

9z

The conditions for the waveguide profile at the ends of the
interaction region have the following form: w'(0) =
w/(L) = 0. Let us perform approximate inverse Fourier
transformation [4,32]. We assume that j (7 ') is the
narrow-band signal with a fundamental frequency of w.
This means that the current density can be written as
j(7 1) = Re{J, (7 t)e i“"}, where J,(7, t) is a slow func-
tion of time such that

= 2ik.Vydlo' — o],
z=0 (A4)
= 0.

z=L

N w [tt7/o .
J (A1) =— [ J (7 e ldt
T

t—m7/w
~ [00 J.(F o+ Aw)e 2 d(Aw),

Aw =0 — w.

Expanding k%(z, ') into Taylor’s series over w up to the
linear term, multiplying Eq. (A3) by ¢ '’ and integrating
it over Aw from —oo to oo, we derive the time-dependent
excitation equation (3) for the slow-in-time amplitude
V(z, 1) = [ V(z, @ + Aw)e A“'d(Aw). The solution
(A2) and the boundary conditions (A4) can be rewritten
as Egs. (2) and (4), respectively.

APPENDIX B: NONLINEAR INTERNAL
RESONANCES

It is advanced to divide the Hamiltonian (9) into a non-
perturbed (integrable) part that corresponds to the electron
motion in the axial homogeneous magnetic field and a
small perturbation caused by the undulator magnetic field.
Based on the nonperturbed system (the undulator field is
absent B,, = 0), we introduce the action-angle variables:
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n,, P, =k,I,

V2w El,
p o= _VE®Cle g
C

B1
B 9 2P, 9, B
= cosd, — —, ==
yoe £ C O wE ¢ k,
the initial conditions take the following form:
I |t 1, Bllg/(kuc) i 19u|t=t, =0, (B2)
I |t t, B SCOSh [kuy()]/(zwL)) ,ﬁclt:te =,
where B = V|/c, w. = le|lcB) /&, and w, = k,V) are the

partial cyclotron and undulator frequencies, respectively;
e = 2w B /w, is the dimensionless perturbation parame-
ter, wg = le|cB,/ (+/2€) is the betatron frequency. Using
(B1) and some algebra we may rewrite (9) as

H =\/m§c4 +(ck,0)? +2w,.E1,+V(I, D). (B3)

Here sV(I, 5) is the nonintegrable undulator perturbation,

>

eV(l, ) = é i V,m(I)(cos[nd, + md, ]
n=0 m=0

+ cos[n?d, — m?,)), (B4)

where for odd values of m the coefficient V,, ,, is
VO,m = v2,m =
m = Sﬂllgvzwcglc COSh[A](Im+1[B] + Im*l[B])r

e’ B € sinh[2A]1,,[2B]/4,

and for even values of m the coefficient V,, ,, is

= &°BjE%(8,0 + cosh[2A]1,[2B](2 — 6,,0))/8,
Vz,m = Vom
Vim = —&BEN2w £l sinh[A]
X (Ly1[B] + 1, 1[BI(1 = 68,,0)).

Here, A= —(k,yo+ (V2wg/w.)cosh[k,y,]) = const,

B = ck,J21./(®./E), ,,, is the Kronecker delta, I,(x) is
the modified Bessel function of the first kind of order n.
The equations of motion read

(-2 2

n=0m=0
X (sin[n?d, + md,] = sin[nd, — m?I,]),
&, = k21, /€, (B3)
. aV,
’19 = -‘f‘ n, m C
o e ZO mz 2801,
X (cos[nd, + md,.] + cos[n¥, — md.]).

The equation set (B5) has a lot of internal nonlinear
resonances (9, = *md,, 29, = £md,) between the un-
dulator and cyclotron degrees of freedom. Actually, the

0
successive iterations give in the zero approximation 0=

I|z=te and 9 = w,(t — 1,), 9O = 7+ w,(t — 1,). One
can check that the first approximation leads to 5(1), 7V o
et modt [(ngy  + mw,). As a result, the closer is
nw, * mo, to zero, the more perturbed dynamics is.
Applying the nonlinear resonance technique to (B5) and
analyzing each internal nonlinear resonance separately, we
can show that I, « \/g in the vicinity of the resonance.
Using this estimation we can compare the levels of

the dominance of different resonances (e <1, k=
1,2,3...):

if 9, = (2k — 1)9, then eV o gh/2+3/4 cosh[A],

if &, =~ 2k9, then eV o gk/2*1ginh[A],
if 209, = 2k — 1), then eV x gk/2+7/45inh[24],
if 29, = 2k9. then eV « g¥/2*2 cosh[24].  (B6)

If € and y, exceed some thresholds, then there exist regions
of chaotic dynamics of the test electron in the phase space.
These regions of the phase space correspond to the regions
of the nonlinear resonances between degrees of freedom.
The most important resonances, in the vicinity of which the
onset of the chaos can occur, are ¥, = ¥,, ¥, = 29,, and
¥, = 39, (see Figs. 2 and 5).
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