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Based on the parabolic equation approach to Maxwell’s equations, we have derived scaling properties

of impedance that apply either to (1) structures of general shape at high frequencies, or (2) small angle

transitions at all frequencies. Applying these scaling properties to impedance/wakefield calculation of

long, small angle, beam pipe transitions, like one often finds in insertion regions of storage rings, one can

greatly reduce the computer resource required. We have tested the scaling with wakefield simulations of

2D and 3D models of such transitions, and have found that it appears to work well.
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I. INTRODUCTION

In modern ring-based light sources, one often finds
insertion devices having extremely small vertical apertures
(on the order of millimeters) to allow for maximal undu-
lator fields reaching the beam. Such insertion devices
require that there be beam pipe transitions from these small
apertures to the larger cross sections (normally on the order
of centimeters) found in the rest of the ring. The fact that
there may be many such transitions, and that these tran-
sitions introduce beam pipe discontinuities very close to
the beam path, means that their impedance will be large
and, in fact, may dominate the impedance budget of the
entire ring. To reduce their impact on impedance, the
transitions are normally tapered gradually over a long
distance. The accurate calculation of the impedance or
wakefield of these long transitions, which are typically
3D objects (i.e. they do not have cylindrical symmetry),
can be quite a challenging numerical task.

In this paper we present a method of obtaining the
impedance of a long, small angle transition from the cal-
culation of a scaled, shorter one. Normally, the actual
calculation is obtained from a time domain simulation of
the wakefield in the structure, where the impedance can be
obtained by performing a Fourier transform. We shall see
that the scaled calculation reduces the computer time and
memory requirements significantly, especially for 3D
problems, and can make the difference between being
able to solve a problem or not. The method is based on
the parabolic equation approach to solving Maxwell’s
equation developed in Refs. [1,2].

This report is organized as follows: We begin by devel-
oping the theory of impedance scaling for small angle
transitions. This is followed by numerical calculations to
test the validity of the theory. Our examples consist of
longitudinally symmetric transitions that connect a large
beam pipe to a small one and then back again by means of
small angle tapers. They include (i) a 2D (cylindrically

symmetric) transition with a short central section (similar
to a collimator), (ii) 2D transitions with longer central
pipes, and (iii) a 3D transition with long central pipe.
We finish with a concluding section. To differentiate the
three types of examples we call them short (i), long (ii),
and 3D (iii) transitions.

II. THEORY

We start from the parabolic equation formulated in [3].
As discussed in [1], in the general case of arbitrary angles
this equation is valid for frequencies ! � c=a, where a is
a characteristic transverse size of the pipe. However, for
small angle tapers and collimators, the region of validity of
this equation extends toward smaller frequencies and in-
cludes ! & c=a.
The parabolic equation is formulated for the envelope

part of the electromagnetic field,

Êðx; y; z; !Þ ¼
Z 1

�1
dtei!t�ikzEðx; y; z; tÞ; (1)

where k ¼ !=c. It is written in terms of the transverse

component Ê? ¼ ðÊx; ÊyÞ of the vector Ê,

k
@

@z
Ê? ¼ i

2

�
r2

?Ê? � 4�

c
r?ĵz

�
; (2)

where z is the coordinate in the direction of motion of the

beam, and ĵz is the Fourier transformed projection of the
beam current along z:

ĵ zðx; y; z; !Þ ¼
Z 1

�1
dtei!t�ikzjzðx; y; z; tÞ: (3)

The longitudinal electric field Êz is expressed in terms of

Ê?:

Ê z ¼ i

k

�
r? � Ê? � 4�

c
ĵz

�
: (4)
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We assume perfect conductivity of the metal walls. The
boundary condition for the electric field requires a vanish-
ing tangential component on the wall,

n � Êjw ¼ 0; (5)

where n is the normal vector to the surface of the wall.

The current ĵz in Eqs. (2) and (4) corresponds to a unit
point charge moving with the speed of light along the axis
of the system x ¼ y ¼ 0, jz ¼ qc�ðxÞ�ðyÞ�ðz� ctÞ. It is
given by the following expression:

ĵ z ¼ q�ðxÞ�ðyÞ: (6)

The longitudinal impedance on the z axis at frequency! is
given by

Zkð!Þ ¼ � 1

q

Z 1

�1
dzÊzð0; 0; z; !Þ: (7)

Because of the presence of � functions in the current (6),

the electric field Ê has a singularity on the axis z. An
equivalent formulation of the impedance problem which
avoids the singular terms is the following. We introduce the

vacuum electric field Êvac of the current ĵz and subtract it

from Ê:

Ê ¼ Ê� Êvac: (8)

The vacuum field is the beam field in the absence of
material boundaries in the problem; it satisfies the same
Eq. (2), but is not required to satisfy the boundary condi-
tion (5). While it is easy to write down an analytical

expression for Êvac, we will not need it in what follows.

The equations for Ê, which we call the radiation field, are

k
@

@z
Ê? ¼ i

2
r2

?Ê?; Êz ¼ i

k
r? � Ê?; (9)

with the boundary condition

n � Êjw þ n� Êvacjw ¼ 0: (10)

The vacuum electric field is perpendicular to the direction
of motion (because we consider an ultrarelativistic point
charge), and does not contribute to the impedance. Note

also that the vacuum field does not depend on z, Êvacðx; yÞ.
Let us assume that the geometry of a given surface of the

metallic wall is determined by the equation Uðx; y; zÞ ¼ 0.
Instead of considering one particular shape of the pipe, we
consider a family of such pipes, which are defined by
various scale lengths � in the longitudinal direction. This
means that U is also a function of the parameter �, and it
has a special dependence on �:

Uðx; y; z;�Þ ¼ V

�
x; y;

z

�

�
: (11)

Increasing the parameter � in Eq. (11), we extend the pipe
in the z direction without changing its transverse shape at

each cross section, while decreasing � contracts the pipe
along z.
We now define the normal vector to the surface of the

pipe, n ¼ rU or

n ¼ ex
@V

@x
þ ey

@V

@y
þ ez

1

�

@V

@�
; (12)

where we have introduced the dimensionless scaled coor-
dinate � ¼ z=�, and used notations ex, ey, and ez for unit

vectors in respective directions. We will indicate the de-
pendence of fields versus the parameter � by adding � to
the list of arguments and separating it by the semicolon,

e.g., Ê?ðx; y; z; !;�Þ.
Our goal now is to prove that a solution to the parabolic

equation depends on the coordinate z only through the
dimensionless variable � ; more precisely, we will prove
that

Ê?ðx; y; z; !;�Þ ¼ F?
�
x; y;

z

�
;
!

�

�
;

Êzðx; y; z; !;�Þ ¼ 1

�
G

�
x; y;

z

�
;
!

�

�
;

(13)

where F? and G are functions of four arguments. To prove
this statement, we first need to show that substituting
Eqs. (13) into our equations and the boundary condition
results in expressions which involve the coordinate z, the
parameter �, and the wave number k as combinations z=�
and k=� only. Indeed, substituting (13) into Eqs. (9) we
find

k

�

@

@�
F? ¼ i

2
r2

?F?; G ¼ i�

k
r? � F?; (14)

which clearly satisfies our requirement.
We now take a close look at the boundary condition (10).

Rewriting it in terms of the perpendicular and transverse

components of the field, we obtain (remember that Êvac has
only perpendicular components)

nzez � Ê?jw þ n? � Ê?jw þ n? � ezÊzjw
þ nzez � Êvacjw þ n? � Êvacjw ¼ 0; (15)

where n? ¼ n� ezðez � nÞ is the perpendicular to z part of
the vector n. The first, third, and fourth terms in this
equation are perpendicular to ez, and the second and fifth
terms are directed in the z direction. Hence, they can be
split into two separate equations. The first one is

nzez � Ê?jw þ n? � ezÊzjw þ nzez � Êvacjw
¼ 1

�

@V

@�
ez � F̂?jw þ 1

�
n? � ezGjw

þ 1

�

@V

@�
ez � Êvacjw ¼ 0: (16)

The last line, after cancellation of the factor 1=�, clearly
shows that the parameter � does not enter explicitly into it.
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The second boundary equation is

n? � Ê?jw þ n? � Êvacjw ¼ n? � F̂?jw
þ n? � Êvacjw ¼ 0; (17)

and it again does not explicitly contain the parameter �.
Our statement is therefore proved.

Substituting the second of Eqs. (13) into (7), we find the
scaling property for the longitudinal impedance,

Zkð!;�Þ ¼ R

�
!

�

�
; (18)

where R is a function of one variable.
Taking the Fourier transform of the impedance we find,

in addition, that the longitudinal wake scales as

wðs;�Þ ¼ �uðs�Þ; (19)

where u is a function of one variable.
For the transverse forces the results are similar. The

high-frequency impedance scales as

Z?ð!;�Þ ¼ 1

�
R?

�
!

�

�
; (20)

where R? is a function of one variable; and for the
transverse wake is

w?ðs;�Þ ¼ u?ðs�Þ; (21)

where u? is a function of one variable.

III. COMPARISON WITH SOME
IMPEDANCE MODELS

As is pointed out at the beginning of the previous section,
the parabolic equation, and hence our results (18)–(21) are
valid in either a high-frequency limit, or, for small angle
transitions, for arbitrary frequencies. It is instructive to test
this statement by comparing it with analytical expressions
for the impedance in some limiting cases available from the
literature. Note that by small angle here we mean that the
z component of the normalized normal vector to the surface
of the wall is small, nz=jnj � 1. In the case of axisymmet-
ric transitions with the pipe radius bðzÞ it reduces to
jb0j � 1, where b0 denotes the derivative of b with respect
to z.

One such special case is a pair of small angle, axisym-
metric transitions at low frequencies, for which the
solution was found by Yokoya [4]. The applicability con-
dition for this case was found in [5] and is given by
kb2jb0j � �b, where �b is the scale of variation of the
radius through the transition. The longitudinal impedance
in this limit is purely imaginary and is given by

Zkð!Þ ¼ � i!Z0

4�c

Z 1

�1
dzðb0Þ2; (22)

which clearly satisfies the scaling (18).

Our second example refers to the longitudinal imped-
ance of a deep pillbox cavity (connected to beam pipes) in
the high-frequency limit. The model is called ‘‘the diffrac-
tion model’’ and Zk is given by [6,7]

Zkð!Þ ¼ Z0

2�

ð1þ iÞffiffiffiffi
�

p
b

ffiffiffiffiffiffi
cL

!

s
; (23)

where L is the length of the cavity and b is the radius of
incoming and outgoing pipes. By ‘‘deep’’ we require that
kðd� bÞ2 * L, where d is the radius of the cavity. Again,
it is easy to see that (23) satisfies the scaling (18). In this
case, there is no requirement on smallness of the transition
angle; however, there is one on frequency: Eq. (23) is valid
in the limit of high frequencies, when L � kb2.
Finally, we point out that the so-called ‘‘optical model’’

of impedance developed in [8,9], valid for arbitrary 3D
transitions again in the limit of high frequencies, also
satisfies (18). Indeed, in the optical model the longitudinal
impedance is purely real and depends neither on frequency
nor on the length of the transition (it only depends on the
geometrical shape of the transition projected along the axis
z of the system), and hence is invariant with respect to the
scaling of the coordinate z and the frequency ! in (18).
One 2D example of the optical model is the impedance of
the shallow cavity [same geometry as the deep cavity,
except that kðd� bÞ2 & L] at high frequency, where [10]

Zkð!Þ ¼ Z0

�
ln
d

b
: (24)

For all the examples of this section, formulas exist also
for the transverse impedance, and one can similarly show
that they satisfy Eq. (20).
We would like to emphasize here that, while the scalings

derived in Sec. II do not necessarily require structures with
small angles (as was demonstrated by the previous two
examples), the main focus of this paper is the case of small
angle transitions, where using the scalings can significantly
reduce the computer resources required in numerical cal-
culations of the wakes. In the next section we give several
examples of small angle transitions, and compare numeri-
cal calculations of impedance/wakes for the original struc-
ture with those for a scaled structure, in order to
demonstrate the validity of the scaling presented in this
report.

IV. SCALED CALCULATIONS

To test the impedance scaling, we perform numerical
simulation, using 2D and 3D versions of the time-domain,
finite difference Maxwell equation solver ECHO [11]. The
program finds wakefields excited by a speed-of-light
Gaussian bunch of finite length �z in a structure, such as
a beam pipe transition. The impedance, in turn, is found by
Fourier transforming the wake and dividing by the bunch
spectrum. For the combination of a short bunch and a long,
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small angle transition, one can greatly reduce the require-
ments on computer time and memory by solving the scaled
problem, i.e. the one with the longitudinal dimension
scaled by a factor � < 1, and the bunch length scaled by
1=�.

In simulations we compare the wakefield and impedance
computed for two structures. The first one, which we call
nominal, has a length L, and the second one, which we call
scaled, has a length �L, and is obtained from the first one by
scaling along z, as described in the previous section.
Typically, in this paper, we choose � ¼ 1

2 . We denote

Wðs; �zÞ the wake of the nominal structure, and W�ðs; �zÞ
thewake of the scaled one. Using (19) it is easy to establish a
relation between these two functions by convolving the
bunch distribution with the wake of a point charge
wðs;�Þ. For the nominal structure we set � ¼ 1 and obtain

Wðs; �zÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
�z

Z 1

0
ds0wðs0; 1Þe�ðs�s0Þ2=2�2

z

¼ 1ffiffiffiffiffiffiffi
2�

p
�z

Z 1

0
ds0uðs0Þe�ðs�s0Þ2=2�2

z ; (25)

for the scaled structure we have

W�ðs; �zÞ ¼ �ffiffiffiffiffiffiffi
2�

p
�z

Z 1

0
ds0wðs0;�Þe�ðs�s0Þ2=2�2

z

¼ �ffiffiffiffiffiffiffi
2�

p
�z

Z 1

0
ds0uðs0�Þe�ðs�s0Þ2=2�2

z : (26)

Changing the integration variable to � ¼ s0� in the last
integral we find that

Wðs; �zÞ ¼ 1

�
W�

�
s

�
;
�z

�

�
: (27)

For the transverse wake we have the relation

W ?ðs; �zÞ ¼ W?�

�
s

�
;
�z

�

�
: (28)

The maximum mesh size and time step in the wake
calculations are limited to a specific fraction of �z and
�z=c, respectively (the mesh size is typically taken to be
�z=5). Let us assume that the total range in s over which
the wake is needed is short compared to the total structure
length (which for electron machines and small angle tran-
sitions typically is true). Let us first consider a 2D tran-
sition. Since the bunch length in the scaled calculation is
increased by 1=�, the calculation window (that moves with
the beam) has a factor � fewer mesh points in the radial
direction, but the same number of mesh points in the
longitudinal one [the mesh density is lower but the window
needs to be 1=� times longer—see Eq. (27)]. In addition,
the structure length for the scaled calculation is reduced by

the factor �; and since the mesh is coarser, the number of
time steps for the beam to traverse the structure is reduced
by ��2. Thus, we see that the scaled calculation reduces
the computation time (in 2D problems) by �3; in a 3D
example the factor becomes �4, a significant speed-up even
if we scale only by a factor of 2 (� ¼ 1

2 ).

V. NUMERICAL EXAMPLES

A. Short transition

We begin with a 2D, smooth test example that has a
central beam pipe that is relatively short; i.e., it looks more
like a collimator than an insertion device transition (see
Fig. 1). A beam pipe of radius b ¼ 5 mm is connected by
two gentle, symmetric transitions to a beam pipe of radius
a ¼ 2:5 mm. Although the boundary is everywhere
smooth, the tapers approximate straight lines of angle
� ¼ 2:4�, with a central pipe length of 6 cm. For the
nominal calculation the bunch length is �z ¼ 0:1 mm,
and the mesh size is 0.01 mm. For the scaled calculation,
we take � ¼ 1

2 , the structure is half as long, and the bunch

length and mesh size are twice as large.
The real and imaginary part of the impedance for the

nominal and scaled structures are shown in Fig. 2, and the
wakefield of the bunch in Fig. 3. One can see very good
agreement between the nominal and the scaled structure
results. Finally, we should also mention that when we
replace the smooth collimator geometry with one consist-
ing of straight line segments (in longitudinal view) the
results remain essentially unchanged.

B. Long transition

In typical insertion devices, the central beam pipe has an
aperture on the order of millimeters and a length on the
order of meters. Our second example transition is a 2D
model of such a transition: in longitudinal view there are
straight line tapers of (small) angle � that connect a large
beam pipe of radius b to a very long pipe of smaller radius
a. We assume that the impedance of such a structure is
given by the sum of the impedance of a step-in transition

FIG. 1. Geometry for smooth, 2D example problem.
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(from b to a, with b > a) plus the impedance of a step-out
transition (from a to b) (see, e.g., Ref. [10]). In the 2D case
we can write

Zin ¼ Z1 � Zs; Zout ¼ Z1 þ Zs;

Zs ¼ Z0

2�
ln

�
b

a

�
; (29)

where Zs is a potential term. For a longitudinally symmet-
ric transition

Z � Zin þ Zout ¼ 2ðZin þ ZsÞ; (30)

and similarly the wake W � 2ðWin þWsÞ, with Ws ¼
�Zsc�z. Thus, we can obtain the impedance of the sym-
metric transition from the numerical calculation of just the
step-in problem.

As specific example we take a 2D model of wiggler
transitions that have been considered for PEP-X [12]. For

the purpose of generating a pseudo-Green function wake,
the wake of all ring elements was needed for a Gaussian
bunch with �z ¼ 0:5 mm to a distance of 60 mm behind
the bunch (an extremely challenging task for the 3D wig-
gler transitions). The 2D model that we consider is a
symmetric transition with a ¼ 7:5 mm, b ¼ 48 mm, and
� ¼ 5:8� (we take as nominal bunch length for the calcu-
lation �z ¼ 0:5 mm). In the real structure the central beam
pipe is meters long; for our calculations we take it to be
infinitely long. The wake and the scaled (� ¼ 1

2 ) results are

given in Fig. 4. We see that the wake is simpler, with less
oscillation than for the finite-length example above. We, in
addition, see that the agreement between the wake and the
scaled wake is quite good.
In the transverse case the wake scales as Eq. (28). For a

symmetric transition with long bottom, the results can
again be obtained from a step-in wake calculation alone.

The longitudinal dipole wake Wð1Þ
z ¼ 2ðWð1Þ

in þWð1Þ
s Þ,

Wð1Þ
s ¼ �Zð1Þ

s c�z, with the static impedance given by

FIG. 3. Comparison of the wakefields of a Gaussian bunch for
the nominal and scaled structures. The blue curve shows the
wake excited by a bunch with �z ¼ 0:1 mm in the nominal
structure, and the red curve shows the wake in the structure that
is half as long excited by the bunch with �z ¼ 0:2 mm and
scaled using Eq. (27).

FIG. 4. Longitudinal wake for �z ¼ 0:5 mm bunch in 2D
model of PEP-X transitions (blue) and results obtained from
the scaled problem with � ¼ 1

2 (red). The nominal bunch shape is

also given with the head to the left (black).

Ω Ω

FIG. 2. Real (left) and imaginary (right) parts of impedance for nominal and scaled structures. The blue curves show the impedance
of the nominal structure, and the red curves show the impedance of the structure that is half as long scaled using Eq. (18).
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Zð1Þ
s ¼ Z0

2�

�
1

a2
� 1

b2

�
: (31)

The transverse (dipole) wake is then given by WyðzÞ ¼
�R

z
�1 dz0Wð1Þ

z ðz0Þ. The results of the calculation are

shown in Fig. 5. We see that the transverse wake of the
long-bottomed transition is also relatively simple, and that
the agreement between the nominal and scaled wakes is
quite good.

We have shown good agreement between the nominal
and scaled wakes for 2D transitions with a short central
region and a long one. For the next example we consider a
2D transition with a medium-length central region. The
parameters are a ¼ 7:5 mm, b ¼ 48 mm, � ¼ 5:8�, and
length of central region L ¼ 72 mm. We take as nominal
bunch length for the calculation �z ¼ 0:5 mm, and again
take � ¼ 1

2 for the scaled calculation. The numerical results

are shown in Fig. 6. Compared to the previous example we
see nearly the same wake over the bunch, though many

more oscillations behind it. Comparing nominal and scaled
wakes we again see good agreement near the driving
bunch. Farther behind, however, we see that the two wakes
gradually deviate from one another, an indication of the
accuracy of the scaling.

C. 3D transition

As a 3D (noncylindrically symmetric) example we con-
sider a longitudinally symmetric, small angle transition,
from a large beam pipe to a small one and then back again,
with the central region taken to be infinitely long. In the
horizontal (x) direction the beam pipe remains unchanged;
the transition occurs only in the vertical (y) direction. For
the nominal geometry, the large beam pipe has a square
cross section of 30 mm by 30 mm (x� y), the small one is
rectangular with dimensions 30 mm by 15 mm, and the
central region is assumed to be long. The connecting pipes
are straight line tapers (in y) of angle 3� (see Fig. 7). The
nominal bunch length �z ¼ 0:5 mm. For the scaled case
we take � ¼ 1

2 .

The numerical calculations were performed with the
program ECHO3D [11]. Like in the 2D long taper example,
the total wake of the transition is taken to be the sum of a
step-in and a step-out part. (More details of the algorithm
ECHO3D uses for such problems can be found in Ref. [13].)

The mesh size was taken to be �z=10 in the longitudinal
direction and �z=5 in the transverse plane. In Fig. 8 we
give the numerical results for the longitudinal wake, and
see good agreement between the nominal and scaled
results.
For a noncylindrically symmetric structure, but one that

has mirror symmetry in x and y (as in our example prob-
lem), the transverse (vertical) wake of a beam is given by

Wyðs; �zÞ ¼ ydWy;dðs; �zÞ þ yWy;qðs; �zÞ; (32)

where Wy;d is called the dipole wake component and Wy;q

the quadrupole wake component. Here yd and y are, re-
spectively, the vertical offset—with respect to the axis—of
the beam and of a test particle (the offsets of beam and
test particle in both x and y are assumed to be small).

FIG. 6. For the 2D transition with a medium-length central
region, and �z ¼ 0:5 mm, the nominal longitudinal wake (blue)
and results obtained from the scaled problem with � ¼ 1

2 (red).

The nominal bunch shape is also given with the head to the left
(black).

FIG. 7. The 3D test example is a symmetric, small angle
transition. Here we show, in cut view, the geometry of one of
the tapers of this transition.

FIG. 5. Transverse wake for �z ¼ 0:5 mm bunch in 2D model
of PEP-X transitions (blue) and results obtained from the scaled
problem with � ¼ 1

2 (red). The nominal bunch shape is also given

with the head to the left (black).
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The two components of the transverse wake are given in
Figs. 9 and 10. We see that in both cases the nominal and
scaled wakes agree well.

D. Discussion

We need to emphasize that the scaling properties are
approximate and valid only within the conditions of appli-
cability. Although we have demonstrated with several ex-
amples that they tend to work well, we cannot, for any
given geometry, predict in advance their accuracy. For
example, in Ref. [14] it was shown that sharp angles in
the structure lead to a deterioration in accuracy of Yokoya’s
model; we also expect that sharp angles will result in less
accuracy in our scaling equations, although it is difficult to
make a quantitative prediction of the effect. In practice,
one can first test the scaling properties with preliminary
runs using a relatively crude mesh; if this works well, one
can have confidence in using a scaled calculation for the
final (and more time consuming) calculations.

VI. CONCLUSIONS

Based on the parabolic equation approach to Maxwell’s
equations, we have derived scaling properties of the high-
frequency impedance/short bunch wakefields of structures;
for the special case of small angle transitions we have
shown the scaling properties are valid for all frequencies.
Using these scaling properties, one can greatly reduce the
calculation time of the wakefield/impedance of long, small
angle, beam pipe transitions, like one often finds e.g. in
insertion regions of storage rings. We have tested the
scaling with wakefield simulations of 2D and 3D models
of small angle transitions, and find good agreement from
the front of the driving bunch to a significant distance
behind it. For wakes that extend further back—such as
that of a medium-length 2D transition example—we see
a gradual discrepancy developing far behind the bunch.
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FIG. 10. Quadrupole component of the transverse wake for
�z ¼ 0:5 mm bunch in the 3D collimator (blue) and results
obtained from the scaled problem (red).

FIG. 9. Dipole component of the transverse wake for
�z ¼ 0:5 mm bunch in the 3D collimator (blue) and results
obtained from the scaled problem (red).

FIG. 8. Longitudinal wake for �z ¼ 0:5 mm bunch in the 3D
collimator (blue) and results obtained from the scaled problem
(red).
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