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Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched,

intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is

assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with

that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths

of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type

beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic

particle motion in the adiabatic thermal beam equilibrium.
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I. INTRODUCTION

High-brightness beams in particle accelerators and beam
devices and facilities are often generated in a regime where
space charge plays an important role. Examples of high-
brightness electron beams are rf and thermionic photo-
injectors, thermionic DC injectors, electron beams in
high-power rf sources, etc. Examples of high-brightness
ion beams include negative hydrogen ion beams in spalla-
tion neutron sources and various ion beams in high energy
density physics research.

Exploration of equilibrium states of charged-particle
beams and their stability properties is critical to the
advancement of basic particle accelerator physics. Of
particular concern are emittance growth and beam losses,
which are related to the evolution of charged-particle
beams in their nonequilibrium states. To minimize emit-
tance growth and control beam losses, it is critical to find
and study equilibrium distributions of high-brightness
charged-particle beams in accelerators and beam transport
systems.

Several kinetic equilibria have been discovered for pe-
riodically focused intense charged-particle beams. Well-
known equilibria for periodically focused intense beams
include the Kapchinskij-Vladimirskij (KV) equilibrium in
an alternating-gradient (AG) quadrupole magnetic focus-
ing field [1,2] and the periodically focused rigid-rotor
Vlasov equilibrium of the KV type in a periodic solenoidal
magnetic focusing field [3,4]. Both of these beam equilib-
ria [1–4] have a singular (�-function) distribution in the
four-dimensional phase space. Such a �-function distribu-
tion gives a uniform density profile across the beam in the
transverse directions, and a transverse temperature profile
which peaks on axis and decreases quadratically to zero on
the edge of the beam. Because of the singularity in the
distribution functions, these beam equilibria are not likely
to occur in real physical systems and cannot provide real-
istic models for theoretical and experimental studies
and simulations except in the zero-temperature limit. For

example, the KV equilibrium model cannot be used to
explain the beam tails in the radial distributions observed
in recent high-intensity beam experiments [5]. Recently,
adiabatic thermal beam equilibria have been discovered in
a periodic solenoidal magnetic focusing field [6–8] and an
AG quadrupole magnetic focusing field [8,9]. The mea-
sured density distribution [5] matches that of the adiabatic
thermal beam equilibrium in a spatially varying solenoidal
magnetic focusing field [6,8].
There have been many studies of charged-particle dy-

namics in the KV-type equilibria [10–14]. These studies
have shown that the phase space for the KV-type equilibria
exhibits rich nonlinear resonances and chaotic seas for
charged particles outside the beam envelope [10,11]. If
charged particles cross the beam envelope due to perturba-
tions, they may enter chaotic seas to form a beam halo or
cause beam losses [12–14].
The purpose of this paper is to show numerically that

chaotic particle motion is almost completely eliminated in
the adiabatic thermal beam equilibrium. The importance of
this result is twofold: First, the elimination of chaotic
particle motion provides a further numerical proof that the
scaled transverse Hamiltonian defined in Eq. (25) in [6] is a
very good approximate constant of motion. This approxi-
mate constant of motion and the exact contact of motion of
the canonical angular momentum assure that the motion of
charged particles is approximately integrable in the four-
dimensional phase space of the adiabatic thermal beam
equilibrium. Second, the elimination of chaotic particle
motion may provide valuable insight into how to control
chaotic particle motion, halo formation, and beam loss in
beam transport channels. In particular, if adiabatic thermal
beams are stable, they may be free from chaotic particle
motion, beam halo formation, and beam loss.
The organization of the present paper is as follows. In

Sec. II, the basic equations of the adiabatic thermal beam
equilibrium are reviewed. The equations of motion for
a charged particle are presented. In Sec. III, results of
a numerical analysis of charged-particle motion are
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discussed. In particular, the Poincaré surface-of-section
maps of the motion of charged particles in phase space are
generated numerically. Comparisons are made between the
KV-type and adiabatic thermal beam equilibria. Numerical
evidence is presented for almost complete elimination of
chaotic particle motion in the adiabatic thermal beam equi-
librium. In Sec. IV, the conclusion of the present paper is
presented.

II. THEORETICAL MODEL

We study charged-particle dynamics in the adiabatic
thermal equilibrium of an intense charged-particle beam
propagating with constant axial velocity �bcêz in the
periodic solenoidal magnetic focusing field,

B ext ¼ BzðsÞêz � 1

2

dBzðsÞ
ds

ðxêx þ yêyÞ; (1)

where s ¼ z is the axial coordinate, Bzðsþ SÞ ¼ BzðsÞ is
the axial magnetic field, S is the fundamental periodicity
length of the focusing field, and c is the speed of light in
vacuum. The adiabatic thermal beam equilibrium has been
derived under the paraxial approximation with the follow-
ing assumptions: (1) rb rms � S, where rb rms is the rms
beam radius and (2) �=�3

b�
2
b � 1, where � ¼ q2Nb=mc2

is the Budker parameter of the beam, q and m are the
particle charge and rest mass, respectively, Nb ¼R1
0 nbðr; sÞ2�rdr ¼ const is the number of particles per

unit axial length, and �b ¼ ð1� �2
bÞ�1=2 is the relativistic

mass factor.
In the adiabatic thermal beam equilibrium [6–8], the

beam density distribution is given by

nbðr; sÞ ¼ 4�C"2th
r2b rmsðsÞ

exp

�
�
�
K

2
þ 4"2th

r2b rmsðsÞ
�

r2

4"2th

� q

�2
bkBT?ðsÞ

�ðr; sÞ
�
; (2)

and the self-electric potential �ðr; sÞ is determined by the
Poisson equation,

1

r

@

@r

�
r
@�

@r

�
¼ �4�qnbðr; sÞ; (3)

and the free-space boundary conditions. In Eqs. (2) and (3),
C is a constant determined by Nb ¼

R1
0 nbðr; sÞ2�rdr,

K � 2q2Nb=�
3
bm�2

bc
2 is the generalized beam perveance,

"th ¼ ½kBT?ðsÞr2b rms=2�bm�2
bc

2�1=2 is the rms thermal

emittance in the Larmor frame, ~x ¼ x cos’� y sin’ and

~y ¼ x sin’þ y cos’, where’ ¼ R
s
0

ffiffiffiffiffiffiffiffiffiffiffi
�zðsÞ

p
ds,T?ðsÞ is the

Kelvin temperature of the beam, kB is the Boltzmann con-
stant, and the rms beam envelope rb rmsðsÞ ¼ rb rmsðsþ SÞ
solves the beam envelope equation

d2rb rms

ds2
þ �zðsÞrb rms � K

2rb rms

¼ 4"2th
ð1�!2

bÞr3b rms

; (4)

where
ffiffiffiffiffiffiffiffiffiffiffi
�zðsÞ

p � qBzðsÞ=2�bm�bc
2 and !2

b ¼ 1� ð"th=
"~x rmsÞ2 with "~x rms being the rms emittance in the
~x direction.

III. NUMERICAL ANALYSIS

Figure 1 shows (a) normalized focusing parameter
S2�zðsÞ and (b) normalized rms envelope rb rms=

ffiffiffiffiffiffiffiffiffiffiffiffi
4"thS

p
versus the normalized distance s=S for the choice of

system parameters corresponding to S
ffiffiffiffiffiffiffiffiffiffiffi
�zðsÞ

p ¼
ð2=3Þ1=2�0½1þ cosð2�s=SÞ�, SK=4"th ¼ 7:0, !b ¼ 0,
and vacuum phase advance �0 ¼ 80�. For !b ¼ 0, "th ¼
"~x rms and the KV-type and adiabatic thermal beam equi-
libria have the same rms beam envelopes.
Figure 2 shows (a) density nb and (b) radial self-electric

field Er for the KV-type and adiabatic thermal beam equi-
libria at s ¼ 0 with the same choice of system parameters
as in Fig. 1. While the self-electric fields of the two beams
are similar, there are three important differences: (a) the
density in the interior for the adiabatic thermal beam is

FIG. 1. Plots of (a) normalized focusing parameter S2�zðsÞ and
(b) normalized rms envelope rb rms=

ffiffiffiffiffiffiffiffiffiffiffiffi
4"thS

p
versus the normal-

ized distance s=S for the choice of system parameters

corresponding to SK=4"th ¼ 7:0, S
ffiffiffiffiffiffiffiffiffiffiffi
�zðsÞ

p ¼ ð2=3Þ1=2�0½1þ
cosð2�s=SÞ�, !b ¼ 0, and �0 ¼ 80�.

HAOFEI WEI AND CHIPING CHEN Phys. Rev. ST Accel. Beams 14, 024201 (2011)

024201-2



higher than that for the KV-like beam; (b) the electric field
near the normalized radius r=

ffiffiffiffiffiffiffiffiffiffiffiffi
4"thS

p � 2:0 has a smooth
transition from negative to positive slope for the adiabatic
thermal beam, whereas its radial derivative is discontinu-
ous for the KV-type beam equilibrium; (c) the self-electric
field near the edge of the adiabatic thermal beam is weaker
than that of the KV-type beam. These differences result in
significant changes in charged-particle dynamics (see
Figs. 3 and 4).

The radial equation of motion of a charged particle in the
cylindrical coordinates is

d2r

ds2
þP2

	

r3
þ�zðsÞrþ q

�3
bm�2

bc
2

@�ðr;sÞ
@r

¼0; (5)

where the canonical angular momentum P	 is conserved.
Figure 3 shows a comparison between the Poincaré
surface-of-section maps of charged-particle trajectories in
(a) KV-type beam equilibrium and (b) adiabatic thermal

beam equilibrium for the choice of system parameters

corresponding to P	 ¼ 0, S
ffiffiffiffiffiffiffiffiffiffiffi
�zðsÞ

p ¼ ð2=3Þ1=2�0½1þ
cosð2�s=SÞ�, �0 ¼ 80�, !b ¼ 0, and SK=4"th ¼ 7:0.
These parameters correspond to a highly space-charge-
dominated beam rotating at the (local) Larmor frequency
in a high-strength periodic solenoidal magnetic focusing
field. They are generated by plotting ðr; PrÞ as a trajectory
arrives at the lattice points s=S ¼ 0; 1; 2; . . . ; 2000. For
these parameters, the density for the KV-type beam equi-
librium drops abruptly at r=

ffiffiffiffiffiffiffiffiffiffiffiffi
4"thS

p � 2:0, whereas the
density for the adiabatic thermal beam equilibrium falls
from its flattop value to almost zero between r=

ffiffiffiffiffiffiffiffiffiffiffiffi
4"thS

p ffi
1:6 and 2.4.
For r=

ffiffiffiffiffiffiffiffiffiffiffiffi
4"thS

p
< 2:0, the phase space is regular in both

the KV-type and adiabatic thermal beam equilibria, and the
action of a charged particle in the KV-type beam is larger
than that in the adiabatic thermal beam, as shown in Fig. 3.
The phase space area (action) of a charged particle in the
interior of the adiabatic thermal beam is significantly
smaller than that of the KV-type beam because the density

FIG. 3. Poincaré surface-of-section maps of charged-particle
trajectories in (a) KV-type beam equilibrium and (b) adiabatic
thermal beam equilibrium for P	 ¼ 0 and the same choice of
system parameters as in Fig. 1. Here, the normalized radial
momentum is ðS=4"thÞ1=2dr=ds and the normalized radius is
r=

ffiffiffiffiffiffiffiffiffiffiffiffi
4"thS

p
.

FIG. 2. Plots of (a) normalized density nb=nKVð0; 0Þ and

(b) normalized radial self-electric field S3=2KEr=4"
1=2
th qNb ver-

sus normalized radius r=
ffiffiffiffiffiffiffiffiffiffiffiffi
4"thS

p
in the KV-type beam equilib-

rium (dashed curve) and the adiabatic thermal beam equilibrium
(solid curve) at s ¼ 0 for the same choice of system parameters
as in Fig. 1. Here, nKVð0; 0Þ is the density of the KV-type beam
equilibrium at s ¼ 0 and r ¼ 0.
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of the adiabatic thermal beam approaches the density of the
corresponding cold beam, which is higher than the density
of the KV-type beam. In the region 2 � r=

ffiffiffiffiffiffiffiffiffiffiffiffi
4"thS

p � 2:4,
however, there are striking differences between the
KV-type and adiabatic thermal beam equilibria, as shown
in Fig. 4. Comparing Fig. 4(a) with Fig. 4(b), there are two
important differences to note. First, there are chaotic seas
in the phase space of the KV-type beam, whereas chaotic
motion is almost absent in the phase space of the adiabatic
thermal beam equilibrium. Second, the widths of the non-
linear resonances in the adiabatic thermal beam equilib-
rium are narrower than those in the KV-type beam
equilibrium. For example, the width of the nonlinear reso-
nance at ðr= ffiffiffiffiffiffiffiffiffiffiffiffi

4"thS
p

; P	Þ ffi ð2:36; 0Þ is �r=
ffiffiffiffiffiffiffiffiffiffiffiffi
4"thS

p ¼
0:013 in the adiabatic thermal beam, whereas the width
of the corresponding resonance in the KV-type beam is
�r=

ffiffiffiffiffiffiffiffiffiffiffiffi
4"thS

p ¼ 0:021.

IV. CONCLUSION

We analyzed charged-particle motion in the self-electric
and self-magnetic fields of a well-matched, intense
charged-particle beam in a period solenoidal magnetic

focusing field. We assumed that the beam is in the state
of adiabatic thermal equilibrium. We compared the phase
space of the adiabatic thermal beam equilibrium with that
of a corresponding KV-type beam equilibrium. We found
that the widths of some of the nonlinear resonances in the
adiabatic thermal beam equilibrium are narrower than
those in the KV-type beam equilibrium. We presented
numerical evidence for almost complete elimination of
chaotic particle motion in the adiabatic thermal beam
equilibrium in a periodic solenoidal magnetic focusing
field.
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