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A nonlinear self-consistent theory has been constructed and used to investigate numerically the

wakefield excitation in multilayered dielectric resonators by relativistic electron bunches. Analytical

expressions for solenoidal and potential components of an excited electromagnetic field have been

derived. The excitation of a five-zone dielectric resonator by relativistic electron bunches was numerically

investigated and comparison was made between the longitudinal distribution of an axial electric field and

the results obtained previously for a corresponding problem in the waveguide formulation. The necessity

of optimizing geometrical parameters of the resonator to reduce mode amplitudes nonresonant with a

bunch, and to obtain a symmetric distribution of the longitudinal electric field component in the drive and

accelerating channels, has been demonstrated.

DOI: 10.1103/PhysRevSTAB.14.011302 PACS numbers: 41.75.Lx, 41.75.Ht, 96.50.Pw, 41.75.Jv

I. INTRODUCTION

The elaboration of waveguide dielectric structures for
the problems of charged particle accelerator physics is an
actively developing direction in both theoretical and ex-
perimental studies. The review reports presented at the
recent conferences [1,2], and also, the reports concerned
with the projects of future colliders [3] have demonstrated
the progress and prospects for the investigations carried out
along with traditional methods of acceleration.

A promising method of charged particle acceleration is
the two-beam acceleration by wakefields excited by
charged particle bunches in dielectric structures. The
two-beammethods of acceleration are based on the follow-
ing principle: highly charged, relativistic bunches generate
an intense longitudinal field whereby the test bunches are
accelerated. Experimental evidence of the given principle
of charged particle acceleration has been clearly demon-
strated in the studies [4] carried out at ANL. It is well
known [5–7] that the transformer ratio, which specifies the
maximum energy of accelerated particles, can be no more
than 2 if the exciting and accelerated bunches traverse the
structure in the same path. To overcome this restriction, it
is possible to profile a bunch train [8]. The other way is to
use multilayered dielectric structures with spaced vacuum
channels for the exciting and accelerated bunches [9]. In
the multizone accelerating structure the transform ratio can
be controlled by varying the drive and accelerating channel
widths [10]. In the multizone structure it is also possible to
make the mode having a symmetrical distribution of axial
electric field in vacuum channels act as an operating mode.
This additional advantage of multizone structures allows
one to diminish transverse deflecting forces.

The previous theoretical investigations on wakefield
excitation in multizone dielectric structures have been
carried out for longitudinally unbounded structures [10].
Practicable accelerating structures are bounded in the

travel direction of exciting and accelerated bunches.
Therefore the effects associated with transition radiation
and the group velocity of excited waves [11] take place in
the structures. The results of numerical simulations based
on the particle-in-cell (PIC) method show that the effects
associated with longitudinal boundedness of the accelerat-
ing structure cannot be neglected, especially with advance-
ment to the THz frequency range [10,12].
The effects related to the group velocity of an excited

wakefield and the transition radiation can be taken into
account most simply in the resonator formulation of the
problem [13]. In the present paper we investigate these
effects using as an example the excitation of a five-zone
rectangular dielectric structure by electron bunches [10].
For this purpose, in Sec. II (statement of the problem) and
in Sec. III we form the general nonlinear theory of excita-
tion of multizone rectangular dielectric resonators, valid
for any number of dielectric layers [14]. Besides taking
account of the group velocity effects, this theory allows
one to consider a self-consistent influence of bunch dy-
namics on the excited wakefields. Previously, to take into
account this dynamics, fully numerical methods [10,12]
have been used. However, their applicability is often lim-
ited by current computer capacities. This problem is topi-
cal when simulating wakefield excitation of the THz
frequency range. Here we offer a combined method of
considering the influence of bunch dynamics on the wake-
field excitation. Expressions for the excited fields are de-
rived by analytical methods. They are functionally
dependent on particle location at any time point (a non-
linear Green’s function). Together with the equations of
motion they provide a self-consistent description of the
dynamics of fields and bunches.
In Sec. IV the theory developed is applied to calculate

numerically the wakefield excitation in the five-zone dielec-
tric resonator. The calculated data are compared with the
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results of the linear theory of excitation of the five-zone
dielectric structure, obtained in waveguide formulation [10].

II. STATEMENT OF THE PROBLEM

The multizone dielectric structure under investigation is
a rectangular metal resonator with dielectric slabs placed in
parallel to one of thewalls [15]. We shall direct the z axis of
the Cartesian coordinate system in parallel to the direction
of the beams, and both the x and y axes are transverse to the
beam direction with the x axis perpendicular to the slabs.
The dielectric slabs generally have different values of a
permittivity " ¼ "ðxÞ ¼ "ið1 � i � NÞ and permeability
� ¼ �ðxÞ ¼ �ið1 � i � NÞ; N is the number of zones of
the dielectric structure. In one of the vacuum zones (" ¼ 1,
� ¼ 1), the electron bunch is injected into the resonator at
z ¼ 0. a,b, andL denote thewidth, height, and length of the
resonator, respectively.We suppose that the endwalls of the
resonator are closed by metal grids transparent for charged
particles and nontransparent for an excited electromagnetic
field. The cross section of the multilayered dielectric reso-
nator together with the chosen system of coordinates is
schematically shown in Fig. 1. The same figure shows the
exciting bunch position in one of the vacuum zones. For
ease of further numerical calculations (Sec. IV), we con-
sider the bunch to be rectangular in shape.

Let us express the required fields as a sum of solenoidal
and potential components [16]:

E ¼ Et þEl; H ¼ Ht; (1)

where Et and Ht, being the solenoidal components of the
electromagnetic field (divð"EtÞ ¼ 0, divð�HtÞ ¼ 0), sat-
isfy the first and the second Maxwell equations,

r�Ht ¼ "ðxÞ
c

@Et

@t
þ 4�

c
j;

r�Et ¼ ��ðxÞ
c

@Ht

@t
;

(2)

and the potential electric fieldElðr � El ¼ 0Þ satisfies the
Gauss law,

div ð"ElÞ ¼ 4��: (3)

The solenoidal Et and potential El electric fields are
mutually orthogonal [16] and satisfy the boundary condi-
tions, making their tangential components vanish on the
metal walls of the resonator:

E l
�ðr 2 S0Þ ¼ 0; Et

�ðr 2 S0Þ ¼ 0; (4)

where S0 designates the metal surface of the resonator, and
the subscript � denotes the tangential component of the
fields.
The electron bunches will be described in terms of

macroparticles, therefore the charge density � and the
current density j will be written as

� ¼ X
p2VR

qp�½r� rpðtÞ�;

j ¼ X
p2VR

qpvpðtÞ�½r� rpðtÞ�;
(5)

where qp is the charge of the macroparticle, rp and vp are

its time-dependent coordinates and velocity, respectively.
The summation in Eq. (5) is carried out over the particles
being in the resonator volume VR.
The self-consistent dynamics of bunch particles is de-

scribed by relativistic equations of motion in the electro-
magnetic fields excited by bunches:

dpp

dt
¼ qp

�
Eþ 1

mpc�p

pp �B

�
;

drp
dt

¼ pp

mp�p

; (6)

where �2
p ¼ 1þ ðpp=mpcÞ2.

III. GREEN’S FUNCTION OF THE PROBLEM

Let us derive analytical solutions to the set of Eqs. (1)–(5)
that will allow us to avoid their numerical solution on a
spatial grid. Therein lies the essential difference from nu-
merical algorithms obtainedwith the use of the PICmethod.
We first find the potential electric field, which can be
represented asEl ¼ �r�. Its finding is reduced to solving
the Poisson equation,

1

"ðxÞ
@

@x

�
"ðxÞ@�

@x

�
þ @2�

@y2
þ @2�

@z2
¼ � 4�

"
�; (7)

together with the boundary conditions consisting in that the
potential � on the resonator metal walls becomes zero:

�ðx ¼ 0Þ ¼ �ðx ¼ aÞ ¼ �ðx ¼ �b=2Þ ¼ �ðz ¼ 0Þ
¼ �ðz ¼ LÞ ¼ 0 (8)

FIG. 1. Cross section of the five-zone resonator. The blue
rectangle shows the drive bunch, the red rectangle shows the
test bunch, and a small circle with a central dot and the bunch
velocity vector indicate that the beam motion is out of the page.
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and it is continuous at the zone boundaries

�ðx ¼ ai � 0Þ ¼ �ðx ¼ ai þ 0Þ: (9)

Equation (7) will be solved by the eigenfunction expan-
sion method. The eigenvalues and eigenfunctions can be
found from the solution of the Sturm-Liouville problem,

1

"ðxÞ
@

@x

�
"ðxÞ@�s

@x

�
þ @2�s

@y2
þ @2�s

@z2
þ �s�s ¼ 0; (10)

where �s is the eigenvalue, and �s is the corresponding
eigenfunction.

Let us solve Eq. (10) by the Fourier method.
Representing the solutions in the form

�sðx; y; zÞ ¼ XmðxÞYnðyÞZlðzÞ (11)

and taking into account the boundary conditions, we obtain
for YnðyÞ and ZlðzÞ:

YnðyÞ ¼
ffiffiffi
2

b

s
sinkny

�
yþ b

2

�
; ZlðzÞ ¼

ffiffiffiffi
2

L

s
sinklzz; (12)

where kny ¼ �n
b , klz ¼ �l

L .

The functions XmðxÞ, which define the dependence of�s

on the transverse x coordinate, are the solutions of the
equation

d

dx

�
"ðxÞ dXm

dx

�
þ k2xXmðxÞ ¼ 0 (13)

with unknown values of k2x.
For deriving the solution of Eq. (13), it is reasonable to

use the matrix method of finding eigenfunctions in a multi-
zone waveguide [15]. Taking into account the boundary
conditions consisting in the continuity of both the potential
(9) and the transverse component of electric induction
vector

"i
dXm

dx

��������x¼ai�0
¼ "iþ1

dXm

dx

��������x¼aiþ0
; (14)

for the functions ’ðiÞðxÞ � Xmðai�1 � x � aiÞ we obtain
the following expression:

’ðiÞ
m ðxÞ ¼

�
coskmx ðx� aiÞ; 1

"ikx
sinkmx ðx� aiÞ

�
�ðiÞ
m ; (15)

�ði�N�2Þ
m ¼

� YN�1�2

j¼iþ1

VðjÞ
� � sinkxwN

"Nkx coskxwN

 !
;

�ðN�1Þ
m ¼ � sinkxwN

"Nkx coskxwN

 !
;

�ðNÞ
m ¼ 0

"Nkx

 !
;

VðiÞ ¼ coskxwi � sinkxwi

"ikx

"ikx sinkxwi coskxwi

 !
;

(16)

where i is the zone number (1 � i � N), wi ¼ ai � ai�1

and "ðai�1 � x � aiÞ � "i are the width and permittivity
of the ith zone, correspondingly; ai is the right coordinate
of the ith zone, a0 ¼ 0, aN ¼ a.
From Eq. (13) and boundary conditions (9) and (14) the

orthogonality conditions of the eigenfunctions XmðxÞ and
their norm kXmk2 result:

2

a

Z a

0
dx"ðxÞXmðxÞXm0 ðxÞ ¼ kXmk2�mm0 ;

kXmk2 ¼ 2

a

XN
i¼1

"i
Z ai

ai�1

dx½’ðiÞ
m ðxÞ�2:

(17)

The kx eigenvalues are defined from the dispersion
equation:

�
coskxw1;� sinkxw1

"1kx

�� YN�1�2

j¼2

VðjÞ
� � sinkxwN

"Nkx coskxwN

� �
¼ 0:

(18)

Thus, the final expression for the potential � can be
written as

� ¼ 32�

abL

X
p;mnl

qpXmðxpðtÞÞ sinknyðypðtÞ þ b=2Þ sinklzzpðtÞ
kXmk2½ðkmx Þ2 þ ðknyÞ2 þ ðklzÞ2�

� XmðxÞ sinknyðyþ b=2Þ sinklzz: (19)

The solenoidal fields Et and Ht satisfy the equations

r�Ht ¼ "ðxÞ
c

@E

@t
þ 4�

c
j; r� Et ¼ ��ðxÞ

c

@Ht

@t
:

(20)

The solenoidal parts of the bunch-excited electromag-
netic field can be determined by expanding the required
fields into solenoidal fields of the empty multizone reso-
nator. Let us write down the fields Et and Ht in the form

E t ¼ X
s

AsðtÞEsðrÞ; Ht ¼ �i
X
s

BsðtÞHsðrÞ: (21)

The functions Es and Hs, which describe the spatial
structure of solenoidal fields, satisfy the Maxwell sources-
free equations

r�Hs ¼�iks"ðxÞEs; r�Es ¼ iks�ðxÞHs; (22)

where ks ¼ !s=c, !s � !mnl are the eigenfrequencies of
the dielectric resonator.
Using the orthogonality conditions of Es and Hs [16],Z

VR

dV"EsE
�
s0 ¼

Z
VR

dV�HsH
�
s0 ¼ 4�Ns�ss0 (23)

for finding the field amplitudes AsðtÞ and BsðtÞ, we
obtain the following nonuniform second-order differential
equations:
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d2As

dt2
þ!2

sAs ¼ �dRs

dt
;

d2Bs

dt2
þ!2

sBs ¼ �!sRs;

RsðtÞ ¼ 1

Ns

X
p2VR

qpvpðtÞE�
s½r ¼ rpðt; t0Þ�: (24)

Having solved Eq. (24) we have

BsðtÞ ¼ �
Z t

0
dt0 sin!sðt� t0ÞRsðt0Þ;

AsðtÞ ¼ 1

!s

dBs

dt
:

(25)

In the case, where the permittivity and permeability are
nonuniform only along the direction normal to the slabs,
the electromagnetic-field solenoidal components in multi-
zone dielectric structures can be represented as a superpo-
sition of longitudinal section magnetic (LSM) and
longitudinal section electric (LSE) waves [17,18]. In the
LSM wave, the magnetic field component Hxs, which is
transverse to the dielectric slabs, is equal to zero. The other
components of the LSM waves are expressed in terms of
the transverse electric field component Exs. In the LSE
wave, the electric field component Exs, which is transverse
to the dielectric slabs, is equal to zero, and the other five
components of the LSE waves can be obtained using the
transverse magnetic field component Hxs. The field com-
ponents of LSM and LSE waves, which have been obtained
in [15,19] for the waveguide case, are generalized for the
resonator structure under study by replacing the continuous
longitudinal wave number kz with its discrete values
klz ¼ �l=L in the resonator.

The field components of LSM waves are given by

Hxs ¼ 0;

Hys ¼ �iks
	2
nl

@

@z
ð"ExsÞ;

Hzs ¼ iks
	2
nl

@

@y
ð"ExsÞ;

Eys ¼ 1

	2
nl"

@2

@x@y
ð"ExsÞ;

Ezs ¼ 1

	2
nl"

@2

@x@z
ð"ExsÞ;

Exs ¼ eðiÞxsðxÞ sinknyðyþ b=2Þ sinklzz;

(26)

where 	2
nl ¼ ðknyÞ2 þ ðklzÞ2, and the functions eðiÞxsðxÞ are

defined as

eðiÞxs ¼ 1

"i

�
coskixsðai�xÞ;� "i

kixs
sinkixsðai�xÞ

�

ðiÞ
s ; (27)


ði�N�2Þ
s ¼

� YN�1

j¼iþ1

SðjÞs

� coskNxswN

kNxs
"N

sinkNxswN

0
@

1
A "N
coskNxsaN

;


ðN�1Þ
s ¼

coskNxswN

kNxs
"N

sinkNxswN

0
@

1
A "N
coskNxsaN

;


ðNÞ
s ¼ 1

0

 !
"N

coskNxsaN
;

SðiÞ �
coskixwi � "i

kix
sinkixwi

kix
"i
sinkixwi coskixwi

0
@

1
A;

(28)

where ðkixÞ2 ¼ !2"i�i=c
2 � ðknyÞ2 � ðklzÞ2.

For the LSE waves, the field components are written
down as

Exs ¼ 0;

Eys ¼ iks
	2
nl

@

@z
ð�HxsÞ;

Ezs ¼ �iks
	2
nl

@

@y
ð�HxsÞ;

Hys ¼ 1

	2
nl�

@2

@x@y
ð�HxsÞ;

Hzs ¼ 1

	2
nl�

@2

@x@z
ð�HxsÞ;

Hxs ¼ hðiÞxsðxÞ cosknyðyþ b=2Þ cosklzz

(29)

where hðiÞxsðxÞ is defined as follows:

hðiÞxs ¼ 1

�i

�
coskixsðai�xÞ;��i

kixs
sinkixsðai�xÞ

�
� ðiÞs ; (30)

� ði�N�2Þ
s ¼

� YN�1

j¼iþ1

TðjÞ
s

� � �N

kNxs
sinkNxswN

coskNxswN

 !
kðNÞ
xs

sinkðNÞ
xs aN

;

� ðN�1Þ
s ¼ � �N

kNxs
sinkNxswN

coskNxswN

 !
kðNÞ
xs

sinkðNÞ
xs aN

;

� ðNÞ
s ¼ 0

1

 !
kðNÞ
xs

sinkðNÞ
xs aN

;

TðiÞ �
coskixwi � �i

kix
sinkixwi

kix
�i

sinkixwi coskixwi

0
@

1
A: (31)

The eigenfrequencies!s of the resonator are determined
from the dispersion equations for the LSM and LSE waves
[15,19].
The dispersion equation of the LSM waves is [15]�
k1x
"1

sink1xw1; cosk
1
xw1

��YN�3

i¼2

SðiÞ
�

coskNx wN
kNx
"N

sinkNx wN

 !
¼ 0

(32)
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and for the LSE waves [19] we have�
cosk1xw1;��1

k1x
sink1xw1

��YN�3

i¼2

TðiÞ
�

� � �N

kNx
sinkNx wN

coskNx wN

 !
¼ 0: (33)

We now write down the electromagnetic-field norm Ns,
introduced in expressions (23) through the use of the

eigenfunctions eðiÞxsðxÞ and hðiÞxsðxÞ.
For the LSM wave it is more convenient to define the

norm using the magnetic field components. Substituting
Hys and Hzs from Eq. (26) into the second definition of the

norm, we obtain

NðLSMÞ
s ¼ 1

4�

Z
VR

dV�½HysH
�
ys þHzsH

�
zs�

¼ k2sbL

16�	2
nl

XN
i¼1

"2i �i

Z ai

ai�1

dxðeðiÞxsÞ2: (34)

The norm of the LSM wave (34) is defined with the use of
the electric field component perpendicular to the dielectric
slabs.

For the LSE wave it is more convenient to define the
norm using the electric field components. Substituting Eys

and Ezs from Eq. (29) into the first definition of the norm,
we obtain

NðLSEÞ
s ¼ 1

4�

Z
VR

dV"½EysE
�
ys þ EzsE

�
zs�

¼ k2sbL�l;0

16�	2
nl

XN
i¼1

"i�
2
i

Z ai

ai�1

dxðhðiÞxsÞ2; (35)

where �l;0 ¼ 2 if l ¼ 0, and �l;0 ¼ 1 if l � 0. As follows
from (35), the LSEwave norm is defined with the use of the
magnetic field component perpendicular to the dielectric
slabs.

The expressions obtained for the potential (19), the
amplitudes of expansion of the solenoidal field (24)–(26)
and (29), and also the relativistic equations of bunch par-
ticle motion (6), enable us to analyze a self-consistent
dynamics of excitation of the multilayered dielectric reso-
nator by electron bunches.

IV. NUMERICAL INVESTIGATION

For the numerical analysis of wakefield excitation, we
will choose a five-zone dielectric resonator, a section of
which is shown in Fig. 2. It represents the section of a
rectangular five-zone dielectric waveguide having the
length L, the ends of which are closed by metal walls
transparent for charged particles. Two zones out of five
are the vacuum zones, these are the so-called drive and
accelerating channels. Electron bunches are injected into
the drive channel. The charge of each bunch is equal to

50 nC, the electron bunch energy is 14 MeV. It is supposed
that the bunches are rectangular in shape with homogene-
ous distribution of charge density. The bunch sizes are
Lbx ¼ 0:6 cm, Lby ¼ 0:2 cm, and Lbz ¼ 0:4 cm.

The main goal of numerical investigation of wakefield
excitation by electron bunches in a multilayered resonator
accelerating structure was to analyze the longitudinal
boundedness effects in comparison with those investigated
before [10] in a proper waveguide formulation. The
cross-section dimensions of the resonator under study
were: resonator width a ¼ 1:8576 cm, resonator height
b ¼ 0:6 cm; thickness of dielectric slabs w1 ¼
0:1237 cm, w3 ¼ 0:2288 cm, w5 ¼ 0:1051 cm; thickness
of drive channel w4 ¼ 1:2 cm, thickness of accelerating
channel w2 ¼ 0:2 cm, permittivity of slabs " ¼ 4:76, per-
meability of slabs � ¼ 1. The resonator length L has been
chosen such that it should be equal to ten wavelengths of
the LSM3;1;20 mode resonant with a bunch (with symmetric

transverse distribution in both vacuum channels) and was
L ¼ 9:988 cm. This choice of the resonator parameters
provided fulfillment of the conditions of the resonator
wakefield accelerator concept [13].
Figure 3 shows longitudinal distributions of the axial

electric field along the center of the drive channel in the
waveguide and in the resonator, both excited by a single
bunch. The distributions of total longitudinal wakefields
along the center of drive and accelerating channels in the
waveguide excited by a single charged bunch have been
presented in papers [1,10].
From Fig. 3 it follows that the field excited in the

waveguide essentially differs from the field excited in the
resonator. In the waveguide, the amplitudes of LSM and
LSE fields are of the same order, whereas in the resonator
the amplitudes of the LSE field (which also includes the
potential field) essentially exceed the LSM field amplitude.
The analysis of longitudinal and transverse amplitude

FIG. 2. Sectional view of the five-zone dielectric resonator.
Drive bunches (blue) travel in a wide channel and the accelerated
bunch (red) travels in a narrow channel. The arrows show the
travel direction of drive and accelerated bunches. The end walls
of the resonator are colored transparent light gray.
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profiles of the modes, which constitute the LSM and LSE
waves in the resonator, has shown that at the given parame-
ters of the resonator the bulk LSE modes, which are far
from being in resonance with the bunch, are rather strongly
excited. These modes are not considered in the waveguide
formulation of the problem.

It should be noted that the total wakefield [the sum of
LSM and LSE modes shown in Fig. 3(a)], calculated on the
basis of the derived set of equations, shows good agree-
ment with the total wakefield computed with the use of the
CST Particle Studio [20].

Figure 4 shows longitudinal electric field distributions
along the center of the accelerating channel. It can be seen
that the difference between the longitudinal electric field
amplitudes in the resonator and those in the waveguide is
less, but it is all the same considerable at large distances
from the drive bunch. This change in the field behavior is
connected with the group front motion of excited waves
[11].

As it has been pointed out above, for using the structure
under discussion in the two-beam acceleration scheme it is
necessary to excite it at the LSM3;1;20 modewith a low level

of parasitic harmonics. A further numerical calculation has
shown that it can be achieved at an optimum height of the
resonator. By varying the resonator height it is possible to
control the amplitudes of total field components. When
changing the resonator height, we fixed the frequency of
the mode LSM3;1;20 resonant with the bunch and the sym-

metric distribution of its longitudinal field in the both
vacuum channels. This was attained by matching the width

of dielectric slabs while keeping the same the width of
drive and accelerating channels.
Figure 5 shows the longitudinal electric field profiles

along the axis of the drive channel of the resonator excited
by a single bunch, calculated for the resonator heights
b ¼ 1:2 cm [Fig. 5(a)] and b ¼ 2:0 cm [Fig. 5(b)]. It is
obvious from Fig. 5 that an increase in the accelerating
structure height leads to an increase in the excited LSM
field amplitude, and also to reduction in the LSE field
amplitude, both in the region directly behind the bunch
and in the region of group front. The reason why the ratio

FIG. 4. Profiles of the axial electric field excited by a single
bunch along the center of the accelerating channel in the reso-
nator (a) and the waveguide (b) at time t ¼ 0:31 ns after bunch
injection. The blue line is the LSM wave field, the red line is the
LSE wave field. The head of the drive bunch has traveled the
distance from z ¼ 0 to z ¼ 9 cm. Structure height b ¼ 0:6 cm.

FIG. 5. Longitudinal distribution of axial electric field excited
by a single bunch at the center of the drive channel of the
resonator: (a) b ¼ 1:2 cm and (b) b ¼ 2:0 cm. The blue line is
the field of the LSM wave, the red line is the field of the LSE
wave.

FIG. 3. Longitudinal profiles of an axial electric field excited
by a single bunch along the center of the drive channel in the
resonator (a), and a waveguide (b) at time t ¼ 0:28 ns after
bunch injection. The blue line is the LSM wave field, the red line
is the LSE wave field; yellow rectangles show schematically the
bunch positions (as well as in the following figures). The head of
drive bunch has traveled the distance from z ¼ 0 to z ¼ 8 cm.
The structure height is b ¼ 0:6 cm. In calculations of wakefields
excited by a single electron bunch in a two-channel waveguide
analytical results of papers [15,19] have been used.
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of total field component amplitudes changes with an in-
creasing resonator height lies in the change of the character
of transverse distribution (surface or bulk) of LSM and
LSE field mode amplitudes. With the height increase the
contribution of low-frequency field modes also increases
(that is proven true by the spectral analysis performed). It is
necessary to note that for the accelerating channel a non-
monotonic dependence of the longitudinal electric field on
the resonator height is observed. The maximum is reached
at b ¼ 1:2 cm; with deviation from this value the ampli-
tude of the longitudinal electric field decreases.

The calculated data on the resonator excitation by
a sequence of 100 bunches for the resonator height
b ¼ 1:2 cm are presented in Fig. 6. The bunch repetition
rate was chosen to be equal to the frequency of LSM3;1;20

mode, and was 30 GHz. The distributions of the longitu-
dinal electric field component correspond to the time point
when the 100th bunch has completely entered the
resonator.

Figure 6 demonstrates that a sequence of bunches regu-
larizes the excited wakefield. Along with this, as the num-
ber of injected bunches increases, the period equal to the
resonant wavelength (distance between the bunches)
stands out in the longitudinal direction [Fig. 6(a)], while
in the transverse direction [Fig. 6(b)] the form of the
complete field becomes symmetric in the vacuum chan-
nels. The field amplitude at the center of the accelerating
channel actually surpasses the field amplitude at the center
of the drive channel.

Notice that the sequence of bunches of the same repeti-
tion rate does not suppress a great LSE field for the
resonator height b ¼ 0:6 cm (see Fig. 7). In this case, it
is also impossible to attain the longitudinal field regularity
and transverse field symmetry in the vacuum channels.

V. CONCLUSIONS

The main results obtained in the studies are as follows.
The obtained set of nonlinear equations describes a self-

consistent dynamics of relativistic electron bunches in a
multilayered dielectric resonator.
The dynamics of bunches is described by the equations

of macroparticle motion, where the electromagnetic fields
are set by superposition of Green’s functions, in which the
sources are the moving particles. Analytical solutions for
the excited fields are represented as a superposition of the
potential field and the solenoidal field. For the potential
field, eigenfunctions and the condition of their orthogonal-
ity have been found; the equation for determination of
eigenvalues (wave numbers, normal to dielectric layers)
has been derived. The solenoidal field has been presented
in the form of expansion in eigenfunctions of the LSM and
LSE waves. Expressions for the amplitudes of these waves
have been obtained. The eigenfunctions and the equations
for eigenfrequencies of LSM and LSE waves, derived
before for the waveguide formulation of structure excita-
tion, have been generalized to the resonator case. Using the
derived eigenfunctions, compact forms of the norms of
these waves in the multilayered dielectric resonator have
been found.
The undertaken numerical analysis of five-zone dielec-

tric resonator excitation by electron bunches has demon-
strated a vital role played by the longitudinal boundedness
of the accelerator structure. The results of numerical cal-
culations performed in the case of the two-channel reso-
nator problem, where the effects of group velocity are
considered properly, may differ considerably from the
results of numerical calculations made in the waveguide
formulation of the same problem. Previously, these effects
were considered completely by numerical methods only, in
PIC modeling.

FIG. 6. Longitudinal (a) and cross-section (b) profiles of axial
electric field excited along the center of the accelerating channel
in the two-channel resonator by a sequence of 100 drive bunches.
Structure height b ¼ 1:2 cm.

FIG. 7. Longitudinal profile of axial electric field excited along
the center of the accelerating channel in the two-channel reso-
nator by a sequence of 100 drive bunches. Resonator height
b ¼ 0:6 cm.
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Numerical calculations using the set of equations
obtained here show that a change in the height of the
two-channel resonator leads to a change in the ratio of
amplitudes of the total field components excited by the
electron bunch.

Using a bunch train, it is possible to obtain an axial field
of a rather high amplitude and regular in the longitudinal
direction, with symmetric transverse distribution in vac-
uum channels.

ACKNOWLEDGMENTS

The authors are grateful to J. L. Hirshfield (Yale
University, New Haven, and Omega-P, Inc.) and T. C.
Marshall (Columbia University, New York) for their inter-
est in the two-channel resonator formulation of wakefield
excitation and the possibility of using their previous results
of five-zone dielectric structure studies. This research was
supported by the U.S. Department of Energy, Office of
High Energy Physics, Advanced Accelerator R & D.

[1] Wei Gai, in Proceedings of the Advanced Accelerator
Concepts: 13 Workshop, edited by Carl B. Schroeder,
Wim Leemans, and Eric Esarey, AIP Conf. Proc.
No. 1086 (AIP, New York, 2009), pp. 3–11.

[2] Eric R. Colby, 35th International Conference on High
Energy Physics, Paris, France, 2010 [http://indico.cern
.ch/getFile.py/access?contribId=1033&sessionId=57&resId
=0&materialId=slides&confId=73513].

[3] Wei Gai, Manoel Conde, John Gorham Power, and
Chunguang Jing, in Proceedings of the 1st International
Particle Acceleration Conference (IPAC’10 OC/ACFA,
Kyoto, Japan, 2010), pp. 3428–3430.

[4] Wei Gai, M. E. Conde, R. Konecny, J. G. Power, P.
Schoessow, X. Sun, and P. Zou, in Proceedings of the
Advanced Accelerator Concepts: 9 Workshop, edited by
Patric L. Colestock and Sandra Kelly, AIP Conf. Proc.
No. 569 (AIP, Santa Fe, New Mexico, 2000), pp. 287–293.

[5] K. L. F. Bane, P. Chen, and P. B. Wilson, IEEE Trans.
Nucl. Sci. 32, 3524 (1985).

[6] G. A. Voss and T. Weiland, DESY Report No. M-62-10,
1982.

[7] K. L. F. Bane, P. B. Wilson, and T. Weiland, in Physics of
High Energy Particle Accelerator, AIP Conf. Proc.
No. 127 (AIP, New York, 1985), pp. 875–928.

[8] C. Jing, A. Kanareykin, J. G. Power, M. Conde, Z. Yusof,
P. Schoessow, and W. Gai, Phys. Rev. Lett. 98, 144801
(2007).

[9] C. Wang, T. C. Marshall, V. P. Yakovlev, and J. L.
Hirshfield, in Proceedings of the 2005 Particle
Acceleration Conference (IEEE, Knoxville, 2005),
pp. 1333–1335.

[10] G. V. Sotnikov, T. C. Marshall, S. Y. Shchelkunov, A.
Didenko, and J. L. Hirshfield, in Proceedings of the
Advanced Accelerator Concepts: 13 Workshop, edited by
Carl B. Schroeder, Wim Leemans, and Eric Esarey,
AIP Conf. Proc. No. 1086 (AIP, New York, 2009),
pp. 415–420.

[11] I. N. Onishchenko, D. Yu. Sidorenko, and G.V. Sotnikov,
Phys. Rev. E 65, 066501 (2002).

[12] G. V. Sotnikov, T. C. Marshall, J. L. Hirshfield, and S. V.
Shchelkunov, in Proceedings of the 7th International
Workshop ‘‘Strong Microwaves: Sources and
Applications’’, edited by Alexander G. Litvak [Inst.
Appl. Phys. Russ. Acad. Sci. 1, 243 (2009)].

[13] I. N. Onishchenko and G.V. Sotnikov, Tech. Phys. 53,
1344 (2008).

[14] A short form of the theory has been presented in the report
[21], where we gave the statement of the problem and the
final set of equations. However, in that report there is no
detailed procedure of deriving the set of equations and no
example of numerical solution of the obtained equations is
given. In the present paper, we describe the results of
numerical simulations of the set of equations derived in
Sec. III and carry out optimization of the geometrical
dimensions of a multizone dielectric resonator in order
to increase the accelerating gradient. Also, we compare
the wakefields excited in the dielectric resonator with
those excited in the dielectric waveguide.

[15] C. Wang and J. L. Hirshfield, Phys. Rev. STAccel. Beams
9, 031301 (2006).

[16] L. A. Vainstein, Electromagnetic Waves (Radio i Sviaz,
Moscow, 1988) (in Russian).

[17] Yu. V. Egorov, Partially Filled Rectangular Waveguides
(Soviet. Radio, Moscow, 1967) (in Russian).

[18] L. Pincherle, Phys. Rev. 66, 118 (1944).
[19] G. V. Sotnikov, I. N. Onishchenko, J. L. Hirshfield, and

T. C. Marshall, Probl. At. Sci. Technol., Ser. Nucl. Phys.
Invest. 49, 148 (2008) [http://vant.kipt.kharkov.ua/
TABFRAME2.html].

[20] http://www.cst.com/Content/Products/PS/Overview.aspx.
[21] G. V. Sotnikov, K.V. Galaydych, and A.M. Naboka, in

Proceedings of the 1st International Particle Acceleration
Conference (Ref. [3]), pp. 4422–4424.

K.V. GALAYDYCH AND G.V. SOTNIKOV Phys. Rev. ST Accel. Beams 14, 011302 (2011)

011302-8

http://indico.cern.ch/getFile.py/access?contribId=1033&sessionId=57&resId=0&materialId=slides&confId=73513
http://indico.cern.ch/getFile.py/access?contribId=1033&sessionId=57&resId=0&materialId=slides&confId=73513
http://indico.cern.ch/getFile.py/access?contribId=1033&sessionId=57&resId=0&materialId=slides&confId=73513
http://dx.doi.org/10.1109/TNS.1985.4334416
http://dx.doi.org/10.1109/TNS.1985.4334416
http://dx.doi.org/10.1103/PhysRevLett.98.144801
http://dx.doi.org/10.1103/PhysRevLett.98.144801
http://dx.doi.org/10.1103/PhysRevE.65.066501
http://dx.doi.org/10.1134/S1063784208100149
http://dx.doi.org/10.1134/S1063784208100149
http://dx.doi.org/10.1103/PhysRevSTAB.9.031301
http://dx.doi.org/10.1103/PhysRevSTAB.9.031301
http://dx.doi.org/10.1103/PhysRev.66.118
http://vant.kipt.kharkov.ua/TABFRAME2.html
http://vant.kipt.kharkov.ua/TABFRAME2.html
http://www.cst.com/Content/Products/PS/Overview.aspx

