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Coulomb effects in intrabeam scattering are taken into account in a way providing a correct description

of the spin-dependent contribution to a beam loss rate. It allows one to calculate this rate for polarized

e� beams at arbitrarily small values of �"=", characterizing a relative change of the electron energy, ", in

the laboratory system during the scattering event.
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I. INTRODUCTION

As is well known, elastic scattering of electrons in
beams moving in a storage ring leads to a beam loss
(Touschek effect). The longitudinal momentum pk of an

electron is negligibly small in the beam rest system due to
smallness of the beam energy spread. However, electron
scattering may lead to energy changes in the laboratory
system (LS),��", exceeding the machine’s energy accep-
tance. Then both electrons leave the beam and can be
registered by some counters. The rate of such events de-
pends on the beam polarization since the scattering cross
section depends on the polarization of electrons. So, as was
proposed in [1], the beam polarization can be measured by
measuring that rate. A resonant depolarization technique
for such measurements has been developed in Budker
Institute of Nuclear Physics (BINP) since 1970 (see e.g.
[2,3]). In this technique, a jump in the counting rate of
Touschek electrons or positrons is measured. It occurs
when an initially polarized beam is rapidly depolarized
by applying a magnetic field with the frequency satisfying
spin resonance conditions. As the resonant frequency de-
pends in a certain way on the beam energy, the latter can be
measured alongside with the beam polarization. Such a
technique is routinely used in BINP for high accuracy
absolute calibration of the beam energy (see e.g. [4,5]).

First spin effect calculations were carried out in [1]
assuming that the betatron motion is one dimensional
(flat beam) and that � � 1, where � is a minimum value
of j �" j =" which enters the problem. Both limitations
were formally overcome in [3]. In fact, results of [3] are
correct only for � � 1 (see discussion in [6]). The scat-
tering cross section used in both papers was obtained in the
Born approximation. Accurate formulas for the scattering
rate were derived in [6] within the same approximation.
Coulomb effects were also considered in [6] but only for a
flat beam. In the case of electron-electron interaction these
effects are important at very small velocities v in the
center-of-mass system (c.m.s.) when �=v * 1 (� is the
fine-structure constant and @ ¼ c ¼ 1). For such velocities

the cross section is modified due to a corresponding change
of the eþ (e�) flux near the origin (see, e.g. [7]). In
particular, the spin-dependent terms in the cross section
are enhanced at �=v � 1 for attraction and suppressed for
repulsion (see discussion in [8]). In the case of intrabeam
scattering we are just dealing with repulsion.
In the present paper, the scattering cross section of iden-

tical particles is modified in such a way that at v � 1 it
becomes a nonrelativistic one (see, e.g. [7]) with Coulomb
effects taken into account. The modified cross section
passes into the expression obtained in the Born approxima-
tion at �=v � 1, being thereby correct for any v. The
condition j �" j =" � � in LS is equivalent to the condition
j v0

k j� � in c.m.s. (v0 is an electron velocity after scatter-

ing). So, to get the rate of events with j �" j =" � �, the
differential cross section, defined in c.m.s., should be inte-
grated over the regionwhere j v0

k j� �. The latter condition

can be satisfied only if v � �. Thus v � 1 may enter the
problem for � � 1. However, use of the modified differ-
ential cross section provides one with values of the inte-
grated cross section, ��, which are correct for any �.

II. RESULTS AND DISCUSSION

Let us consider a collision of two electrons of the beam,
having in LS momenta p1;2, energies "1;2, and polarization
vectors � 1;2. It is convenient to calculate the scattering cross

section in their c.m.s. A transition to that system is per-
formed by the Lorentz transform with velocity V ¼ ðp1 þ
p2Þ=ð"1 þ "2Þ. Conditions "=m � 1 and p2

?="
2 � 1,

where m is the electron mass, are well fulfilled in storage
rings. Then we have in c.m.s., where ~p1 þ ~p2 ¼ 0,

~p k
1 ’ ~"

"21 � "22
4"1"2

� 1

2
~"

�
�"b
"b

�
;

where "b is the mean beam energy. Perpendicular and
parallel components of vectors are defined herewith respect
to the velocityV, which direction practically coincides with

the beam axis. In our problem, ~pk
1 can be neglected due to*v.m.strakhovenko@inp.nsk.su
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smallness of the relative energy spread in the beam, r ¼
�"b="b � 1. More precisely, let ~p0k

1 be the parallel
component of the electron momentum in c.m.s. after scat-

tering. Then the electron energy in LS becomes "01 ’
"bð1þ ~p0k

1 =~"Þ and the relative energy change d ¼
�"1="1 ’ ~p0k

1 =~". As was explained above, we consider

events where j d j� � and scattered electrons leave the
beam during one turn. The latter means that � � r.
Otherwise, the beam lifetime would be too short. So, the

minimum value of ~p0k
1 which enters the problem is much

larger than the initial value of ~pk
1. Self-consistently, the

transverse momentum turns out to be much larger than the

parallel one as ~pk
1=~p1? � r=v and v � �. In what follows

we set ~pk
1 ¼ 0, so that the electron energy in c.m.s. is

~" ¼ "q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
, where q ¼ ðp1? � p2?Þ=2 ¼ ~p1?.

We start from the well-known expression for the invari-
ant event number in a collision of two beams with spatial
densities n1;2ðrÞ and momenta p1;2

dn¼ I
n1ðrÞn2ðrÞ

"1"2
d�d3rdt; I¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1p2Þ2�m4

q
: (1)

In our case "1 ’ "2 ’ "b, the invariant I ’ 2q"q, n1ðrÞ ¼
n2ðrÞ � nðrÞ, and d� is the differential cross section for
elastic ee scattering. To get the total rate of producing
Touschek pairs, we have to integrate dn in Eq. (1) over r,
calculate �� by integrating d� over the region j v0

k j� �,

and average over momentum and polarization distribution
in the beam. The result should be divided by two as we are
dealing with identical particles. For a Gaussian distribution
over coordinates we have

Z
d3rn2ðrÞ ¼ N2

Vb

; Vb ¼ 8�3=2�x�z�k; (2)

where N is the total number of particles in the beam, Vb

is the beam volume, and �x, �z, and �k are, respectively,
the radial (x), vertical (z), and longitudinal ( k ) r.m.s.
beam sizes. To average over momenta, the integralR
d3p1d

3p2fðp1Þfðp2Þq"q�� should be taken. Here fðpÞ
represents a momentum distribution in the beam. Since
p1;2 enter �� and the invariant I only in the combination

q ¼ ðp1? � p2?Þ=2, the integrals over pk
1;2 and ðp1? þ

p2?Þ can be easily taken. After that the integral passes
into

R
d2q��ðqÞq"qFðqÞ. Using a Gaussian type of fðpÞ

with r.m.s. parameters �x, �z, and �k, we obtain FðqÞ ¼
ð��x�zÞ�1 expð�q2x=�

2
x � q2z=�

2
zÞ as the distribution over

q. So the rate in LS, �ð�Þ, reads

�ð�Þ � dn

dt
¼ N2

��x�zVb"
2
b

Z
d2q��ðqÞq"q

� expð�q2x=�
2
x � q2z=�

2
zÞ: (3)

Now we pass to the differential cross section for elastic
scattering of polarized electrons summed up over final spin
states. Let us define in c.m.s. a coordinate system with
basis vectors e3 ¼ q=q, e2 ¼ V=V, and e1 ¼ ½e2 � e3	.
The scattering angles # and � are defined in such a way
that ~p0=q ¼ e3 cos# þ ðe1 cos�þ e2 sin�Þ sin#.
In that notation the cross section reads

d�

d�0 ¼
�2

2"2q
ðF1 þ F2 þ F3 þ F4Þ; (4)

where the functions Fi are

F1 ¼ 2m4

�
1

t2
þ 1

u2
þ 1þ � 1 
 �2

tu
cos

�
�

2v
ln
t

u

��
;

F2 ¼ 8q2"2q

�
1

t2
þ 1

u2

�
þ 1

2
ð1þ �1 
 �2Þ

�
1� 16m2q2

tu

�
þ

�
m2

q2
� 1

�
e3 
 � 1e3 
 �2;

F3 ¼
�
4q2ð4q2 þm2Þ

ut
� 1

��
e2 
 �1e2 
 �2 �m

q
e1 
 ½� 1 � �2	

�
;

F4 ¼
�
4q2m2v2

ut
� 1

��
sin2�

�
m2

q2
e2 
 �1e2 
 �2 � e3 
 � 1e3 
 �2 þm

q
e1 
 ½�1 � � 2	

�
þ cos2�

v2
e1 
 �1e1 
 �2

�
;

(5)

where t ¼ �2q2ð1� cos#Þ and u ¼ �2q2ð1þ cos#Þ are
conventional kinematic variables. Functions in (5) are
derived in the following way. We start from the result
obtained in [9] in the Born approximation and unfold
that in c.m.s. As was noted in [6], while unfolding in
c.m.s. the invariants containing 4-vector of spin, one
should remember that the unit spin vector � is not a
Lorentz invariant. If in some reference frame an electron
has the momentum p, the energy ", and the spin vector

� , then in the reference frame moving with the velocity V
the vector ~� reads

~� ¼ � þ �ð� 
 ½a� b	Þ � ½� � b	ð� 
 aÞ; (6)

where
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� ¼ V=V; a ¼ p
�V � 1

"þm
� V�V;

b ¼ ½p� �	
"0 þm

; �V ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

p :
(7)

As a next step, the terms giving a nonrelativistic limit (for
v ¼ q="q � 1) are separated up. In Eq. (4) such terms are
combined in the function F1 which is proportional to v�4.
The rest functions in Eq. (4) contain terms having at least
an excess factor of v2 as compared with F1. They represent
in this limit the relativistic corrections. In the Born ap-
proximation, we have for FB

1

FB
1 ¼ 2m4

�
1

t2
þ 1

u2
þ 1þ � 1 
 � 2

tu

�
: (8)

The last term in Eq. (8) ( / 1=tu) addresses exchange
interaction (see, e.g. [7]). It originates from interference
of two Coulomb amplitudes addressing scattering at ð#;�Þ
and ð�� #;�þ�Þ. The phase of the Coulomb amplitude
is proportional to � and is ignored in the Born approxima-
tion. Taking that phase and thereby the Coulomb correc-
tions into account results in the appearance of the factor
cosð�2v ln t

uÞ by the exchange term in Eq. (8). In that way we
pass from FB

1 in Eq. (8) to F1 in Eq. (5). That modification
provides the correct nonrelativistic limit of the cross sec-
tion (4). Strictly speaking, the remaining functions in
Eq. (4) are also changed by the Coulomb corrections.
However, since the latter become apparent only in the
nonrelativistic limit, where the terms given by functions
F2;3;4 are small as compared with corresponding terms in
F1, in our problem we can use expressions for F2;3;4

obtained in the Born approximation.
Let us emphasize that in certain problems Coulomb

effects might be important also in the terms representing
relativistic corrections. For example, to estimate the beam
depolarization during the intrabeam scattering, one should
calculate a probability of spin flip transitions. The spin
dependence of the nonrelativistic spin flip cross section is
completely due to the exchange interaction. In full agree-
ment with the sense of that interaction, it allows only the
simultaneous spin flip of both electrons, at which the initial
spin directions should be opposite. Such transitions do not
change the beam polarization. Therefore, relativistic cor-
rections, addressing direct spin-spin and spin-orbit cou-
pling, should be considered. As is shown in [8], Coulomb
effects may be very important in that case.

Passing to the calculation of ��, we integrate the differ-

ential cross section (4) over the region j v0
k j� �. In terms of

the angles # and �, the latter condition reads sin2�sin2

# � 	2, where 	 ¼ �=v � 1. The only change in �� as

compared to �B
� comes from the exchange term in F1.

Namely, the integral
R
d�0ðtuÞ�1�ðsin2�sin2# � 	2Þ ¼

�
q4

ln1	 passes into
R
d�0ðtuÞ�1 cosð�2v ln t

uÞ�ðsin2�sin2# �
	2Þ � �

q4
fð	; 
Þ. Here�ðxÞ is the step function and

fð	; 
Þ ¼ 2

�

Z Arcoshð1=	Þ

0
dx cosð	
xÞ arccosð	 coshxÞ

� 2

�	


Z arccos	

0
dx sin

�
	
Arcosh

�
cosx

	

��
; (9)

where
 ¼ �=� andArcosh z ¼ lnðzþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
Þ. Shown in

Fig. 1 is the ratio of the functionfð	; 
Þ to its limit in theBorn
approximation, fð	; 0Þ ¼ ln1=	. As is seen on Fig. 1, at

 ¼ 1 the functionfð	; 
Þ practically coincideswith its limit
at 
 ! 0. Thus Coulomb effects are negligible in our prob-
lem for � � �. At 
 � 1 the function fð	; 
Þ is rapidly
oscillating and the corresponding integral over 	 (q) in (3)
falls off as 
�2.
Let the beam polarization be directed along a unit

vector s. We choose that direction as the quantization
axis while performing averaging over electron polariza-

tions. Then we obtain for the combination �i1�
j
2 which enter

the cross section: h�i1�j2i ¼ P2sisj, where P is the beam
polarization degree. By definition, P ¼ ðN" � N#Þ=N,

where N" and N# are numbers of electrons with spin

projections onto the quantization axis �1=2, respectively.
The final form of �� reads

��ðqÞ ¼ ��2

q4"2q
GðqÞ�ð1� 	Þ;

where

GðqÞ ¼ A0 þ q2A1 þ P2½q2s2kAk þ q2ðs2x þ s2zÞA2

þ ðq2x � q2zÞðs2z � s2xÞA3	: (10)

Here

FIG. 1. Ratio of the function fð	; 
Þ to its limit value
fð	; 0Þ ¼ ln1=	.
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A0¼ð2q2þm2Þ2
�
1

	2
�1

�
�m4ð1þP2Þfð	;
Þ;

A1¼q2ð1�	Þ�4m2 ln
1

	
;

Ak ¼ð1þv2Þ
�
ð4"2q�m2Þln1

	
�m2

2
ð1�	2Þ

�

�2q2ð1�	ÞþA1;

A2¼m2

�
m2

2"2q
�4

�
ln
1

	
þð2q2þm2Þ2

4"2q
ð1�	2Þ;

A3¼m2

2
ð1þv2Þ

�
ln
1

	
þ1

2
ð1�	2Þ

�
�2m2ð1�	Þ:

(11)

Remember that 	 ¼ �=v, v ¼ q="q, and fð	; 
Þ is de-

fined by Eq. (9). Substituting the obtained expression for
�� into Eq. (3), we have for the rate

�ð�Þ ¼ �2N2

"2bVb�x�z

Z d2q

q3"q
GðqÞ expð�q2x=�

2
x

� q2z=�
2
zÞ�ð1� 	Þ: (12)

If we substitute ln1=	 for fð	; 
Þ in A0, Eq. (12) passes into
Eq. (5) of [6].

Expression (12) represents the rate of producing in the
beam a pair of electrons with relative energy change
��"="b which module is larger than �. It has a local
character as the beam parameters and the polarization
direction s may vary along the orbit. An interval of �,
which is important in measurements of the rate, is deter-
mined by the size and position of counters. Corresponding
values of � may be small or not. For any interrelation
between �x, �z, and �m, the numerical integration in
Eq. (12) is very simple. It is straightforward for flat or
round beams and for any �.

If Eq. (12) is applied to estimate the beam lifetime, we
deal with small � � 1. In that case all terms in GðqÞ
except A0 can be neglected. Going from the integration
over q to the integration over 	, we obtain for � � 1

�ð�Þ ¼ 2�r2eN
2m2

�2
bVb�x�z�

2

Z 1

�
dz

��
1þ z2

1� z2

�
2
g

�
z2

1� z2

�

� �½1þ ð1þ P2Þfðz; 
Þ	g
�

�2

z2 � �2

��
; (13)

where �b ¼ "b=m and

gðYÞ¼ expð�Y�2þÞI0ðY�2�Þ; �2�¼m2

2

�
1

�2
z

� 1

�2
x

�
: (14)

Here I0ðxÞ is themodifiedBessel function. Note that the rate
(13) is independent of the beam polarization direction, s.

Let Touschek electrons with relative energy change
larger than � be registered by some counter. A jump in
the counting rate is observed when initially polarized beam

is depolarized. The jump � is usually defined as � ¼ 1�
�ð�;P2Þ=�ð�; 0Þ. In Fig. 2 the maximal possible jump
�=P2 is shown as a function of k ¼ �x=�z. It was calcu-
lated using Eq. (13) for several small values of � at �x ¼
0:5m � 0:26 MeV=c. From Fig. 2, the jump increases with
� and the regime of the flat beam, where �=P2 becomes
independent of k is achieved earlier for larger �. From
Eq. (12) we conclude that in our problem such a regime is
realized at arbitrary � for �z � q0 and �x * q0, where

q0 ¼ �m=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
is the lower limit of integration over q

in Eq. (12). If both �z and �x are much smaller than q0, the
rate (12) is strongly suppressed being proportional to
expð�q20=�

2
maxÞ, where �max ¼ maxð�x; �zÞ. For the flat

beam and small � we obtain from Eq. (13)

�ð�Þ ¼ 2
ffiffiffiffi
�

p
r2eN

2m

�2
bVb�x�

2

�
ln
2

�
� 3

2
� cð
Þ

4
ð1þ P2Þ þ B

�
m

�x

��
;

(15)

where

BðzÞ ¼ ffiffiffiffi
�

p ��
2

z
þ z

�
½1��ðzÞ	 expðz2Þ

�
Z z

0
dx½1��ðxÞ	 expðx2Þ

�
;

�ðzÞ ¼ 2ffiffiffiffi
�

p
Z z

0
dx expð�x2Þ;

cð
Þ ¼ 4




Z 1

0
dxJ1

�
x
Arcosh

1

x

�
;

(16)

here J1ðuÞ is the Bessel function. At 
 ! 0 the function
cð
Þ ! 1 and it is suppressed at 
 � 1, where cð
Þ ’
4=ð
2 ln2
Þ. Such power suppression at 
 � 1 is an ordi-
nary Coulomb effect for repulsion. Note that there are
some misprints in Eqs. (7) and (8) of [6] representing the
same quantities as Eqs. (15) and (16) above.

FIG. 2. Dependence of maximal jump �=P2 on k ¼ �x=�z at
�x ¼ 0:5m ’ 0:26 MeV=c.
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To conclude, the cross section of intrabeam scattering is
modified to take into account Coulomb effects. It allows
one to calculate the beam loss rate for polarized e� beams
at arbitrary values of �. It turns out that Coulomb effects in
the rate are negligible for � � �. To our knowledge, all
earlier measurements of the rate were performed just for
�> � and therefore they can be correctly estimated using
Eq. (5) of [6].
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